1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
|
//===- SimplifyIntrinsics.cpp -- replace intrinsics with simpler form -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// \file
/// This pass looks for suitable calls to runtime library for intrinsics that
/// can be simplified/specialized and replaces with a specialized function.
///
/// For example, SUM(arr) can be specialized as a simple function with one loop,
/// compared to the three arguments (plus file & line info) that the runtime
/// call has - when the argument is a 1D-array (multiple loops may be needed
// for higher dimension arrays, of course)
///
/// The general idea is that besides making the call simpler, it can also be
/// inlined by other passes that run after this pass, which further improves
/// performance, particularly when the work done in the function is trivial
/// and small in size.
//===----------------------------------------------------------------------===//
#include "flang/Common/Fortran.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/LowLevelIntrinsics.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/HLFIR/HLFIRDialect.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "flang/Runtime/entry-names.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Operation.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <llvm/Support/ErrorHandling.h>
#include <mlir/Dialect/Arith/IR/Arith.h>
#include <mlir/IR/BuiltinTypes.h>
#include <mlir/IR/Location.h>
#include <mlir/IR/MLIRContext.h>
#include <mlir/IR/Value.h>
#include <mlir/Support/LLVM.h>
#include <optional>
namespace fir {
#define GEN_PASS_DEF_SIMPLIFYINTRINSICS
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir
#define DEBUG_TYPE "flang-simplify-intrinsics"
namespace {
class SimplifyIntrinsicsPass
: public fir::impl::SimplifyIntrinsicsBase<SimplifyIntrinsicsPass> {
using FunctionTypeGeneratorTy =
llvm::function_ref<mlir::FunctionType(fir::FirOpBuilder &)>;
using FunctionBodyGeneratorTy =
llvm::function_ref<void(fir::FirOpBuilder &, mlir::func::FuncOp &)>;
using GenReductionBodyTy = llvm::function_ref<void(
fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp, unsigned rank,
mlir::Type elementType)>;
public:
/// Generate a new function implementing a simplified version
/// of a Fortran runtime function defined by \p basename name.
/// \p typeGenerator is a callback that generates the new function's type.
/// \p bodyGenerator is a callback that generates the new function's body.
/// The new function is created in the \p builder's Module.
mlir::func::FuncOp getOrCreateFunction(fir::FirOpBuilder &builder,
const mlir::StringRef &basename,
FunctionTypeGeneratorTy typeGenerator,
FunctionBodyGeneratorTy bodyGenerator);
void runOnOperation() override;
void getDependentDialects(mlir::DialectRegistry ®istry) const override;
private:
/// Helper functions to replace a reduction type of call with its
/// simplified form. The actual function is generated using a callback
/// function.
/// \p call is the call to be replaced
/// \p kindMap is used to create FIROpBuilder
/// \p genBodyFunc is the callback that builds the replacement function
void simplifyIntOrFloatReduction(fir::CallOp call,
const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc);
void simplifyLogicalDim0Reduction(fir::CallOp call,
const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc);
void simplifyLogicalDim1Reduction(fir::CallOp call,
const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc);
void simplifyMinlocReduction(fir::CallOp call,
const fir::KindMapping &kindMap);
void simplifyReductionBody(fir::CallOp call, const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc,
fir::FirOpBuilder &builder,
const mlir::StringRef &basename,
mlir::Type elementType);
};
} // namespace
/// Create FirOpBuilder with the provided \p op insertion point
/// and \p kindMap additionally inheriting FastMathFlags from \p op.
static fir::FirOpBuilder
getSimplificationBuilder(mlir::Operation *op, const fir::KindMapping &kindMap) {
fir::FirOpBuilder builder{op, kindMap};
auto fmi = mlir::dyn_cast<mlir::arith::ArithFastMathInterface>(*op);
if (!fmi)
return builder;
// Regardless of what default FastMathFlags are used by FirOpBuilder,
// override them with FastMathFlags attached to the operation.
builder.setFastMathFlags(fmi.getFastMathFlagsAttr().getValue());
return builder;
}
/// Generate function type for the simplified version of RTNAME(Sum) and
/// similar functions with a fir.box<none> type returning \p elementType.
static mlir::FunctionType genNoneBoxType(fir::FirOpBuilder &builder,
const mlir::Type &elementType) {
mlir::Type boxType = fir::BoxType::get(builder.getNoneType());
return mlir::FunctionType::get(builder.getContext(), {boxType},
{elementType});
}
template <typename Op>
Op expectOp(mlir::Value val) {
if (Op op = mlir::dyn_cast_or_null<Op>(val.getDefiningOp()))
return op;
LLVM_DEBUG(llvm::dbgs() << "Didn't find expected " << Op::getOperationName()
<< '\n');
return nullptr;
}
template <typename Op>
static mlir::Value findDefSingle(fir::ConvertOp op) {
if (auto defOp = expectOp<Op>(op->getOperand(0))) {
return defOp.getResult();
}
return {};
}
template <typename... Ops>
static mlir::Value findDef(fir::ConvertOp op) {
mlir::Value defOp;
// Loop over the operation types given to see if any match, exiting once
// a match is found. Cast to void is needed to avoid compiler complaining
// that the result of expression is unused
(void)((defOp = findDefSingle<Ops>(op), (defOp)) || ...);
return defOp;
}
static bool isOperandAbsent(mlir::Value val) {
if (auto op = expectOp<fir::ConvertOp>(val)) {
assert(op->getOperands().size() != 0);
return mlir::isa_and_nonnull<fir::AbsentOp>(
op->getOperand(0).getDefiningOp());
}
return false;
}
static bool isTrueOrNotConstant(mlir::Value val) {
if (auto op = expectOp<mlir::arith::ConstantOp>(val)) {
return !mlir::matchPattern(val, mlir::m_Zero());
}
return true;
}
static bool isZero(mlir::Value val) {
if (auto op = expectOp<fir::ConvertOp>(val)) {
assert(op->getOperands().size() != 0);
if (mlir::Operation *defOp = op->getOperand(0).getDefiningOp())
return mlir::matchPattern(defOp, mlir::m_Zero());
}
return false;
}
static mlir::Value findBoxDef(mlir::Value val) {
if (auto op = expectOp<fir::ConvertOp>(val)) {
assert(op->getOperands().size() != 0);
return findDef<fir::EmboxOp, fir::ReboxOp>(op);
}
return {};
}
static mlir::Value findMaskDef(mlir::Value val) {
if (auto op = expectOp<fir::ConvertOp>(val)) {
assert(op->getOperands().size() != 0);
return findDef<fir::EmboxOp, fir::ReboxOp, fir::AbsentOp>(op);
}
return {};
}
static unsigned getDimCount(mlir::Value val) {
// In order to find the dimensions count, we look for EmboxOp/ReboxOp
// and take the count from its *result* type. Note that in case
// of sliced emboxing the operand and the result of EmboxOp/ReboxOp
// have different types.
