1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
|
//===-- runtime/assign.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Runtime/assign.h"
#include "assign-impl.h"
#include "derived.h"
#include "stat.h"
#include "terminator.h"
#include "type-info.h"
#include "flang/Runtime/descriptor.h"
namespace Fortran::runtime {
enum AssignFlags {
NoAssignFlags = 0,
MaybeReallocate = 1 << 0,
NeedFinalization = 1 << 1,
CanBeDefinedAssignment = 1 << 2,
ComponentCanBeDefinedAssignment = 1 << 3,
ExplicitLengthCharacterLHS = 1 << 4,
PolymorphicLHS = 1 << 5,
DeallocateLHS = 1 << 6
};
// Predicate: is the left-hand side of an assignment an allocated allocatable
// that must be deallocated?
static inline bool MustDeallocateLHS(
Descriptor &to, const Descriptor &from, Terminator &terminator, int flags) {
// Top-level assignments to allocatable variables (*not* components)
// may first deallocate existing content if there's about to be a
// change in type or shape; see F'2018 10.2.1.3(3).
if (!(flags & MaybeReallocate)) {
return false;
}
if (!to.IsAllocatable() || !to.IsAllocated()) {
return false;
}
if (to.type() != from.type()) {
return true;
}
if (!(flags & ExplicitLengthCharacterLHS) && to.type().IsCharacter() &&
to.ElementBytes() != from.ElementBytes()) {
return true;
}
if (flags & PolymorphicLHS) {
DescriptorAddendum *toAddendum{to.Addendum()};
const typeInfo::DerivedType *toDerived{
toAddendum ? toAddendum->derivedType() : nullptr};
const DescriptorAddendum *fromAddendum{from.Addendum()};
const typeInfo::DerivedType *fromDerived{
fromAddendum ? fromAddendum->derivedType() : nullptr};
if (toDerived != fromDerived) {
return true;
}
if (fromDerived) {
// Distinct LEN parameters? Deallocate
std::size_t lenParms{fromDerived->LenParameters()};
for (std::size_t j{0}; j < lenParms; ++j) {
if (toAddendum->LenParameterValue(j) !=
fromAddendum->LenParameterValue(j)) {
return true;
}
}
}
}
if (from.rank() > 0) {
// Distinct shape? Deallocate
int rank{to.rank()};
for (int j{0}; j < rank; ++j) {
if (to.GetDimension(j).Extent() != from.GetDimension(j).Extent()) {
return true;
}
}
}
return false;
}
// Utility: allocate the allocatable left-hand side, either because it was
// originally deallocated or because it required reallocation
static int AllocateAssignmentLHS(
Descriptor &to, const Descriptor &from, Terminator &terminator, int flags) {
to.raw().type = from.raw().type;
if (!(flags & ExplicitLengthCharacterLHS)) {
to.raw().elem_len = from.ElementBytes();
}
const typeInfo::DerivedType *derived{nullptr};
if (const DescriptorAddendum * fromAddendum{from.Addendum()}) {
derived = fromAddendum->derivedType();
if (DescriptorAddendum * toAddendum{to.Addendum()}) {
toAddendum->set_derivedType(derived);
std::size_t lenParms{derived ? derived->LenParameters() : 0};
for (std::size_t j{0}; j < lenParms; ++j) {
toAddendum->SetLenParameterValue(j, fromAddendum->LenParameterValue(j));
}
}
}
// subtle: leave bounds in place when "from" is scalar (10.2.1.3(3))
int rank{from.rank()};
auto stride{static_cast<SubscriptValue>(to.ElementBytes())};
for (int j{0}; j < rank; ++j) {
auto &toDim{to.GetDimension(j)};
const auto &fromDim{from.GetDimension(j)};
toDim.SetBounds(fromDim.LowerBound(), fromDim.UpperBound());
toDim.SetByteStride(stride);
stride *= toDim.Extent();
}
int result{ReturnError(terminator, to.Allocate())};
if (result == StatOk && derived && !derived->noInitializationNeeded()) {
result = ReturnError(terminator, Initialize(to, *derived, terminator));
}
return result;
}
// least <= 0, most >= 0
static void MaximalByteOffsetRange(
const Descriptor &desc, std::int64_t &least, std::int64_t &most) {
least = most = 0;
if (desc.ElementBytes() == 0) {
return;
}
int n{desc.raw().rank};
for (int j{0}; j < n; ++j) {
const auto &dim{desc.GetDimension(j)};
auto extent{dim.Extent()};
if (extent > 0) {
auto sm{dim.ByteStride()};
if (sm < 0) {
least += (extent - 1) * sm;
} else {
most += (extent - 1) * sm;
}
}
}
most += desc.ElementBytes() - 1;
}
static inline bool RangesOverlap(const char *aStart, const char *aEnd,
const char *bStart, const char *bEnd) {
return aEnd >= bStart && bEnd >= aStart;
}
// Predicate: could the left-hand and right-hand sides of the assignment
// possibly overlap in memory? Note that the descriptors themeselves
// are included in the test.
