1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
|
//===-- lib/Semantics/resolve-names-utils.cpp -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "resolve-names-utils.h"
#include "flang/Common/Fortran-features.h"
#include "flang/Common/Fortran.h"
#include "flang/Common/idioms.h"
#include "flang/Common/indirection.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/tools.h"
#include "flang/Evaluate/traverse.h"
#include "flang/Evaluate/type.h"
#include "flang/Parser/char-block.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Semantics/expression.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/tools.h"
#include <initializer_list>
#include <variant>
namespace Fortran::semantics {
using common::LanguageFeature;
using common::LogicalOperator;
using common::NumericOperator;
using common::RelationalOperator;
using IntrinsicOperator = parser::DefinedOperator::IntrinsicOperator;
static constexpr const char *operatorPrefix{"operator("};
static GenericKind MapIntrinsicOperator(IntrinsicOperator);
Symbol *Resolve(const parser::Name &name, Symbol *symbol) {
if (symbol && !name.symbol) {
name.symbol = symbol;
}
return symbol;
}
Symbol &Resolve(const parser::Name &name, Symbol &symbol) {
return *Resolve(name, &symbol);
}
parser::MessageFixedText WithSeverity(
const parser::MessageFixedText &msg, parser::Severity severity) {
return parser::MessageFixedText{
msg.text().begin(), msg.text().size(), severity};
}
bool IsIntrinsicOperator(
const SemanticsContext &context, const SourceName &name) {
std::string str{name.ToString()};
for (int i{0}; i != common::LogicalOperator_enumSize; ++i) {
auto names{context.languageFeatures().GetNames(LogicalOperator{i})};
if (llvm::is_contained(names, str)) {
return true;
}
}
for (int i{0}; i != common::RelationalOperator_enumSize; ++i) {
auto names{context.languageFeatures().GetNames(RelationalOperator{i})};
if (llvm::is_contained(names, str)) {
return true;
}
}
return false;
}
template <typename E>
std::forward_list<std::string> GetOperatorNames(
const SemanticsContext &context, E opr) {
std::forward_list<std::string> result;
for (const char *name : context.languageFeatures().GetNames(opr)) {
result.emplace_front(std::string{operatorPrefix} + name + ')');
}
return result;
}
std::forward_list<std::string> GetAllNames(
const SemanticsContext &context, const SourceName &name) {
std::string str{name.ToString()};
if (!name.empty() && name.end()[-1] == ')' &&
name.ToString().rfind(std::string{operatorPrefix}, 0) == 0) {
for (int i{0}; i != common::LogicalOperator_enumSize; ++i) {
auto names{GetOperatorNames(context, LogicalOperator{i})};
if (llvm::is_contained(names, str)) {
return names;
}
}
for (int i{0}; i != common::RelationalOperator_enumSize; ++i) {
auto names{GetOperatorNames(context, RelationalOperator{i})};
if (llvm::is_contained(names, str)) {
return names;
}
}
}
return {str};
}
bool IsLogicalConstant(
const SemanticsContext &context, const SourceName &name) {
std::string str{name.ToString()};
return str == ".true." || str == ".false." ||
(context.IsEnabled(LanguageFeature::LogicalAbbreviations) &&
(str == ".t" || str == ".f."));
}
void GenericSpecInfo::Resolve(Symbol *symbol) const {
if (symbol) {
if (auto *details{symbol->detailsIf<GenericDetails>()}) {
details->set_kind(kind_);
}
if (parseName_) {
semantics::Resolve(*parseName_, symbol);
}
}
}
void GenericSpecInfo::Analyze(const parser::DefinedOpName &name) {
kind_ = GenericKind::OtherKind::DefinedOp;
parseName_ = &name.v;
symbolName_ = name.v.source;
}
void GenericSpecInfo::Analyze(const parser::GenericSpec &x) {
symbolName_ = x.source;
kind_ = common::visit(
common::visitors{
[&](const parser::Name &y) -> GenericKind {
parseName_ = &y;
symbolName_ = y.source;
return GenericKind::OtherKind::Name;
},
[&](const parser::DefinedOperator &y) {
return common::visit(
common::visitors{