// Actually, we can take the box type from the operand of
// the first ConvertOp that has non-opaque box type that we meet
// going through the ConvertOp chain.
if (mlir::Value emboxVal = findBoxDef(val))
if (auto boxTy = emboxVal.getType().dyn_cast<fir::BoxType>())
if (auto seqTy = boxTy.getEleTy().dyn_cast<fir::SequenceType>())
return seqTy.getDimension();
return 0;
}
/// Given the call operation's box argument \p val, discover
/// the element type of the underlying array object.
/// \returns the element type or std::nullopt if the type cannot
/// be reliably found.
/// We expect that the argument is a result of fir.convert
/// with the destination type of !fir.box<none>.
static std::optional<mlir::Type> getArgElementType(mlir::Value val) {
mlir::Operation *defOp;
do {
defOp = val.getDefiningOp();
// Analyze only sequences of convert operations.
if (!mlir::isa<fir::ConvertOp>(defOp))
return std::nullopt;
val = defOp->getOperand(0);
// The convert operation is expected to convert from one
// box type to another box type.
auto boxType = val.getType().cast<fir::BoxType>();
auto elementType = fir::unwrapSeqOrBoxedSeqType(boxType);
if (!elementType.isa<mlir::NoneType>())
return elementType;
} while (true);
}
using BodyOpGeneratorTy = llvm::function_ref<mlir::Value(
fir::FirOpBuilder &, mlir::Location, const mlir::Type &, mlir::Value,
mlir::Value)>;
using InitValGeneratorTy = llvm::function_ref<mlir::Value(
fir::FirOpBuilder &, mlir::Location, const mlir::Type &)>;
using ContinueLoopGenTy = llvm::function_ref<llvm::SmallVector<mlir::Value>(
fir::FirOpBuilder &, mlir::Location, mlir::Value)>;
/// Generate the reduction loop into \p funcOp.
///
/// \p initVal is a function, called to get the initial value for
/// the reduction value
/// \p genBody is called to fill in the actual reduciton operation
/// for example add for SUM, MAX for MAXVAL, etc.
/// \p rank is the rank of the input argument.
/// \p elementType is the type of the elements in the input array,
/// which may be different to the return type.
/// \p loopCond is called to generate the condition to continue or
/// not for IterWhile loops
/// \p unorderedOrInitalLoopCond contains either a boolean or bool
/// mlir constant, and controls the inital value for while loops
/// or if DoLoop is ordered/unordered.
template <typename OP, typename T, int resultIndex>
static void
genReductionLoop(fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp,
InitValGeneratorTy initVal, ContinueLoopGenTy loopCond,
T unorderedOrInitialLoopCond, BodyOpGeneratorTy genBody,
unsigned rank, mlir::Type elementType, mlir::Location loc) {
mlir::IndexType idxTy = builder.getIndexType();
mlir::Block::BlockArgListType args = funcOp.front().getArguments();
mlir::Value arg = args[0];
mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0);
fir::SequenceType::Shape flatShape(rank,
fir::SequenceType::getUnknownExtent());
mlir::Type arrTy = fir::SequenceType::get(flatShape, elementType);
mlir::Type boxArrTy = fir::BoxType::get(arrTy);
mlir::Value array = builder.create<fir::ConvertOp>(loc, boxArrTy, arg);
mlir::Type resultType = funcOp.getResultTypes()[0];
mlir::Value init = initVal(builder, loc, resultType);
llvm::SmallVector<mlir::Value, Fortran::common::maxRank> bounds;
assert(rank > 0 && "rank cannot be zero");
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
// Compute all the upper bounds before the loop nest.
// It is not strictly necessary for performance, since the loop nest
// does not have any store operations and any LICM optimization
// should be able to optimize the redundancy.
for (unsigned i = 0; i < rank; ++i) {
mlir::Value dimIdx = builder.createIntegerConstant(loc, idxTy, i);
auto dims =
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array, dimIdx);
mlir::Value len = dims.getResult(1);
// We use C indexing here, so len-1 as loopcount
mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one);
bounds.push_back(loopCount);
}
// Create a loop nest consisting of OP operations.
// Collect the loops' induction variables into indices array,
// which will be used in the innermost loop to load the input
// array's element.
// The loops are generated such that the innermost loop processes
// the 0 dimension.
llvm::SmallVector<mlir::Value, Fortran::common::maxRank> indices;
for (unsigned i = rank; 0 < i; --i) {
mlir::Value step = one;
mlir::Value loopCount = bounds[i - 1];
auto loop = builder.create<OP>(loc, zeroIdx, loopCount, step,
unorderedOrInitialLoopCond,
/*finalCountValue=*/false, init);
init = loop.getRegionIterArgs()[resultIndex];
indices.push_back(loop.getInductionVar());
// Set insertion point to the loop body so that the next loop
// is inserted inside the current one.
builder.setInsertionPointToStart(loop.getBody());
}
// Reverse the indices such that they are ordered as:
// <dim-0-idx, dim-1-idx, ...>
std::reverse(indices.begin(), indices.end());
// We are in the innermost loop: generate the reduction body.
mlir::Type eleRefTy = builder.getRefType(elementType);
mlir::Value addr =
builder.create<fir::CoordinateOp>(loc, eleRefTy, array, indices);
mlir::Value elem = builder.create<fir::LoadOp>(loc, addr);
mlir::Value reductionVal = genBody(builder, loc, elementType, elem, init);
// Generate vector with condition to continue while loop at [0] and result
// from current loop at [1] for IterWhileOp loops, just result at [0] for
// DoLoopOp loops.
llvm::SmallVector<mlir::Value> results = loopCond(builder, loc, reductionVal);
// Unwind the loop nest and insert ResultOp on each level
// to return the updated value of the reduction to the enclosing
// loops.
for (unsigned i = 0; i < rank; ++i) {
auto result = builder.create<fir::ResultOp>(loc, results);
// Proceed to the outer loop.
auto loop = mlir::cast<OP>(result->getParentOp());
results = loop.getResults();
// Set insertion point after the loop operation that we have
// just processed.
builder.setInsertionPointAfter(loop.getOperation());
}
// End of loop nest. The insertion point is after the outermost loop.