static bool MayAlias(const Descriptor &x, const Descriptor &y) {
const char *xBase{x.OffsetElement()};
const char *yBase{y.OffsetElement()};
if (!xBase || !yBase) {
return false; // not both allocated
}
const char *xDesc{reinterpret_cast<const char *>(&x)};
const char *xDescLast{xDesc + x.SizeInBytes()};
const char *yDesc{reinterpret_cast<const char *>(&y)};
const char *yDescLast{yDesc + y.SizeInBytes()};
std::int64_t xLeast, xMost, yLeast, yMost;
MaximalByteOffsetRange(x, xLeast, xMost);
MaximalByteOffsetRange(y, yLeast, yMost);
if (RangesOverlap(xDesc, xDescLast, yBase + yLeast, yBase + yMost) ||
RangesOverlap(yDesc, yDescLast, xBase + xLeast, xBase + xMost)) {
// A descriptor overlaps with the storage described by the other;
// this can arise when an allocatable or pointer component is
// being assigned to/from.
return true;
}
if (!RangesOverlap(
xBase + xLeast, xBase + xMost, yBase + yLeast, yBase + yMost)) {
return false; // no storage overlap
}
// TODO: check dimensions: if any is independent, return false
return true;
}
static void DoScalarDefinedAssignment(const Descriptor &to,
const Descriptor &from, const typeInfo::SpecialBinding &special) {
bool toIsDesc{special.IsArgDescriptor(0)};
bool fromIsDesc{special.IsArgDescriptor(1)};
if (toIsDesc) {
if (fromIsDesc) {
auto *p{
special.GetProc<void (*)(const Descriptor &, const Descriptor &)>()};
p(to, from);
} else {
auto *p{special.GetProc<void (*)(const Descriptor &, void *)>()};
p(to, from.raw().base_addr);
}
} else {
if (fromIsDesc) {
auto *p{special.GetProc<void (*)(void *, const Descriptor &)>()};
p(to.raw().base_addr, from);
} else {
auto *p{special.GetProc<void (*)(void *, void *)>()};
p(to.raw().base_addr, from.raw().base_addr);
}
}
}
static void DoElementalDefinedAssignment(const Descriptor &to,
const Descriptor &from, const typeInfo::DerivedType &derived,
const typeInfo::SpecialBinding &special) {
SubscriptValue toAt[maxRank], fromAt[maxRank];
to.GetLowerBounds(toAt);
from.GetLowerBounds(fromAt);
StaticDescriptor<maxRank, true, 8 /*?*/> statDesc[2];
Descriptor &toElementDesc{statDesc[0].descriptor()};
Descriptor &fromElementDesc{statDesc[1].descriptor()};
toElementDesc.Establish(derived, nullptr, 0, nullptr, CFI_attribute_pointer);
fromElementDesc.Establish(
derived, nullptr, 0, nullptr, CFI_attribute_pointer);
for (std::size_t toElements{to.Elements()}; toElements-- > 0;
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
toElementDesc.set_base_addr(to.Element<char>(toAt));
fromElementDesc.set_base_addr(from.Element<char>(fromAt));
DoScalarDefinedAssignment(toElementDesc, fromElementDesc, special);
}
}
template <typename CHAR>
static void BlankPadCharacterAssignment(Descriptor &to, const Descriptor &from,
SubscriptValue toAt[], SubscriptValue fromAt[], std::size_t elements,
std::size_t toElementBytes, std::size_t fromElementBytes) {
std::size_t padding{(toElementBytes - fromElementBytes) / sizeof(CHAR)};
std::size_t copiedCharacters{fromElementBytes / sizeof(CHAR)};
for (; elements-- > 0;
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
CHAR *p{to.Element<CHAR>(toAt)};
std::memmove(
p, from.Element<std::add_const_t<CHAR>>(fromAt), fromElementBytes);
p += copiedCharacters;
for (auto n{padding}; n-- > 0;) {
*p++ = CHAR{' '};
}
}
}
// Common implementation of assignments, both intrinsic assignments and
// those cases of polymorphic user-defined ASSIGNMENT(=) TBPs that could not
// be resolved in semantics. Most assignment statements do not need any
// of the capabilities of this function -- but when the LHS is allocatable,
// the type might have a user-defined ASSIGNMENT(=), or the type might be
// finalizable, this function should be used.