[&](const parser::DefinedOpName &z) -> GenericKind {
Analyze(z);
return GenericKind::OtherKind::DefinedOp;
},
[&](const IntrinsicOperator &z) {
return MapIntrinsicOperator(z);
},
},
y.u);
},
[&](const parser::GenericSpec::Assignment &) -> GenericKind {
return GenericKind::OtherKind::Assignment;
},
[&](const parser::GenericSpec::ReadFormatted &) -> GenericKind {
return common::DefinedIo::ReadFormatted;
},
[&](const parser::GenericSpec::ReadUnformatted &) -> GenericKind {
return common::DefinedIo::ReadUnformatted;
},
[&](const parser::GenericSpec::WriteFormatted &) -> GenericKind {
return common::DefinedIo::WriteFormatted;
},
[&](const parser::GenericSpec::WriteUnformatted &) -> GenericKind {
return common::DefinedIo::WriteUnformatted;
},
},
x.u);
}
llvm::raw_ostream &operator<<(
llvm::raw_ostream &os, const GenericSpecInfo &info) {
os << "GenericSpecInfo: kind=" << info.kind_.ToString();
os << " parseName="
<< (info.parseName_ ? info.parseName_->ToString() : "null");
os << " symbolName="
<< (info.symbolName_ ? info.symbolName_->ToString() : "null");
return os;
}
// parser::DefinedOperator::IntrinsicOperator -> GenericKind
static GenericKind MapIntrinsicOperator(IntrinsicOperator op) {
switch (op) {
SWITCH_COVERS_ALL_CASES
case IntrinsicOperator::Concat:
return GenericKind::OtherKind::Concat;
case IntrinsicOperator::Power:
return NumericOperator::Power;
case IntrinsicOperator::Multiply:
return NumericOperator::Multiply;
case IntrinsicOperator::Divide:
return NumericOperator::Divide;
case IntrinsicOperator::Add:
return NumericOperator::Add;
case IntrinsicOperator::Subtract:
return NumericOperator::Subtract;
case IntrinsicOperator::AND:
return LogicalOperator::And;
case IntrinsicOperator::OR:
return LogicalOperator::Or;
case IntrinsicOperator::EQV:
return LogicalOperator::Eqv;
case IntrinsicOperator::NEQV:
return LogicalOperator::Neqv;
case IntrinsicOperator::NOT:
return LogicalOperator::Not;
case IntrinsicOperator::LT:
return RelationalOperator::LT;
case IntrinsicOperator::LE:
return RelationalOperator::LE;
case IntrinsicOperator::EQ:
return RelationalOperator::EQ;
case IntrinsicOperator::NE:
return RelationalOperator::NE;
case IntrinsicOperator::GE:
return RelationalOperator::GE;
case IntrinsicOperator::GT:
return RelationalOperator::GT;
}
}
class ArraySpecAnalyzer {
public:
ArraySpecAnalyzer(SemanticsContext &context) : context_{context} {}
ArraySpec Analyze(const parser::ArraySpec &);
ArraySpec AnalyzeDeferredShapeSpecList(const parser::DeferredShapeSpecList &);
ArraySpec Analyze(const parser::ComponentArraySpec &);
ArraySpec Analyze(const parser::CoarraySpec &);
private:
SemanticsContext &context_;
ArraySpec arraySpec_;
template <typename T> void Analyze(const std::list<T> &list) {
for (const auto &elem : list) {
Analyze(elem);
}
}
void Analyze(const parser::AssumedShapeSpec &);
void Analyze(const parser::ExplicitShapeSpec &);
void Analyze(const parser::AssumedImpliedSpec &);
void Analyze(const parser::DeferredShapeSpecList &);
void Analyze(const parser::AssumedRankSpec &);
void MakeExplicit(const std::optional<parser::SpecificationExpr> &,
const parser::SpecificationExpr &);
void MakeImplied(const std::optional<parser::SpecificationExpr> &);
void MakeDeferred(int);
Bound GetBound(const std::optional<parser::SpecificationExpr> &);
Bound GetBound(const parser::SpecificationExpr &);
};
ArraySpec AnalyzeArraySpec(
SemanticsContext &context, const parser::ArraySpec &arraySpec) {
return ArraySpecAnalyzer{context}.Analyze(arraySpec);
}
ArraySpec AnalyzeArraySpec(
SemanticsContext &context, const parser::ComponentArraySpec &arraySpec) {
return ArraySpecAnalyzer{context}.Analyze(arraySpec);
}
ArraySpec AnalyzeDeferredShapeSpecList(SemanticsContext &context,
const parser::DeferredShapeSpecList &deferredShapeSpecs) {
return ArraySpecAnalyzer{context}.AnalyzeDeferredShapeSpecList(
deferredShapeSpecs);
}