// Return the reduction value from the function.
builder.create<mlir::func::ReturnOp>(loc, results[resultIndex]);
}
using MinlocBodyOpGeneratorTy = llvm::function_ref<mlir::Value(
fir::FirOpBuilder &, mlir::Location, const mlir::Type &, mlir::Value,
mlir::Value, llvm::SmallVector<mlir::Value, Fortran::common::maxRank> &)>;
static void
genMinlocReductionLoop(fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp,
InitValGeneratorTy initVal,
MinlocBodyOpGeneratorTy genBody, unsigned rank,
mlir::Type elementType, mlir::Location loc, bool hasMask,
mlir::Type maskElemType, mlir::Value resultArr) {
mlir::IndexType idxTy = builder.getIndexType();
mlir::Block::BlockArgListType args = funcOp.front().getArguments();
mlir::Value arg = args[1];
mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0);
fir::SequenceType::Shape flatShape(rank,
fir::SequenceType::getUnknownExtent());
mlir::Type arrTy = fir::SequenceType::get(flatShape, elementType);
mlir::Type boxArrTy = fir::BoxType::get(arrTy);
mlir::Value array = builder.create<fir::ConvertOp>(loc, boxArrTy, arg);
mlir::Type resultElemType = hlfir::getFortranElementType(resultArr.getType());
mlir::Value flagSet = builder.createIntegerConstant(loc, resultElemType, 1);
mlir::Value zero = builder.createIntegerConstant(loc, resultElemType, 0);
mlir::Value flagRef = builder.createTemporary(loc, resultElemType);
builder.create<fir::StoreOp>(loc, zero, flagRef);
mlir::Value mask;
if (hasMask) {
mlir::Type maskTy = fir::SequenceType::get(flatShape, maskElemType);
mlir::Type boxMaskTy = fir::BoxType::get(maskTy);
mask = builder.create<fir::ConvertOp>(loc, boxMaskTy, args[2]);
}
mlir::Value init = initVal(builder, loc, elementType);
llvm::SmallVector<mlir::Value, Fortran::common::maxRank> bounds;
assert(rank > 0 && "rank cannot be zero");
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
// Compute all the upper bounds before the loop nest.
// It is not strictly necessary for performance, since the loop nest
// does not have any store operations and any LICM optimization
// should be able to optimize the redundancy.
for (unsigned i = 0; i < rank; ++i) {
mlir::Value dimIdx = builder.createIntegerConstant(loc, idxTy, i);
auto dims =
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array, dimIdx);
mlir::Value len = dims.getResult(1);
// We use C indexing here, so len-1 as loopcount
mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one);
bounds.push_back(loopCount);
}
// Create a loop nest consisting of OP operations.
// Collect the loops' induction variables into indices array,
// which will be used in the innermost loop to load the input
// array's element.
// The loops are generated such that the innermost loop processes
// the 0 dimension.
llvm::SmallVector<mlir::Value, Fortran::common::maxRank> indices;
for (unsigned i = rank; 0 < i; --i) {
mlir::Value step = one;
mlir::Value loopCount = bounds[i - 1];
auto loop =
builder.create<fir::DoLoopOp>(loc, zeroIdx, loopCount, step, false,
/*finalCountValue=*/false, init);
init = loop.getRegionIterArgs()[0];
indices.push_back(loop.getInductionVar());
// Set insertion point to the loop body so that the next loop
// is inserted inside the current one.
builder.setInsertionPointToStart(loop.getBody());
}
// Reverse the indices such that they are ordered as:
// <dim-0-idx, dim-1-idx, ...>
std::reverse(indices.begin(), indices.end());
// We are in the innermost loop: generate the reduction body.
if (hasMask) {
mlir::Type logicalRef = builder.getRefType(maskElemType);
mlir::Value maskAddr =
builder.create<fir::CoordinateOp>(loc, logicalRef, mask, indices);
mlir::Value maskElem = builder.create<fir::LoadOp>(loc, maskAddr);
// fir::IfOp requires argument to be I1 - won't accept logical or any other
// Integer.
mlir::Type ifCompatType = builder.getI1Type();
mlir::Value ifCompatElem =
builder.create<fir::ConvertOp>(loc, ifCompatType, maskElem);
llvm::SmallVector<mlir::Type> resultsTy = {elementType, elementType};
fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, ifCompatElem,
/*withElseRegion=*/true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
}
// Set flag that mask was true at some point
builder.create<fir::StoreOp>(loc, flagSet, flagRef);
mlir::Type eleRefTy = builder.getRefType(elementType);
mlir::Value addr =
builder.create<fir::CoordinateOp>(loc, eleRefTy, array, indices);
mlir::Value elem = builder.create<fir::LoadOp>(loc, addr);
mlir::Value reductionVal =
genBody(builder, loc, elementType, elem, init, indices);
if (hasMask) {
fir::IfOp ifOp =
mlir::dyn_cast<fir::IfOp>(builder.getBlock()->getParentOp());
builder.create<fir::ResultOp>(loc, reductionVal);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<fir::ResultOp>(loc, init);
reductionVal = ifOp.getResult(0);
builder.setInsertionPointAfter(ifOp);
}
// Unwind the loop nest and insert ResultOp on each level
// to return the updated value of the reduction to the enclosing
// loops.
for (unsigned i = 0; i < rank; ++i) {
auto result = builder.create<fir::ResultOp>(loc, reductionVal);
// Proceed to the outer loop.
auto loop = mlir::cast<fir::DoLoopOp>(result->getParentOp());
reductionVal = loop.getResult(0);
// Set insertion point after the loop operation that we have
// just processed.
builder.setInsertionPointAfter(loop.getOperation());
}
// End of loop nest. The insertion point is after the outermost loop.
if (fir::IfOp ifOp =
mlir::dyn_cast<fir::IfOp>(builder.getBlock()->getParentOp())) {
builder.create<fir::ResultOp>(loc, reductionVal);
builder.setInsertionPointAfter(ifOp);
// Redefine flagSet to escape scope of ifOp
flagSet = builder.createIntegerConstant(loc, resultElemType, 1);
reductionVal = ifOp.getResult(0);
}
// Check for case where array was full of max values.