// When "to" is not a whole allocatable, "from" is an array, and defined
// assignments are not used, "to" and "from" only need to have the same number
// of elements, but their shape need not to conform (the assignment is done in
// element sequence order). This facilitates some internal usages, like when
// dealing with array constructors.
static void Assign(
Descriptor &to, const Descriptor &from, Terminator &terminator, int flags) {
bool mustDeallocateLHS{(flags & DeallocateLHS) ||
MustDeallocateLHS(to, from, terminator, flags)};
DescriptorAddendum *toAddendum{to.Addendum()};
const typeInfo::DerivedType *toDerived{
toAddendum ? toAddendum->derivedType() : nullptr};
if (toDerived && (flags & NeedFinalization) &&
toDerived->noFinalizationNeeded()) {
flags &= ~NeedFinalization;
}
std::size_t toElementBytes{to.ElementBytes()};
std::size_t fromElementBytes{from.ElementBytes()};
auto isSimpleMemmove{[&]() {
return !toDerived && to.rank() == from.rank() && to.IsContiguous() &&
from.IsContiguous() && toElementBytes == fromElementBytes;
}};
StaticDescriptor<maxRank, true, 10 /*?*/> deferredDeallocStatDesc;
Descriptor *deferDeallocation{nullptr};
if (MayAlias(to, from)) {
if (mustDeallocateLHS) {
deferDeallocation = &deferredDeallocStatDesc.descriptor();
std::memcpy(deferDeallocation, &to, to.SizeInBytes());
to.set_base_addr(nullptr);
} else if (!isSimpleMemmove()) {
// Handle LHS/RHS aliasing by copying RHS into a temp, then
// recursively assigning from that temp.
auto descBytes{from.SizeInBytes()};
StaticDescriptor<maxRank, true, 16> staticDesc;
Descriptor &newFrom{staticDesc.descriptor()};
std::memcpy(&newFrom, &from, descBytes);
// Pretend the temporary descriptor is for an ALLOCATABLE
// entity, otherwise, the Deallocate() below will not
// free the descriptor memory.