ArraySpec AnalyzeCoarraySpec(
SemanticsContext &context, const parser::CoarraySpec &coarraySpec) {
return ArraySpecAnalyzer{context}.Analyze(coarraySpec);
}
ArraySpec ArraySpecAnalyzer::Analyze(const parser::ComponentArraySpec &x) {
common::visit([this](const auto &y) { Analyze(y); }, x.u);
CHECK(!arraySpec_.empty());
return arraySpec_;
}
ArraySpec ArraySpecAnalyzer::Analyze(const parser::ArraySpec &x) {
common::visit(common::visitors{
[&](const parser::AssumedSizeSpec &y) {
Analyze(
std::get<std::list<parser::ExplicitShapeSpec>>(y.t));
Analyze(std::get<parser::AssumedImpliedSpec>(y.t));
},
[&](const parser::ImpliedShapeSpec &y) { Analyze(y.v); },
[&](const auto &y) { Analyze(y); },
},
x.u);
CHECK(!arraySpec_.empty());
return arraySpec_;
}
ArraySpec ArraySpecAnalyzer::AnalyzeDeferredShapeSpecList(
const parser::DeferredShapeSpecList &x) {
Analyze(x);
CHECK(!arraySpec_.empty());
return arraySpec_;
}
ArraySpec ArraySpecAnalyzer::Analyze(const parser::CoarraySpec &x) {
common::visit(
common::visitors{
[&](const parser::DeferredCoshapeSpecList &y) { MakeDeferred(y.v); },
[&](const parser::ExplicitCoshapeSpec &y) {
Analyze(std::get<std::list<parser::ExplicitShapeSpec>>(y.t));
MakeImplied(
std::get<std::optional<parser::SpecificationExpr>>(y.t));
},
},
x.u);
CHECK(!arraySpec_.empty());
return arraySpec_;
}
void ArraySpecAnalyzer::Analyze(const parser::AssumedShapeSpec &x) {
arraySpec_.push_back(ShapeSpec::MakeAssumedShape(GetBound(x.v)));
}
void ArraySpecAnalyzer::Analyze(const parser::ExplicitShapeSpec &x) {
MakeExplicit(std::get<std::optional<parser::SpecificationExpr>>(x.t),
std::get<parser::SpecificationExpr>(x.t));
}
void ArraySpecAnalyzer::Analyze(const parser::AssumedImpliedSpec &x) {
MakeImplied(x.v);
}
void ArraySpecAnalyzer::Analyze(const parser::DeferredShapeSpecList &x) {
MakeDeferred(x.v);
}
void ArraySpecAnalyzer::Analyze(const parser::AssumedRankSpec &) {
arraySpec_.push_back(ShapeSpec::MakeAssumedRank());
}
void ArraySpecAnalyzer::MakeExplicit(
const std::optional<parser::SpecificationExpr> &lb,
const parser::SpecificationExpr &ub) {
arraySpec_.push_back(ShapeSpec::MakeExplicit(GetBound(lb), GetBound(ub)));
}
void ArraySpecAnalyzer::MakeImplied(
const std::optional<parser::SpecificationExpr> &lb) {
arraySpec_.push_back(ShapeSpec::MakeImplied(GetBound(lb)));
}
void ArraySpecAnalyzer::MakeDeferred(int n) {
for (int i = 0; i < n; ++i) {
arraySpec_.push_back(ShapeSpec::MakeDeferred());
}
}
Bound ArraySpecAnalyzer::GetBound(
const std::optional<parser::SpecificationExpr> &x) {
return x ? GetBound(*x) : Bound{1};
}
Bound ArraySpecAnalyzer::GetBound(const parser::SpecificationExpr &x) {
MaybeSubscriptIntExpr expr;
if (MaybeExpr maybeExpr{AnalyzeExpr(context_, x.v)}) {
if (auto *intExpr{evaluate::UnwrapExpr<SomeIntExpr>(*maybeExpr)}) {
expr = evaluate::Fold(context_.foldingContext(),
evaluate::ConvertToType<evaluate::SubscriptInteger>(
std::move(*intExpr)));
}
}
return Bound{std::move(expr)};
}
// If SAVE is set on src, set it on all members of dst
static void PropagateSaveAttr(
const EquivalenceObject &src, EquivalenceSet &dst) {
if (src.symbol.attrs().test(Attr::SAVE)) {
bool isImplicit{src.symbol.implicitAttrs().test(Attr::SAVE)};
for (auto &obj : dst) {
if (!obj.symbol.attrs().test(Attr::SAVE)) {
obj.symbol.attrs().set(Attr::SAVE);
if (isImplicit) {
obj.symbol.implicitAttrs().set(Attr::SAVE);
}
}
}
}
}
static void PropagateSaveAttr(const EquivalenceSet &src, EquivalenceSet &dst) {
if (!src.empty()) {
PropagateSaveAttr(src.front(), dst);
}
}
void EquivalenceSets::AddToSet(const parser::Designator &designator) {
if (CheckDesignator(designator)) {
Symbol &symbol{*currObject_.symbol};
if (!currSet_.empty()) {
// check this symbol against first of set for compatibility
Symbol &first{currSet_.front().symbol};
CheckCanEquivalence(designator.source, first, symbol) &&
CheckCanEquivalence(designator.source, symbol, first);