// flag will be 0 if mask was never true, 1 if mask was true as some point,
// this is needed to avoid catching cases where we didn't access any elements
// e.g. mask=.FALSE.
mlir::Value flagValue =
builder.create<fir::LoadOp>(loc, resultElemType, flagRef);
mlir::Value flagCmp = builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::eq, flagValue, flagSet);
fir::IfOp ifMaskTrueOp =
builder.create<fir::IfOp>(loc, flagCmp, /*withElseRegion=*/false);
builder.setInsertionPointToStart(&ifMaskTrueOp.getThenRegion().front());
mlir::Value testInit = initVal(builder, loc, elementType);
fir::IfOp ifMinSetOp;
if (elementType.isa<mlir::FloatType>()) {
mlir::Value cmp = builder.create<mlir::arith::CmpFOp>(
loc, mlir::arith::CmpFPredicate::OEQ, testInit, reductionVal);
ifMinSetOp = builder.create<fir::IfOp>(loc, cmp,
/*withElseRegion*/ false);
} else {
mlir::Value cmp = builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::eq, testInit, reductionVal);
ifMinSetOp = builder.create<fir::IfOp>(loc, cmp,
/*withElseRegion*/ false);
}
builder.setInsertionPointToStart(&ifMinSetOp.getThenRegion().front());
// Load output array with 1s instead of 0s
for (unsigned int i = 0; i < rank; ++i) {
mlir::Type resultRefTy = builder.getRefType(resultElemType);
// mlir::Value one = builder.createIntegerConstant(loc, resultElemType, 1);
mlir::Value index = builder.createIntegerConstant(loc, idxTy, i);
mlir::Value resultElemAddr =
builder.create<fir::CoordinateOp>(loc, resultRefTy, resultArr, index);
builder.create<fir::StoreOp>(loc, flagSet, resultElemAddr);
}
builder.setInsertionPointAfter(ifMaskTrueOp);
// Store newly created output array to the reference passed in
fir::SequenceType::Shape resultShape(1, rank);
mlir::Type outputArrTy = fir::SequenceType::get(resultShape, resultElemType);
mlir::Type outputHeapTy = fir::HeapType::get(outputArrTy);
mlir::Type outputBoxTy = fir::BoxType::get(outputHeapTy);
mlir::Type outputRefTy = builder.getRefType(outputBoxTy);
mlir::Value outputArrNone = args[0];
mlir::Value outputArr =
builder.create<fir::ConvertOp>(loc, outputRefTy, outputArrNone);
// Store nearly created array to output array
builder.create<fir::StoreOp>(loc, resultArr, outputArr);
builder.create<mlir::func::ReturnOp>(loc);
}
static llvm::SmallVector<mlir::Value> nopLoopCond(fir::FirOpBuilder &builder,
mlir::Location loc,
mlir::Value reductionVal) {
return {reductionVal};
}
/// Generate function body of the simplified version of RTNAME(Sum)
/// with signature provided by \p funcOp. The caller is responsible
/// for saving/restoring the original insertion point of \p builder.
/// \p funcOp is expected to be empty on entry to this function.
/// \p rank specifies the rank of the input argument.
static void genRuntimeSumBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp, unsigned rank,
mlir::Type elementType) {
// function RTNAME(Sum)<T>x<rank>_simplified(arr)
// T, dimension(:) :: arr
// T sum = 0
// integer iter
// do iter = 0, extent(arr)
// sum = sum + arr[iter]
// end do
// RTNAME(Sum)<T>x<rank>_simplified = sum
// end function RTNAME(Sum)<T>x<rank>_simplified
auto zero = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType) {
if (auto ty = elementType.dyn_cast<mlir::FloatType>()) {
const llvm::fltSemantics &sem = ty.getFloatSemantics();
return builder.createRealConstant(loc, elementType,
llvm::APFloat::getZero(sem));
}
return builder.createIntegerConstant(loc, elementType, 0);
};
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType, mlir::Value elem1,
mlir::Value elem2) -> mlir::Value {
if (elementType.isa<mlir::FloatType>())
return builder.create<mlir::arith::AddFOp>(loc, elem1, elem2);
if (elementType.isa<mlir::IntegerType>())
return builder.create<mlir::arith::AddIOp>(loc, elem1, elem2);
llvm_unreachable("unsupported type");
return {};
};
mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
genReductionLoop<fir::DoLoopOp, bool, 0>(builder, funcOp, zero, nopLoopCond,
false, genBodyOp, rank, elementType,
loc);
}
static void genRuntimeMaxvalBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp, unsigned rank,
mlir::Type elementType) {
auto init = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType) {
if (auto ty = elementType.dyn_cast<mlir::FloatType>()) {
const llvm::fltSemantics &sem = ty.getFloatSemantics();
return builder.createRealConstant(
loc, elementType, llvm::APFloat::getLargest(sem, /*Negative=*/true));
}
unsigned bits = elementType.getIntOrFloatBitWidth();
int64_t minInt = llvm::APInt::getSignedMinValue(bits).getSExtValue();
return builder.createIntegerConstant(loc, elementType, minInt);
};
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType, mlir::Value elem1,
mlir::Value elem2) -> mlir::Value {
if (elementType.isa<mlir::FloatType>())
return builder.create<mlir::arith::MaxFOp>(loc, elem1, elem2);
if (elementType.isa<mlir::IntegerType>())
return builder.create<mlir::arith::MaxSIOp>(loc, elem1, elem2);
llvm_unreachable("unsupported type");
return {};
};
mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
genReductionLoop<fir::DoLoopOp, bool, 0>(builder, funcOp, init, nopLoopCond,
false, genBodyOp, rank, elementType,
loc);
}
static void genRuntimeCountBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp, unsigned rank,
mlir::Type elementType) {
auto zero = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType) {
unsigned bits = elementType.getIntOrFloatBitWidth();
int64_t zeroInt = llvm::APInt::getZero(bits).getSExtValue();
return builder.createIntegerConstant(loc, elementType, zeroInt);
};
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType, mlir::Value elem1,
mlir::Value elem2) -> mlir::Value {
auto zero32 = builder.createIntegerConstant(loc, elementType, 0);
auto zero64 = builder.createIntegerConstant(loc, builder.getI64Type(), 0);
auto one64 = builder.createIntegerConstant(loc, builder.getI64Type(), 1);
auto compare = builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::eq, elem1, zero32);
auto select =
builder.create<mlir::arith::SelectOp>(loc, compare, zero64, one64);
return builder.create<mlir::arith::AddIOp>(loc, select, elem2);
};
// Count always gets I32 for elementType as it converts logical input to
// logical<4> before passing to the function.
mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
genReductionLoop<fir::DoLoopOp, bool, 0>(builder, funcOp, zero, nopLoopCond,
false, genBodyOp, rank, elementType,
loc);
}
static void genRuntimeAnyBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp, unsigned rank,
mlir::Type elementType) {
auto zero = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType) {
return builder.createIntegerConstant(loc, elementType, 0);
};
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType, mlir::Value elem1,
mlir::Value elem2) -> mlir::Value {
auto zero = builder.createIntegerConstant(loc, elementType, 0);
return builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::ne, elem1, zero);
};
auto continueCond = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Value reductionVal) {
auto one1 = builder.createIntegerConstant(loc, builder.getI1Type(), 1);
auto eor = builder.create<mlir::arith::XOrIOp>(loc, reductionVal, one1);
llvm::SmallVector<mlir::Value> results = {eor, reductionVal};
return results;
};
mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
mlir::Value ok = builder.createBool(loc, true);
genReductionLoop<fir::IterWhileOp, mlir::Value, 1>(
builder, funcOp, zero, continueCond, ok, genBodyOp, rank, elementType,
loc);
}
static void genRuntimeAllBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp, unsigned rank,
mlir::Type elementType) {
auto one = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType) {
return builder.createIntegerConstant(loc, elementType, 1);
};
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType, mlir::Value elem1,
mlir::Value elem2) -> mlir::Value {
auto zero = builder.createIntegerConstant(loc, elementType, 0);
return builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::ne, elem1, zero);
};
auto continueCond = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Value reductionVal) {
llvm::SmallVector<mlir::Value> results = {reductionVal, reductionVal};
return results;
};
mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
mlir::Value ok = builder.createBool(loc, true);
genReductionLoop<fir::IterWhileOp, mlir::Value, 1>(
builder, funcOp, one, continueCond, ok, genBodyOp, rank, elementType,
loc);
}
static mlir::FunctionType genRuntimeMinlocType(fir::FirOpBuilder &builder,
unsigned int rank) {
mlir::Type boxType = fir::BoxType::get(builder.getNoneType());
mlir::Type boxRefType = builder.getRefType(boxType);
return mlir::FunctionType::get(builder.getContext(),
{boxRefType, boxType, boxType}, {});
}
static void genRuntimeMinlocBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp, unsigned rank,
int maskRank, mlir::Type elementType,
mlir::Type maskElemType,
mlir::Type resultElemTy) {
auto init = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType) {
if (auto ty = elementType.dyn_cast<mlir::FloatType>()) {
const llvm::fltSemantics &sem = ty.getFloatSemantics();
return builder.createRealConstant(
loc, elementType, llvm::APFloat::getLargest(sem, /*Negative=*/false));
}
unsigned bits = elementType.getIntOrFloatBitWidth();
int64_t maxInt = llvm::APInt::getSignedMaxValue(bits).getSExtValue();
return builder.createIntegerConstant(loc, elementType, maxInt);
};
mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
mlir::Value mask = funcOp.front().getArgument(2);
// Set up result array in case of early exit / 0 length array
mlir::IndexType idxTy = builder.getIndexType();
mlir::Type resultTy = fir::SequenceType::get(rank, resultElemTy);
mlir::Type resultHeapTy = fir::HeapType::get(resultTy);
mlir::Type resultBoxTy = fir::BoxType::get(resultHeapTy);
mlir::Value returnValue = builder.createIntegerConstant(loc, resultElemTy, 0);
mlir::Value resultArrSize = builder.createIntegerConstant(loc, idxTy, rank);
mlir::Value resultArrInit = builder.create<fir::AllocMemOp>(loc, resultTy);
mlir::Value resultArrShape = builder.create<fir::ShapeOp>(loc, resultArrSize);
mlir::Value resultArr = builder.create<fir::EmboxOp>(
loc, resultBoxTy, resultArrInit, resultArrShape);
mlir::Type resultRefTy = builder.getRefType(resultElemTy);
for (unsigned int i = 0; i < rank; ++i) {
mlir::Value index = builder.createIntegerConstant(loc, idxTy, i);
mlir::Value resultElemAddr =
builder.create<fir::CoordinateOp>(loc, resultRefTy, resultArr, index);
builder.create<fir::StoreOp>(loc, returnValue, resultElemAddr);
}
auto genBodyOp =
[&rank, &resultArr](
fir::FirOpBuilder builder, mlir::Location loc, mlir::Type elementType,
mlir::Value elem1, mlir::Value elem2,
llvm::SmallVector<mlir::Value, Fortran::common::maxRank> indices)
-> mlir::Value {
mlir::Value cmp;
if (elementType.isa<mlir::FloatType>()) {
cmp = builder.create<mlir::arith::CmpFOp>(
loc, mlir::arith::CmpFPredicate::OLT, elem1, elem2);
} else if (elementType.isa<mlir::IntegerType>()) {
cmp = builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::slt, elem1, elem2);
} else {
llvm_unreachable("unsupported type");
}
fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, cmp,
/*withElseRegion*/ true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
mlir::Type resultElemTy = hlfir::getFortranElementType(resultArr.getType());
mlir::Type returnRefTy = builder.getRefType(resultElemTy);
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value one = builder.createIntegerConstant(loc, resultElemTy, 1);
for (unsigned int i = 0; i < rank; ++i) {
mlir::Value index = builder.createIntegerConstant(loc, idxTy, i);
mlir::Value resultElemAddr =
builder.create<fir::CoordinateOp>(loc, returnRefTy, resultArr, index);
mlir::Value convert =
builder.create<fir::ConvertOp>(loc, resultElemTy, indices[i]);
mlir::Value fortranIndex =
builder.create<mlir::arith::AddIOp>(loc, convert, one);
builder.create<fir::StoreOp>(loc, fortranIndex, resultElemAddr);
}
builder.create<fir::ResultOp>(loc, elem1);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<fir::ResultOp>(loc, elem2);
builder.setInsertionPointAfter(ifOp);
return ifOp.getResult(0);
};
// if mask is a logical scalar, we can check its value before the main loop
// and either ignore the fact it is there or exit early.
if (maskRank == 0) {
mlir::Type logical = builder.getI1Type();
mlir::IndexType idxTy = builder.getIndexType();
fir::SequenceType::Shape singleElement(1, 1);
mlir::Type arrTy = fir::SequenceType::get(singleElement, logical);
mlir::Type boxArrTy = fir::BoxType::get(arrTy);
mlir::Value array = builder.create<fir::ConvertOp>(loc, boxArrTy, mask);
mlir::Value indx = builder.createIntegerConstant(loc, idxTy, 0);
mlir::Type logicalRefTy = builder.getRefType(logical);
mlir::Value condAddr =
builder.create<fir::CoordinateOp>(loc, logicalRefTy, array, indx);
mlir::Value cond = builder.create<fir::LoadOp>(loc, condAddr);
fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, cond,
/*withElseRegion=*/true);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
mlir::Value basicValue;
if (elementType.isa<mlir::IntegerType>()) {
basicValue = builder.createIntegerConstant(loc, elementType, 0);
} else {
basicValue = builder.createRealConstant(loc, elementType, 0);
}
builder.create<fir::ResultOp>(loc, basicValue);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
}
// bit of a hack - maskRank is set to -1 for absent mask arg, so don't
// generate high level mask or element by element mask.
bool hasMask = maskRank > 0;
genMinlocReductionLoop(builder, funcOp, init, genBodyOp, rank, elementType,
loc, hasMask, maskElemType, resultArr);
}
/// Generate function type for the simplified version of RTNAME(DotProduct)
/// operating on the given \p elementType.
static mlir::FunctionType genRuntimeDotType(fir::FirOpBuilder &builder,
const mlir::Type &elementType) {
mlir::Type boxType = fir::BoxType::get(builder.getNoneType());
return mlir::FunctionType::get(builder.getContext(), {boxType, boxType},
{elementType});
}
/// Generate function body of the simplified version of RTNAME(DotProduct)
/// with signature provided by \p funcOp. The caller is responsible
/// for saving/restoring the original insertion point of \p builder.
