1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
//===-- lib/Parser/characters.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Parser/characters.h"
#include "flang/Common/idioms.h"
#include <algorithm>
#include <cstddef>
#include <optional>
#include <type_traits>
namespace Fortran::parser {
bool useHexadecimalEscapeSequences{false};
int UTF_8CharacterBytes(const char *p) {
if ((*p & 0x80) == 0) {
return 1;
} else if ((*p & 0xe0) == 0xc0) {
return 2;
} else if ((*p & 0xf0) == 0xe0) {
return 3;
} else if ((*p & 0xf8) == 0xf0) {
return 4;
} else if ((*p & 0xfc) == 0xf8) {
return 5;
} else {
return 6;
}
}
template <typename STRING>
std::string QuoteCharacterLiteralHelper(
const STRING &str, bool backslashEscapes, Encoding encoding) {
std::string result{'"'};
const auto emit{[&](char ch) { result += ch; }};
for (auto ch : str) {
using CharT = std::decay_t<decltype(ch)>;
char32_t ch32{static_cast<std::make_unsigned_t<CharT>>(ch)};
if (ch32 == static_cast<unsigned char>('"')) {
emit('"'); // double the " when it appears in the text
}
EmitQuotedChar(ch32, emit, emit, backslashEscapes, encoding);
}
result += '"';
return result;
}
std::string QuoteCharacterLiteral(
const std::string &str, bool backslashEscapes, Encoding encoding) {
return QuoteCharacterLiteralHelper(str, backslashEscapes, encoding);
}
std::string QuoteCharacterLiteral(
const std::u16string &str, bool backslashEscapes, Encoding encoding) {
return QuoteCharacterLiteralHelper(str, backslashEscapes, encoding);
}
std::string QuoteCharacterLiteral(
const std::u32string &str, bool backslashEscapes, Encoding encoding) {
return QuoteCharacterLiteralHelper(str, backslashEscapes, encoding);
}
template <> EncodedCharacter EncodeCharacter<Encoding::LATIN_1>(char32_t ucs) {
CHECK(ucs <= 0xff);
EncodedCharacter result;
result.buffer[0] = ucs;
result.bytes = 1;
return result;
}
template <> EncodedCharacter EncodeCharacter<Encoding::UTF_8>(char32_t ucs) {
// N.B. char32_t is unsigned
EncodedCharacter result;
if (ucs <= 0x7f) {
result.buffer[0] = ucs;
result.bytes = 1;
} else if (ucs <= 0x7ff) {
result.buffer[0] = 0xc0 | (ucs >> 6);
result.buffer[1] = 0x80 | (ucs & 0x3f);
result.bytes = 2;
} else if (ucs <= 0xffff) {
result.buffer[0] = 0xe0 | (ucs >> 12);
result.buffer[1] = 0x80 | ((ucs >> 6) & 0x3f);
result.buffer[2] = 0x80 | (ucs & 0x3f);
result.bytes = 3;
} else if (ucs <= 0x1fffff) {
// UCS actually only goes up to 0x10ffff, but the
// UTF-8 encoding can handle 32 bits.
result.buffer[0] = 0xf0 | (ucs >> 18);
result.buffer[1] = 0x80 | ((ucs >> 12) & 0x3f);
result.buffer[2] = 0x80 | ((ucs >> 6) & 0x3f);
result.buffer[3] = 0x80 | (ucs & 0x3f);
result.bytes = 4;
} else if (ucs <= 0x3ffffff) {
result.buffer[0] = 0xf8 | (ucs >> 24);
result.buffer[1] = 0x80 | ((ucs >> 18) & 0x3f);
result.buffer[2] = 0x80 | ((ucs >> 12) & 0x3f);
result.buffer[3] = 0x80 | ((ucs >> 6) & 0x3f);
result.buffer[4] = 0x80 | (ucs & 0x3f);
result.bytes = 5;
} else {
result.buffer[0] = 0xfc | (ucs >> 30);
result.buffer[1] = 0x80 | ((ucs >> 24) & 0x3f);
result.buffer[2] = 0x80 | ((ucs >> 18) & 0x3f);
result.buffer[3] = 0x80 | ((ucs >> 12) & 0x3f);
result.buffer[4] = 0x80 | ((ucs >> 6) & 0x3f);
result.buffer[5] = 0x80 | (ucs & 0x3f);
result.bytes = 6;
}
return result;
}
EncodedCharacter EncodeCharacter(Encoding encoding, char32_t ucs) {
switch (encoding) {
SWITCH_COVERS_ALL_CASES
case Encoding::LATIN_1:
return EncodeCharacter<Encoding::LATIN_1>(ucs);
case Encoding::UTF_8:
return EncodeCharacter<Encoding::UTF_8>(ucs);
}
}
template <Encoding ENCODING, typename STRING>
std::string EncodeString(const STRING &str) {
std::string result;
for (auto ch : str) {
char32_t uch{static_cast<std::make_unsigned_t<decltype(ch)>>(ch)};
EncodedCharacter encoded{EncodeCharacter<ENCODING>(uch)};
result.append(encoded.buffer, static_cast<std::size_t>(encoded.bytes));
}
return result;
}
template std::string EncodeString<Encoding::LATIN_1, std::string>(
const std::string &);
template std::string EncodeString<Encoding::UTF_8, std::u16string>(
const std::u16string &);
template std::string EncodeString<Encoding::UTF_8, std::u32string>(
const std::u32string &);
template <>
DecodedCharacter DecodeRawCharacter<Encoding::LATIN_1>(
const char *cp, std::size_t bytes) {
if (bytes >= 1) {