}
auto subscripts{currObject_.subscripts};
if (subscripts.empty() && symbol.IsObjectArray()) {
// record a whole array as its first element
for (const ShapeSpec &spec : symbol.get<ObjectEntityDetails>().shape()) {
auto &lbound{spec.lbound().GetExplicit().value()};
subscripts.push_back(evaluate::ToInt64(lbound).value());
}
}
auto substringStart{currObject_.substringStart};
currSet_.emplace_back(
symbol, subscripts, substringStart, designator.source);
PropagateSaveAttr(currSet_.back(), currSet_);
}
currObject_ = {};
}
void EquivalenceSets::FinishSet(const parser::CharBlock &source) {
std::set<std::size_t> existing; // indices of sets intersecting this one
for (auto &obj : currSet_) {
auto it{objectToSet_.find(obj)};
if (it != objectToSet_.end()) {
existing.insert(it->second); // symbol already in this set
}
}
if (existing.empty()) {
sets_.push_back({}); // create a new equivalence set
MergeInto(source, currSet_, sets_.size() - 1);
} else {
auto it{existing.begin()};
std::size_t dstIndex{*it};
MergeInto(source, currSet_, dstIndex);
while (++it != existing.end()) {
MergeInto(source, sets_[*it], dstIndex);
}
}
currSet_.clear();
}
// Report an error or warning if sym1 and sym2 cannot be in the same equivalence
// set.
bool EquivalenceSets::CheckCanEquivalence(
const parser::CharBlock &source, const Symbol &sym1, const Symbol &sym2) {
std::optional<parser::MessageFixedText> msg;
const DeclTypeSpec *type1{sym1.GetType()};
const DeclTypeSpec *type2{sym2.GetType()};
bool isDefaultNum1{IsDefaultNumericSequenceType(type1)};
bool isAnyNum1{IsAnyNumericSequenceType(type1)};
bool isDefaultNum2{IsDefaultNumericSequenceType(type2)};
bool isAnyNum2{IsAnyNumericSequenceType(type2)};
bool isChar1{IsCharacterSequenceType(type1)};
bool isChar2{IsCharacterSequenceType(type2)};
if (sym1.attrs().test(Attr::PROTECTED) &&
!sym2.attrs().test(Attr::PROTECTED)) { // C8114
msg = "Equivalence set cannot contain '%s'"
" with PROTECTED attribute and '%s' without"_err_en_US;
} else if ((isDefaultNum1 && isDefaultNum2) || (isChar1 && isChar2)) {
// ok & standard conforming
} else if (!(isAnyNum1 || isChar1) &&
!(isAnyNum2 || isChar2)) { // C8110 - C8113
if (AreTkCompatibleTypes(type1, type2)) {
if (context_.ShouldWarn(LanguageFeature::EquivalenceSameNonSequence)) {
msg =
"nonstandard: Equivalence set contains '%s' and '%s' with same "
"type that is neither numeric nor character sequence type"_port_en_US;
}
} else {
msg = "Equivalence set cannot contain '%s' and '%s' with distinct types "
"that are not both numeric or character sequence types"_err_en_US;
}
} else if (isAnyNum1) {
if (isChar2) {
if (context_.ShouldWarn(
LanguageFeature::EquivalenceNumericWithCharacter)) {
msg = "nonstandard: Equivalence set contains '%s' that is numeric "
"sequence type and '%s' that is character"_port_en_US;
}
} else if (isAnyNum2 &&
context_.ShouldWarn(LanguageFeature::EquivalenceNonDefaultNumeric)) {
if (isDefaultNum1) {
msg =
"nonstandard: Equivalence set contains '%s' that is a default "
"numeric sequence type and '%s' that is numeric with non-default kind"_port_en_US;
} else if (!isDefaultNum2) {
msg = "nonstandard: Equivalence set contains '%s' and '%s' that are "
"numeric sequence types with non-default kinds"_port_en_US;
}
}
}
if (msg &&
(!context_.IsInModuleFile(source) ||
msg->severity() == parser::Severity::Error)) {
context_.Say(source, std::move(*msg), sym1.name(), sym2.name());
return false;
}
return true;
}
// Move objects from src to sets_[dstIndex]
void EquivalenceSets::MergeInto(const parser::CharBlock &source,
EquivalenceSet &src, std::size_t dstIndex) {
EquivalenceSet &dst{sets_[dstIndex]};
PropagateSaveAttr(dst, src);
for (const auto &obj : src) {
dst.push_back(obj);
objectToSet_[obj] = dstIndex;
}
PropagateSaveAttr(src, dst);
src.clear();
}
// If set has an object with this symbol, return it.