/// \p funcOp is expected to be empty on entry to this function.
/// \p arg1ElementTy and \p arg2ElementTy specify elements types
/// of the underlying array objects - they are used to generate proper
/// element accesses.
static void genRuntimeDotBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp,
mlir::Type arg1ElementTy,
mlir::Type arg2ElementTy) {
// function RTNAME(DotProduct)<T>_simplified(arr1, arr2)
// T, dimension(:) :: arr1, arr2
// T product = 0
// integer iter
// do iter = 0, extent(arr1)
// product = product + arr1[iter] * arr2[iter]
// end do
// RTNAME(ADotProduct)<T>_simplified = product
// end function RTNAME(DotProduct)<T>_simplified
auto loc = mlir::UnknownLoc::get(builder.getContext());
mlir::Type resultElementType = funcOp.getResultTypes()[0];
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value zero =
resultElementType.isa<mlir::FloatType>()
? builder.createRealConstant(loc, resultElementType, 0.0)
: builder.createIntegerConstant(loc, resultElementType, 0);
mlir::Block::BlockArgListType args = funcOp.front().getArguments();
mlir::Value arg1 = args[0];
mlir::Value arg2 = args[1];
mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0);
fir::SequenceType::Shape flatShape = {fir::SequenceType::getUnknownExtent()};
mlir::Type arrTy1 = fir::SequenceType::get(flatShape, arg1ElementTy);
mlir::Type boxArrTy1 = fir::BoxType::get(arrTy1);
mlir::Value array1 = builder.create<fir::ConvertOp>(loc, boxArrTy1, arg1);
mlir::Type arrTy2 = fir::SequenceType::get(flatShape, arg2ElementTy);
mlir::Type boxArrTy2 = fir::BoxType::get(arrTy2);
mlir::Value array2 = builder.create<fir::ConvertOp>(loc, boxArrTy2, arg2);
// This version takes the loop trip count from the first argument.
// If the first argument's box has unknown (at compilation time)
// extent, then it may be better to take the extent from the second
// argument - so that after inlining the loop may be better optimized, e.g.
// fully unrolled. This requires generating two versions of the simplified
// function and some analysis at the call site to choose which version
// is more profitable to call.
// Note that we can assume that both arguments have the same extent.
auto dims =
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array1, zeroIdx);
mlir::Value len = dims.getResult(1);
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
mlir::Value step = one;
// We use C indexing here, so len-1 as loopcount
mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one);
auto loop = builder.create<fir::DoLoopOp>(loc, zeroIdx, loopCount, step,
/*unordered=*/false,
/*finalCountValue=*/false, zero);
mlir::Value sumVal = loop.getRegionIterArgs()[0];
// Begin loop code
mlir::OpBuilder::InsertPoint loopEndPt = builder.saveInsertionPoint();
builder.setInsertionPointToStart(loop.getBody());
mlir::Type eleRef1Ty = builder.getRefType(arg1ElementTy);
mlir::Value index = loop.getInductionVar();
mlir::Value addr1 =
builder.create<fir::CoordinateOp>(loc, eleRef1Ty, array1, index);
mlir::Value elem1 = builder.create<fir::LoadOp>(loc, addr1);
// Convert to the result type.
elem1 = builder.create<fir::ConvertOp>(loc, resultElementType, elem1);
mlir::Type eleRef2Ty = builder.getRefType(arg2ElementTy);
mlir::Value addr2 =
builder.create<fir::CoordinateOp>(loc, eleRef2Ty, array2, index);
mlir::Value elem2 = builder.create<fir::LoadOp>(loc, addr2);
// Convert to the result type.
elem2 = builder.create<fir::ConvertOp>(loc, resultElementType, elem2);
if (resultElementType.isa<mlir::FloatType>())
sumVal = builder.create<mlir::arith::AddFOp>(
loc, builder.create<mlir::arith::MulFOp>(loc, elem1, elem2), sumVal);
else if (resultElementType.isa<mlir::IntegerType>())
sumVal = builder.create<mlir::arith::AddIOp>(
loc, builder.create<mlir::arith::MulIOp>(loc, elem1, elem2), sumVal);
else
llvm_unreachable("unsupported type");
builder.create<fir::ResultOp>(loc, sumVal);
// End of loop.
builder.restoreInsertionPoint(loopEndPt);
mlir::Value resultVal = loop.getResult(0);
builder.create<mlir::func::ReturnOp>(loc, resultVal);
}
mlir::func::FuncOp SimplifyIntrinsicsPass::getOrCreateFunction(
fir::FirOpBuilder &builder, const mlir::StringRef &baseName,
FunctionTypeGeneratorTy typeGenerator,
FunctionBodyGeneratorTy bodyGenerator) {
// WARNING: if the function generated here changes its signature
// or behavior (the body code), we should probably embed some
// versioning information into its name, otherwise libraries
// statically linked with older versions of Flang may stop
// working with object files created with newer Flang.