newFrom.raw().attribute = CFI_attribute_allocatable;
auto stat{ReturnError(terminator, newFrom.Allocate())};
if (stat == StatOk) {
char *toAt{newFrom.OffsetElement()};
std::size_t fromElements{from.Elements()};
if (from.IsContiguous()) {
std::memcpy(
toAt, from.OffsetElement(), fromElements * fromElementBytes);
} else {
SubscriptValue fromAt[maxRank];
for (from.GetLowerBounds(fromAt); fromElements-- > 0;
toAt += fromElementBytes, from.IncrementSubscripts(fromAt)) {
std::memcpy(toAt, from.Element<char>(fromAt), fromElementBytes);
}
}
Assign(to, newFrom, terminator,
flags &
(NeedFinalization | ComponentCanBeDefinedAssignment |
ExplicitLengthCharacterLHS | CanBeDefinedAssignment));
newFrom.Deallocate();
}
return;
}
}
if (to.IsAllocatable()) {
if (mustDeallocateLHS) {
if (deferDeallocation) {
if ((flags & NeedFinalization) && toDerived) {
Finalize(to, *toDerived);
flags &= ~NeedFinalization;
}
} else {
to.Destroy((flags & NeedFinalization) != 0);
flags &= ~NeedFinalization;
}
} else if (to.rank() != from.rank() && !to.IsAllocated()) {
terminator.Crash("Assign: mismatched ranks (%d != %d) in assignment to "
"unallocated allocatable",
to.rank(), from.rank());
}
if (!to.IsAllocated()) {
if (AllocateAssignmentLHS(to, from, terminator, flags) != StatOk) {
return;
}
flags &= ~NeedFinalization;
toElementBytes = to.ElementBytes(); // may have changed
}
}
if (toDerived && (flags & CanBeDefinedAssignment)) {
// Check for a user-defined assignment type-bound procedure;
// see 10.2.1.4-5. A user-defined assignment TBP defines all of
// the semantics, including allocatable (re)allocation and any
// finalization.
//
// Note that the aliasing and LHS (re)allocation handling above
// needs to run even with CanBeDefinedAssignment flag, when
// the Assign() is invoked recursively for component-per-component
// assignments.
if (to.rank() == 0) {
if (const auto *special{toDerived->FindSpecialBinding(
typeInfo::SpecialBinding::Which::ScalarAssignment)}) {
return DoScalarDefinedAssignment(to, from, *special);
}
}
if (const auto *special{toDerived->FindSpecialBinding(
typeInfo::SpecialBinding::Which::ElementalAssignment)}) {
return DoElementalDefinedAssignment(to, from, *toDerived, *special);
}
}
SubscriptValue toAt[maxRank];
to.GetLowerBounds(toAt);
// Scalar expansion of the RHS is implied by using the same empty
// subscript values on each (seemingly) elemental reference into
// "from".
SubscriptValue fromAt[maxRank];
from.GetLowerBounds(fromAt);
std::size_t toElements{to.Elements()};
if (from.rank() > 0 && toElements != from.Elements()) {
terminator.Crash("Assign: mismatching element counts in array assignment "
"(to %zd, from %zd)",
toElements, from.Elements());
}
if (to.type() != from.type()) {
terminator.Crash("Assign: mismatching types (to code %d != from code %d)",
to.type().raw(), from.type().raw());
}
if (toElementBytes > fromElementBytes && !to.type().IsCharacter()) {
terminator.Crash("Assign: mismatching non-character element sizes (to %zd "
"bytes != from %zd bytes)",
toElementBytes, fromElementBytes);
}
if (const typeInfo::DerivedType *
updatedToDerived{toAddendum ? toAddendum->derivedType() : nullptr}) {
// Derived type intrinsic assignment, which is componentwise and elementwise
// for all components, including parent components (10.2.1.2-3).
// The target is first finalized if still necessary (7.5.6.3(1))
if (flags & NeedFinalization) {
Finalize(to, *updatedToDerived);
}
// Copy the data components (incl. the parent) first.
const Descriptor &componentDesc{updatedToDerived->component()};
std::size_t numComponents{componentDesc.Elements()};
for (std::size_t k{0}; k < numComponents; ++k) {
const auto &comp{
*componentDesc.ZeroBasedIndexedElement<typeInfo::Component>(
k)}; // TODO: exploit contiguity here
// Use PolymorphicLHS for components so that the right things happen
// when the components are polymorphic; when they're not, they're both
// not, and their declared types will match.