const EquivalenceObject *EquivalenceSets::Find(
const EquivalenceSet &set, const Symbol &symbol) {
for (const auto &obj : set) {
if (obj.symbol == symbol) {
return &obj;
}
}
return nullptr;
}
bool EquivalenceSets::CheckDesignator(const parser::Designator &designator) {
return common::visit(
common::visitors{
[&](const parser::DataRef &x) {
return CheckDataRef(designator.source, x);
},
[&](const parser::Substring &x) {
const auto &dataRef{std::get<parser::DataRef>(x.t)};
const auto &range{std::get<parser::SubstringRange>(x.t)};
bool ok{CheckDataRef(designator.source, dataRef)};
if (const auto &lb{std::get<0>(range.t)}) {
ok &= CheckSubstringBound(lb->thing.thing.value(), true);
} else {
currObject_.substringStart = 1;
}
if (const auto &ub{std::get<1>(range.t)}) {
ok &= CheckSubstringBound(ub->thing.thing.value(), false);
}
return ok;
},
},
designator.u);
}
bool EquivalenceSets::CheckDataRef(
const parser::CharBlock &source, const parser::DataRef &x) {
return common::visit(
common::visitors{
[&](const parser::Name &name) { return CheckObject(name); },
[&](const common::Indirection<parser::StructureComponent> &) {
context_.Say(source, // C8107
"Derived type component '%s' is not allowed in an equivalence set"_err_en_US,
source);
return false;
},
[&](const common::Indirection<parser::ArrayElement> &elem) {
bool ok{CheckDataRef(source, elem.value().base)};
for (const auto &subscript : elem.value().subscripts) {
ok &= common::visit(
common::visitors{
[&](const parser::SubscriptTriplet &) {
context_.Say(source, // C924, R872
"Array section '%s' is not allowed in an equivalence set"_err_en_US,
source);
return false;
},
[&](const parser::IntExpr &y) {
return CheckArrayBound(y.thing.value());
},
},
subscript.u);
}
return ok;
},
[&](const common::Indirection<parser::CoindexedNamedObject> &) {
context_.Say(source, // C924 (R872)
"Coindexed object '%s' is not allowed in an equivalence set"_err_en_US,
source);
return false;
},
},
x.u);
}
static bool InCommonWithBind(const Symbol &symbol) {
if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
const Symbol *commonBlock{details->commonBlock()};
return commonBlock && commonBlock->attrs().test(Attr::BIND_C);
} else {
return false;
}
}
// If symbol can't be in equivalence set report error and return false;
bool EquivalenceSets::CheckObject(const parser::Name &name) {
if (!name.symbol) {
return false; // an error has already occurred
}
currObject_.symbol = name.symbol;
parser::MessageFixedText msg;
const Symbol &symbol{*name.symbol};
if (symbol.owner().IsDerivedType()) { // C8107
msg = "Derived type component '%s'"
" is not allowed in an equivalence set"_err_en_US;
} else if (IsDummy(symbol)) { // C8106
msg = "Dummy argument '%s' is not allowed in an equivalence set"_err_en_US;
} else if (symbol.IsFuncResult()) { // C8106
msg = "Function result '%s' is not allow in an equivalence set"_err_en_US;
} else if (IsPointer(symbol)) { // C8106
msg = "Pointer '%s' is not allowed in an equivalence set"_err_en_US;
} else if (IsAllocatable(symbol)) { // C8106
msg = "Allocatable variable '%s'"
" is not allowed in an equivalence set"_err_en_US;
} else if (symbol.Corank() > 0) { // C8106
msg = "Coarray '%s' is not allowed in an equivalence set"_err_en_US;
} else if (symbol.has<UseDetails>()) { // C8115
msg = "Use-associated variable '%s'"
" is not allowed in an equivalence set"_err_en_US;
} else if (symbol.attrs().test(Attr::BIND_C)) { // C8106
msg = "Variable '%s' with BIND attribute"
" is not allowed in an equivalence set"_err_en_US;
} else if (symbol.attrs().test(Attr::TARGET)) { // C8108
msg = "Variable '%s' with TARGET attribute"
" is not allowed in an equivalence set"_err_en_US;
} else if (IsNamedConstant(symbol)) { // C8106
msg = "Named constant '%s' is not allowed in an equivalence set"_err_en_US;