// We can also avoid this by using internal linkage, but
// this may increase the size of final executable/shared library.
std::string replacementName = mlir::Twine{baseName, "_simplified"}.str();
mlir::ModuleOp module = builder.getModule();
// If we already have a function, just return it.
mlir::func::FuncOp newFunc =
fir::FirOpBuilder::getNamedFunction(module, replacementName);
mlir::FunctionType fType = typeGenerator(builder);
if (newFunc) {
assert(newFunc.getFunctionType() == fType &&
"type mismatch for simplified function");
return newFunc;
}
// Need to build the function!
auto loc = mlir::UnknownLoc::get(builder.getContext());
newFunc =
fir::FirOpBuilder::createFunction(loc, module, replacementName, fType);
auto inlineLinkage = mlir::LLVM::linkage::Linkage::LinkonceODR;
auto linkage =
mlir::LLVM::LinkageAttr::get(builder.getContext(), inlineLinkage);
newFunc->setAttr("llvm.linkage", linkage);
// Save the position of the original call.
mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint();
bodyGenerator(builder, newFunc);
// Now back to where we were adding code earlier...
builder.restoreInsertionPoint(insertPt);
return newFunc;
}
void SimplifyIntrinsicsPass::simplifyIntOrFloatReduction(
fir::CallOp call, const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc) {
// args[1] and args[2] are source filename and line number, ignored.
mlir::Operation::operand_range args = call.getArgs();
const mlir::Value &dim = args[3];
const mlir::Value &mask = args[4];
// dim is zero when it is absent, which is an implementation
// detail in the runtime library.
bool dimAndMaskAbsent = isZero(dim) && isOperandAbsent(mask);
unsigned rank = getDimCount(args[0]);
// Rank is set to 0 for assumed shape arrays, don't simplify
// in these cases
if (!(dimAndMaskAbsent && rank > 0))
return;
mlir::Type resultType = call.getResult(0).getType();
if (!resultType.isa<mlir::FloatType>() &&
!resultType.isa<mlir::IntegerType>())
return;
auto argType = getArgElementType(args[0]);
if (!argType)
return;
assert(*argType == resultType &&
"Argument/result types mismatch in reduction");
mlir::SymbolRefAttr callee = call.getCalleeAttr();
fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)};
std::string fmfString{builder.getFastMathFlagsString()};
std::string funcName =
(mlir::Twine{callee.getLeafReference().getValue(), "x"} +
mlir::Twine{rank} +
// We must mangle the generated function name with FastMathFlags
// value.
(fmfString.empty() ? mlir::Twine{} : mlir::Twine{"_", fmfString}))
.str();
simplifyReductionBody(call, kindMap, genBodyFunc, builder, funcName,
resultType);
}
void SimplifyIntrinsicsPass::simplifyLogicalDim0Reduction(
fir::CallOp call, const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc) {
mlir::Operation::operand_range args = call.getArgs();
const mlir::Value &dim = args[3];
unsigned rank = getDimCount(args[0]);
// getDimCount returns a rank of 0 for assumed shape arrays, don't simplify in
// these cases.
if (!(isZero(dim) && rank > 0))
return;
mlir::Value inputBox = findBoxDef(args[0]);
mlir::Type elementType = hlfir::getFortranElementType(inputBox.getType());
mlir::SymbolRefAttr callee = call.getCalleeAttr();
fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)};
// Treating logicals as integers makes things a lot easier
fir::LogicalType logicalType = {elementType.dyn_cast<fir::LogicalType>()};
fir::KindTy kind = logicalType.getFKind();
mlir::Type intElementType = builder.getIntegerType(kind * 8);
// Mangle kind into function name as it is not done by default
std::string funcName =
(mlir::Twine{callee.getLeafReference().getValue(), "Logical"} +
mlir::Twine{kind} + "x" + mlir::Twine{rank})
.str();
simplifyReductionBody(call, kindMap, genBodyFunc, builder, funcName,
intElementType);
}
void SimplifyIntrinsicsPass::simplifyLogicalDim1Reduction(
fir::CallOp call, const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc) {
mlir::Operation::operand_range args = call.getArgs();
mlir::SymbolRefAttr callee = call.getCalleeAttr();
mlir::StringRef funcNameBase = callee.getLeafReference().getValue();
unsigned rank = getDimCount(args[0]);
// getDimCount returns a rank of 0 for assumed shape arrays, don't simplify in
// these cases. We check for Dim at the end as some logical functions (Any,
// All) set dim to 1 instead of 0 when the argument is not present.
if (funcNameBase.ends_with("Dim") || !(rank > 0))
return;
mlir::Value inputBox = findBoxDef(args[0]);
mlir::Type elementType = hlfir::getFortranElementType(inputBox.getType());
fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)};
// Treating logicals as integers makes things a lot easier
fir::LogicalType logicalType = {elementType.dyn_cast<fir::LogicalType>()};
fir::KindTy kind = logicalType.getFKind();
mlir::Type intElementType = builder.getIntegerType(kind * 8);
// Mangle kind into function name as it is not done by default
std::string funcName =
(mlir::Twine{callee.getLeafReference().getValue(), "Logical"} +
mlir::Twine{kind} + "x" + mlir::Twine{rank})
.str();
simplifyReductionBody(call, kindMap, genBodyFunc, builder, funcName,
intElementType);
}
void SimplifyIntrinsicsPass::simplifyMinlocReduction(
fir::CallOp call, const fir::KindMapping &kindMap) {
mlir::Operation::operand_range args = call.getArgs();
mlir::Value back = args[6];
if (isTrueOrNotConstant(back))
return;
mlir::Value mask = args[5];
mlir::Value maskDef = findMaskDef(mask);
// maskDef is set to NULL when the defining op is not one we accept.
// This tends to be because it is a selectOp, in which case let the
// runtime deal with it.
if (maskDef == NULL)
return;
mlir::SymbolRefAttr callee = call.getCalleeAttr();
mlir::StringRef funcNameBase = callee.getLeafReference().getValue();
unsigned rank = getDimCount(args[1]);
if (funcNameBase.ends_with("Dim") || !(rank > 0))
return;
fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)};
mlir::Location loc = call.getLoc();
auto inputBox = findBoxDef(args[1]);
mlir::Type inputType = hlfir::getFortranElementType(inputBox.getType());
if (inputType.isa<fir::CharacterType>())
return;
int maskRank;
fir::KindTy kind = 0;
mlir::Type logicalElemType = builder.getI1Type();
if (isOperandAbsent(mask)) {
maskRank = -1;
} else {
maskRank = getDimCount(mask);
mlir::Type maskElemTy = hlfir::getFortranElementType(maskDef.getType());
fir::LogicalType logicalFirType = {maskElemTy.dyn_cast<fir::LogicalType>()};
kind = logicalFirType.getFKind();
// Convert fir::LogicalType to mlir::Type
logicalElemType = logicalFirType;
}
mlir::Operation *outputDef = args[0].getDefiningOp();
mlir::Value outputAlloc = outputDef->getOperand(0);
mlir::Type outType = hlfir::getFortranElementType(outputAlloc.getType());
std::string fmfString{builder.getFastMathFlagsString()};
std::string funcName =
(mlir::Twine{callee.getLeafReference().getValue(), "x"} +
mlir::Twine{rank} +
(maskRank >= 0
? "_Logical" + mlir::Twine{kind} + "x" + mlir::Twine{maskRank}
: "") +
"_")
.str();
llvm::raw_string_ostream nameOS(funcName);
outType.print(nameOS);
nameOS << '_' << fmfString;
auto typeGenerator = [rank](fir::FirOpBuilder &builder) {
return genRuntimeMinlocType(builder, rank);
};
auto bodyGenerator = [rank, maskRank, inputType, logicalElemType,
outType](fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp) {
genRuntimeMinlocBody(builder, funcOp, rank, maskRank, inputType,
logicalElemType, outType);
};
mlir::func::FuncOp newFunc =
getOrCreateFunction(builder, funcName, typeGenerator, bodyGenerator);
builder.create<fir::CallOp>(loc, newFunc,
mlir::ValueRange{args[0], args[1], args[5]});
call->dropAllReferences();
call->erase();
}
void SimplifyIntrinsicsPass::simplifyReductionBody(
fir::CallOp call, const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc, fir::FirOpBuilder &builder,
const mlir::StringRef &funcName, mlir::Type elementType) {
mlir::Operation::operand_range args = call.getArgs();
mlir::Type resultType = call.getResult(0).getType();
unsigned rank = getDimCount(args[0]);
mlir::Location loc = call.getLoc();
auto typeGenerator = [&resultType](fir::FirOpBuilder &builder) {
return genNoneBoxType(builder, resultType);
};
auto bodyGenerator = [&rank, &genBodyFunc,
&elementType](fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp) {
genBodyFunc(builder, funcOp, rank, elementType);
};
// Mangle the function name with the rank value as "x<rank>".