return {*reinterpret_cast<const std::uint8_t *>(cp), 1};
} else {
return {};
}
}
template <>
DecodedCharacter DecodeRawCharacter<Encoding::UTF_8>(
const char *cp, std::size_t bytes) {
auto p{reinterpret_cast<const std::uint8_t *>(cp)};
char32_t ch{*p};
if (ch <= 0x7f) {
return {ch, 1};
} else if ((ch & 0xf8) == 0xf0 && bytes >= 4 && ch > 0xf0 &&
((p[1] | p[2] | p[3]) & 0xc0) == 0x80) {
ch = ((ch & 7) << 6) | (p[1] & 0x3f);
ch = (ch << 6) | (p[2] & 0x3f);
ch = (ch << 6) | (p[3] & 0x3f);
return {ch, 4};
} else if ((ch & 0xf0) == 0xe0 && bytes >= 3 && ch > 0xe0 &&
((p[1] | p[2]) & 0xc0) == 0x80) {
ch = ((ch & 0xf) << 6) | (p[1] & 0x3f);
ch = (ch << 6) | (p[2] & 0x3f);
return {ch, 3};
} else if ((ch & 0xe0) == 0xc0 && bytes >= 2 && ch > 0xc0 &&
(p[1] & 0xc0) == 0x80) {
ch = ((ch & 0x1f) << 6) | (p[1] & 0x3f);
return {ch, 2};
} else {
return {}; // not valid UTF-8
}
}
static DecodedCharacter DecodeEscapedCharacter(
const char *cp, std::size_t bytes) {
if (cp[0] == '\\' && bytes >= 2) {
if (std::optional<char> escChar{BackslashEscapeValue(cp[1])}) {
return {static_cast<unsigned char>(*escChar), 2};
} else if (IsOctalDigit(cp[1])) {
std::size_t maxLen{std::min(std::size_t{4}, bytes)};
char32_t code{static_cast<char32_t>(DecimalDigitValue(cp[1]))};
std::size_t len{2}; // so far
for (; code <= 037 && len < maxLen && IsOctalDigit(cp[len]); ++len) {
code = 8 * code + DecimalDigitValue(cp[len]);
}
return {code, static_cast<int>(len)};
} else if (bytes >= 4 && ToLowerCaseLetter(cp[1]) == 'x' &&
IsHexadecimalDigit(cp[2]) && IsHexadecimalDigit(cp[3])) {
return {static_cast<char32_t>(16 * HexadecimalDigitValue(cp[2]) +
HexadecimalDigitValue(cp[3])),
4};
} else if (IsLetter(cp[1])) {
// Unknown escape - ignore the '\' (PGI compatibility)
return {static_cast<unsigned char>(cp[1]), 2};
} else {
// Not an escape character.
return {'\\', 1};
}
}
return {static_cast<unsigned char>(cp[0]), 1};
}
template <Encoding ENCODING>
static DecodedCharacter DecodeEscapedCharacters(
const char *cp, std::size_t bytes) {
char buffer[EncodedCharacter::maxEncodingBytes];
int count[EncodedCharacter::maxEncodingBytes];
std::size_t at{0}, len{0};
for (; len < EncodedCharacter::maxEncodingBytes && at < bytes; ++len) {
DecodedCharacter code{DecodeEscapedCharacter(cp + at, bytes - at)};
buffer[len] = code.codepoint;
at += code.bytes;
count[len] = at;
}
DecodedCharacter code{DecodeCharacter<ENCODING>(buffer, len, false)};
if (code.bytes > 0) {
code.bytes = count[code.bytes - 1];
} else {
code.codepoint = buffer[0] & 0xff;
code.bytes = count[0];
}
return code;
}
template <Encoding ENCODING>
DecodedCharacter DecodeCharacter(
const char *cp, std::size_t bytes, bool backslashEscapes) {
if (backslashEscapes && bytes >= 2 && *cp == '\\') {
return DecodeEscapedCharacters<ENCODING>(cp, bytes);
} else {
return DecodeRawCharacter<ENCODING>(cp, bytes);
}
}
template DecodedCharacter DecodeCharacter<Encoding::LATIN_1>(
const char *, std::size_t, bool);
template DecodedCharacter DecodeCharacter<Encoding::UTF_8>(
const char *, std::size_t, bool);
DecodedCharacter DecodeCharacter(Encoding encoding, const char *cp,
std::size_t bytes, bool backslashEscapes) {
switch (encoding) {
SWITCH_COVERS_ALL_CASES
case Encoding::LATIN_1:
return DecodeCharacter<Encoding::LATIN_1>(cp, bytes, backslashEscapes);
case Encoding::UTF_8:
return DecodeCharacter<Encoding::UTF_8>(cp, bytes, backslashEscapes);
}
}
template <typename RESULT, Encoding ENCODING>
RESULT DecodeString(const std::string &s, bool backslashEscapes) {
RESULT result;
const char *p{s.c_str()};
for (auto bytes{s.size()}; bytes != 0;) {
DecodedCharacter decoded{
DecodeCharacter<ENCODING>(p, bytes, backslashEscapes)};
if (decoded.bytes > 0) {
if (static_cast<std::size_t>(decoded.bytes) <= bytes) {
result.append(1, decoded.codepoint);
bytes -= decoded.bytes;
p += decoded.bytes;
continue;
}
}
result.append(1, static_cast<uint8_t>(*p));
++p;
--bytes;
}
return result;
}
template std::string DecodeString<std::string, Encoding::LATIN_1>(
const std::string &, bool);
template std::u16string DecodeString<std::u16string, Encoding::UTF_8>(
const std::string &, bool);
template std::u32string DecodeString<std::u32string, Encoding::UTF_8>(
const std::string &, bool);
} // namespace Fortran::parser
|