} else if (InCommonWithBind(symbol)) { // C8106
msg = "Variable '%s' in common block with BIND attribute"
" is not allowed in an equivalence set"_err_en_US;
} else if (const auto *type{symbol.GetType()}) {
const auto *derived{type->AsDerived()};
if (derived && !derived->IsVectorType()) {
if (const auto *comp{FindUltimateComponent(
*derived, IsAllocatableOrPointer)}) { // C8106
msg = IsPointer(*comp)
? "Derived type object '%s' with pointer ultimate component"
" is not allowed in an equivalence set"_err_en_US
: "Derived type object '%s' with allocatable ultimate component"
" is not allowed in an equivalence set"_err_en_US;
} else if (!derived->typeSymbol().get<DerivedTypeDetails>().sequence()) {
msg = "Nonsequence derived type object '%s'"
" is not allowed in an equivalence set"_err_en_US;
}
} else if (IsAutomatic(symbol)) {
msg = "Automatic object '%s'"
" is not allowed in an equivalence set"_err_en_US;
}
}
if (!msg.text().empty()) {
context_.Say(name.source, std::move(msg), name.source);
return false;
}
return true;
}
bool EquivalenceSets::CheckArrayBound(const parser::Expr &bound) {
MaybeExpr expr{
evaluate::Fold(context_.foldingContext(), AnalyzeExpr(context_, bound))};
if (!expr) {
return false;
}
if (expr->Rank() > 0) {
context_.Say(bound.source, // C924, R872
"Array with vector subscript '%s' is not allowed in an equivalence set"_err_en_US,
bound.source);
return false;
}
auto subscript{evaluate::ToInt64(*expr)};
if (!subscript) {
context_.Say(bound.source, // C8109
"Array with nonconstant subscript '%s' is not allowed in an equivalence set"_err_en_US,
bound.source);
return false;
}
currObject_.subscripts.push_back(*subscript);
return true;
}
bool EquivalenceSets::CheckSubstringBound(
const parser::Expr &bound, bool isStart) {
MaybeExpr expr{
evaluate::Fold(context_.foldingContext(), AnalyzeExpr(context_, bound))};
if (!expr) {
return false;
}
auto subscript{evaluate::ToInt64(*expr)};
if (!subscript) {
context_.Say(bound.source, // C8109
"Substring with nonconstant bound '%s' is not allowed in an equivalence set"_err_en_US,
bound.source);
return false;
}
if (!isStart) {
auto start{currObject_.substringStart};
if (*subscript < (start ? *start : 1)) {
context_.Say(bound.source, // C8116
"Substring with zero length is not allowed in an equivalence set"_err_en_US);
return false;
}
} else if (*subscript != 1) {
currObject_.substringStart = *subscript;
}
return true;
}
bool EquivalenceSets::IsCharacterSequenceType(const DeclTypeSpec *type) {
return IsSequenceType(type, [&](const IntrinsicTypeSpec &type) {
auto kind{evaluate::ToInt64(type.kind())};
return type.category() == TypeCategory::Character && kind &&
kind.value() == context_.GetDefaultKind(TypeCategory::Character);
});
}
// Numeric or logical type of default kind or DOUBLE PRECISION or DOUBLE COMPLEX
bool EquivalenceSets::IsDefaultKindNumericType(const IntrinsicTypeSpec &type) {
if (auto kind{evaluate::ToInt64(type.kind())}) {
switch (type.category()) {
case TypeCategory::Integer:
case TypeCategory::Logical:
return *kind == context_.GetDefaultKind(TypeCategory::Integer);
case TypeCategory::Real:
case TypeCategory::Complex:
return *kind == context_.GetDefaultKind(TypeCategory::Real) ||
*kind == context_.doublePrecisionKind();
default:
return false;
}
}
return false;
}
bool EquivalenceSets::IsDefaultNumericSequenceType(const DeclTypeSpec *type) {
return IsSequenceType(type, [&](const IntrinsicTypeSpec &type) {
return IsDefaultKindNumericType(type);
});
}
bool EquivalenceSets::IsAnyNumericSequenceType(const DeclTypeSpec *type) {
return IsSequenceType(type, [&](const IntrinsicTypeSpec &type) {
return type.category() == TypeCategory::Logical ||
common::IsNumericTypeCategory(type.category());
});
}
// Is type an intrinsic type that satisfies predicate or a sequence type
// whose components do.