mlir::func::FuncOp newFunc =
getOrCreateFunction(builder, funcName, typeGenerator, bodyGenerator);
auto newCall =
builder.create<fir::CallOp>(loc, newFunc, mlir::ValueRange{args[0]});
call->replaceAllUsesWith(newCall.getResults());
call->dropAllReferences();
call->erase();
}
void SimplifyIntrinsicsPass::runOnOperation() {
LLVM_DEBUG(llvm::dbgs() << "=== Begin " DEBUG_TYPE " ===\n");
mlir::ModuleOp module = getOperation();
fir::KindMapping kindMap = fir::getKindMapping(module);
module.walk([&](mlir::Operation *op) {
if (auto call = mlir::dyn_cast<fir::CallOp>(op)) {
if (mlir::SymbolRefAttr callee = call.getCalleeAttr()) {
mlir::StringRef funcName = callee.getLeafReference().getValue();
// Replace call to runtime function for SUM when it has single
// argument (no dim or mask argument) for 1D arrays with either
// Integer4 or Real8 types. Other forms are ignored.
// The new function is added to the module.
//
// Prototype for runtime call (from sum.cpp):
// RTNAME(Sum<T>)(const Descriptor &x, const char *source, int line,
// int dim, const Descriptor *mask)
//
if (funcName.startswith(RTNAME_STRING(Sum))) {
simplifyIntOrFloatReduction(call, kindMap, genRuntimeSumBody);
return;
}
if (funcName.startswith(RTNAME_STRING(DotProduct))) {
LLVM_DEBUG(llvm::dbgs() << "Handling " << funcName << "\n");
LLVM_DEBUG(llvm::dbgs() << "Call operation:\n"; op->dump();
llvm::dbgs() << "\n");
mlir::Operation::operand_range args = call.getArgs();
const mlir::Value &v1 = args[0];
const mlir::Value &v2 = args[1];
mlir::Location loc = call.getLoc();
fir::FirOpBuilder builder{getSimplificationBuilder(op, kindMap)};
// Stringize the builder's FastMathFlags flags for mangling
// the generated function name.
std::string fmfString{builder.getFastMathFlagsString()};
mlir::Type type = call.getResult(0).getType();
if (!type.isa<mlir::FloatType>() && !type.isa<mlir::IntegerType>())
return;
// Try to find the element types of the boxed arguments.
auto arg1Type = getArgElementType(v1);
auto arg2Type = getArgElementType(v2);
if (!arg1Type || !arg2Type)
return;
// Support only floating point and integer arguments
// now (e.g. logical is skipped here).
if (!arg1Type->isa<mlir::FloatType>() &&
!arg1Type->isa<mlir::IntegerType>())
return;
if (!arg2Type->isa<mlir::FloatType>() &&
!arg2Type->isa<mlir::IntegerType>())
return;
auto typeGenerator = [&type](fir::FirOpBuilder &builder) {
return genRuntimeDotType(builder, type);
};
auto bodyGenerator = [&arg1Type,
&arg2Type](fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp) {
genRuntimeDotBody(builder, funcOp, *arg1Type, *arg2Type);
};
// Suffix the function name with the element types
// of the arguments.
std::string typedFuncName(funcName);
llvm::raw_string_ostream nameOS(typedFuncName);
// We must mangle the generated function name with FastMathFlags
// value.
if (!fmfString.empty())
nameOS << '_' << fmfString;
nameOS << '_';
arg1Type->print(nameOS);
nameOS << '_';
arg2Type->print(nameOS);
mlir::func::FuncOp newFunc = getOrCreateFunction(
builder, typedFuncName, typeGenerator, bodyGenerator);
auto newCall = builder.create<fir::CallOp>(loc, newFunc,
mlir::ValueRange{v1, v2});
call->replaceAllUsesWith(newCall.getResults());
call->dropAllReferences();
call->erase();
LLVM_DEBUG(llvm::dbgs() << "Replaced with:\n"; newCall.dump();
llvm::dbgs() << "\n");
return;
}
if (funcName.startswith(RTNAME_STRING(Maxval))) {
simplifyIntOrFloatReduction(call, kindMap, genRuntimeMaxvalBody);
return;
}
if (funcName.startswith(RTNAME_STRING(Count))) {
simplifyLogicalDim0Reduction(call, kindMap, genRuntimeCountBody);
return;
}
if (funcName.startswith(RTNAME_STRING(Any))) {
simplifyLogicalDim1Reduction(call, kindMap, genRuntimeAnyBody);
return;
}
if (funcName.endswith(RTNAME_STRING(All))) {
simplifyLogicalDim1Reduction(call, kindMap, genRuntimeAllBody);
return;
}
if (funcName.startswith(RTNAME_STRING(Minloc))) {
simplifyMinlocReduction(call, kindMap);
return;
}
}
}
});
LLVM_DEBUG(llvm::dbgs() << "=== End " DEBUG_TYPE " ===\n");
}
void SimplifyIntrinsicsPass::getDependentDialects(
mlir::DialectRegistry ®istry) const {
// LLVM::LinkageAttr creation requires that LLVM dialect is loaded.
registry.insert<mlir::LLVM::LLVMDialect>();
}
std::unique_ptr<mlir::Pass> fir::createSimplifyIntrinsicsPass() {
return std::make_unique<SimplifyIntrinsicsPass>();
}
|