bool EquivalenceSets::IsSequenceType(const DeclTypeSpec *type,
std::function<bool(const IntrinsicTypeSpec &)> predicate) {
if (!type) {
return false;
} else if (const IntrinsicTypeSpec * intrinsic{type->AsIntrinsic()}) {
return predicate(*intrinsic);
} else if (const DerivedTypeSpec * derived{type->AsDerived()}) {
for (const auto &pair : *derived->typeSymbol().scope()) {
const Symbol &component{*pair.second};
if (IsAllocatableOrPointer(component) ||
!IsSequenceType(component.GetType(), predicate)) {
return false;
}
}
return true;
} else {
return false;
}
}
// MapSubprogramToNewSymbols() relies on the following recursive symbol/scope
// copying infrastructure to duplicate an interface's symbols and map all
// of the symbol references in their contained expressions and interfaces
// to the new symbols.
struct SymbolAndTypeMappings {
std::map<const Symbol *, const Symbol *> symbolMap;
std::map<const DeclTypeSpec *, const DeclTypeSpec *> typeMap;
};
class SymbolMapper : public evaluate::AnyTraverse<SymbolMapper, bool> {
public:
using Base = evaluate::AnyTraverse<SymbolMapper, bool>;
SymbolMapper(Scope &scope, SymbolAndTypeMappings &map)
: Base{*this}, scope_{scope}, map_{map} {}
using Base::operator();
bool operator()(const SymbolRef &ref) const {
if (const Symbol *mapped{MapSymbol(*ref)}) {
const_cast<SymbolRef &>(ref) = *mapped;
}
return false;
}
bool operator()(const Symbol &x) const {
if (MapSymbol(x)) {
DIE("SymbolMapper hit symbol outside SymbolRef");
}
return false;
}
void MapSymbolExprs(Symbol &);
private:
void MapParamValue(ParamValue ¶m) const { (*this)(param.GetExplicit()); }
void MapBound(Bound &bound) const { (*this)(bound.GetExplicit()); }
void MapShapeSpec(ShapeSpec &spec) const {
MapBound(spec.lbound());
MapBound(spec.ubound());
}
const Symbol *MapSymbol(const Symbol &) const;
const Symbol *MapSymbol(const Symbol *) const;
const DeclTypeSpec *MapType(const DeclTypeSpec &);
const DeclTypeSpec *MapType(const DeclTypeSpec *);
const Symbol *MapInterface(const Symbol *);
Scope &scope_;
SymbolAndTypeMappings &map_;
};
void SymbolMapper::MapSymbolExprs(Symbol &symbol) {
if (auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (const DeclTypeSpec *type{object->type()}) {
if (const DeclTypeSpec *newType{MapType(*type)}) {
object->ReplaceType(*newType);
}
}
}
common::visit(
common::visitors{[&](ObjectEntityDetails &object) {
for (ShapeSpec &spec : object.shape()) {
MapShapeSpec(spec);
}
for (ShapeSpec &spec : object.coshape()) {
MapShapeSpec(spec);
}
},
[&](ProcEntityDetails &proc) {
if (const Symbol *
mappedSymbol{MapInterface(proc.procInterface())}) {
proc.set_procInterface(*mappedSymbol);
} else if (const DeclTypeSpec * mappedType{MapType(proc.type())}) {
proc.set_type(*mappedType);
}
if (proc.init()) {
if (const Symbol * mapped{MapSymbol(*proc.init())}) {
proc.set_init(*mapped);
}
}
},
[&](const HostAssocDetails &hostAssoc) {
if (const Symbol * mapped{MapSymbol(hostAssoc.symbol())}) {
symbol.set_details(HostAssocDetails{*mapped});
}
},
[](const auto &) {}},
symbol.details());
}
const Symbol *SymbolMapper::MapSymbol(const Symbol &symbol) const {
if (auto iter{map_.symbolMap.find(&symbol)}; iter != map_.symbolMap.end()) {
return iter->second;
}
return nullptr;
}
const Symbol *SymbolMapper::MapSymbol(const Symbol *symbol) const {
return symbol ? MapSymbol(*symbol) : nullptr;
}
const DeclTypeSpec *SymbolMapper::MapType(const DeclTypeSpec &type) {
if (auto iter{map_.typeMap.find(&type)}; iter != map_.typeMap.end()) {
return iter->second;
}
const DeclTypeSpec *newType{nullptr};
if (type.category() == DeclTypeSpec::Category::Character) {
const CharacterTypeSpec &charType{type.characterTypeSpec()};
if (charType.length().GetExplicit()) {
ParamValue newLen{charType.length()};
(*this)(newLen.GetExplicit());
newType = &scope_.MakeCharacterType(
std::move(newLen), KindExpr{charType.kind()});
}
} else if (const DerivedTypeSpec *derived{type.AsDerived()}) {
if (!derived->parameters().empty()) {
DerivedTypeSpec newDerived{derived->name(), derived->typeSymbol()};
newDerived.CookParameters(scope_.context().foldingContext());
for (const auto &[paramName, paramValue] : derived->parameters()) {
ParamValue newParamValue{paramValue};
MapParamValue(newParamValue);
newDerived.AddParamValue(paramName, std::move(newParamValue));
}
// Scope::InstantiateDerivedTypes() instantiates it later.
newType = &scope_.MakeDerivedType(type.category(), std::move(newDerived));
}
}
if (newType) {
map_.typeMap[&type] = newType;
}
return newType;
}
const DeclTypeSpec *SymbolMapper::MapType(const DeclTypeSpec *type) {
return type ? MapType(*type) : nullptr;
}
const Symbol *SymbolMapper::MapInterface(const Symbol *interface) {
if (const Symbol *mapped{MapSymbol(interface)}) {
return mapped;
}
if (interface) {
if (&interface->owner() != &scope_) {
return interface;
} else if (const auto *subp{interface->detailsIf<SubprogramDetails>()};
subp && subp->isInterface()) {
if (Symbol *newSymbol{scope_.CopySymbol(*interface)}) {
newSymbol->get<SubprogramDetails>().set_isInterface(true);
map_.symbolMap[interface] = newSymbol;
Scope &newScope{scope_.MakeScope(Scope::Kind::Subprogram, newSymbol)};
MapSubprogramToNewSymbols(*interface, *newSymbol, newScope, &map_);
return newSymbol;
}
}
}
return nullptr;
}
void MapSubprogramToNewSymbols(const Symbol &oldSymbol, Symbol &newSymbol,
Scope &newScope, SymbolAndTypeMappings *mappings) {
SymbolAndTypeMappings newMappings;
if (!mappings) {
mappings = &newMappings;
}
mappings->symbolMap[&oldSymbol] = &newSymbol;
const auto &oldDetails{oldSymbol.get<SubprogramDetails>()};
auto &newDetails{newSymbol.get<SubprogramDetails>()};
for (const Symbol *dummyArg : oldDetails.dummyArgs()) {
if (!dummyArg) {
newDetails.add_alternateReturn();
} else if (Symbol *copy{newScope.CopySymbol(*dummyArg)}) {
newDetails.add_dummyArg(*copy);
mappings->symbolMap[dummyArg] = copy;
}
}
if (oldDetails.isFunction()) {
newScope.erase(newSymbol.name());
if (Symbol *copy{newScope.CopySymbol(oldDetails.result())}) {
newDetails.set_result(*copy);
mappings->symbolMap[&oldDetails.result()] = copy;
}
}
SymbolMapper mapper{newScope, *mappings};
for (auto &[_, ref] : newScope) {
mapper.MapSymbolExprs(*ref);
}
newScope.InstantiateDerivedTypes();
}
} // namespace Fortran::semantics
|