int nestedFlags{MaybeReallocate | PolymorphicLHS};
if (flags & ComponentCanBeDefinedAssignment) {
nestedFlags |= CanBeDefinedAssignment | ComponentCanBeDefinedAssignment;
}
switch (comp.genre()) {
case typeInfo::Component::Genre::Data:
if (comp.category() == TypeCategory::Derived) {
StaticDescriptor<maxRank, true, 10 /*?*/> statDesc[2];
Descriptor &toCompDesc{statDesc[0].descriptor()};
Descriptor &fromCompDesc{statDesc[1].descriptor()};
for (std::size_t j{0}; j < toElements; ++j,
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
comp.CreatePointerDescriptor(toCompDesc, to, terminator, toAt);
comp.CreatePointerDescriptor(
fromCompDesc, from, terminator, fromAt);
Assign(toCompDesc, fromCompDesc, terminator, nestedFlags);
}
} else { // Component has intrinsic type; simply copy raw bytes
std::size_t componentByteSize{comp.SizeInBytes(to)};
for (std::size_t j{0}; j < toElements; ++j,
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
std::memmove(to.Element<char>(toAt) + comp.offset(),
from.Element<const char>(fromAt) + comp.offset(),
componentByteSize);
}
}
break;
case typeInfo::Component::Genre::Pointer: {
std::size_t componentByteSize{comp.SizeInBytes(to)};
for (std::size_t j{0}; j < toElements; ++j,
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
std::memmove(to.Element<char>(toAt) + comp.offset(),
from.Element<const char>(fromAt) + comp.offset(),
componentByteSize);
}
} break;
case typeInfo::Component::Genre::Allocatable:
case typeInfo::Component::Genre::Automatic:
for (std::size_t j{0}; j < toElements; ++j,
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
auto *toDesc{reinterpret_cast<Descriptor *>(
to.Element<char>(toAt) + comp.offset())};
const auto *fromDesc{reinterpret_cast<const Descriptor *>(
from.Element<char>(fromAt) + comp.offset())};
// Allocatable components of the LHS are unconditionally
// deallocated before assignment (F'2018 10.2.1.3(13)(1)),
// unlike a "top-level" assignment to a variable, where
// deallocation is optional.
//
// Be careful not to destroy/reallocate the LHS, if there is
// overlap between LHS and RHS (it seems that partial overlap
// is not possible, though).
// Invoke Assign() recursively to deal with potential aliasing.
if (toDesc->IsAllocatable()) {
if (!fromDesc->IsAllocated()) {
// No aliasing.
//
// If to is not allocated, the Destroy() call is a no-op.
// This is just a shortcut, because the recursive Assign()
// below would initiate the destruction for to.
// No finalization is required.
toDesc->Destroy();
continue; // F'2018 10.2.1.3(13)(2)
}
}
// Force LHS deallocation with DeallocateLHS flag.
// The actual deallocation may be avoided, if the existing
// location can be reoccupied.
Assign(*toDesc, *fromDesc, terminator, nestedFlags | DeallocateLHS);
}
break;
}
}
// Copy procedure pointer components
const Descriptor &procPtrDesc{updatedToDerived->procPtr()};
std::size_t numProcPtrs{procPtrDesc.Elements()};
for (std::size_t k{0}; k < numProcPtrs; ++k) {
const auto &procPtr{
*procPtrDesc.ZeroBasedIndexedElement<typeInfo::ProcPtrComponent>(k)};
for (std::size_t j{0}; j < toElements; ++j, to.IncrementSubscripts(toAt),
from.IncrementSubscripts(fromAt)) {
std::memmove(to.Element<char>(toAt) + procPtr.offset,
from.Element<const char>(fromAt) + procPtr.offset,
sizeof(typeInfo::ProcedurePointer));
}
}
} else { // intrinsic type, intrinsic assignment
if (isSimpleMemmove()) {
std::memmove(to.raw().base_addr, from.raw().base_addr,
toElements * toElementBytes);
} else if (toElementBytes > fromElementBytes) { // blank padding
switch (to.type().raw()) {
case CFI_type_signed_char:
case CFI_type_char:
BlankPadCharacterAssignment<char>(to, from, toAt, fromAt, toElements,
toElementBytes, fromElementBytes);
break;
case CFI_type_char16_t:
BlankPadCharacterAssignment<char16_t>(to, from, toAt, fromAt,
toElements, toElementBytes, fromElementBytes);
break;
case CFI_type_char32_t:
BlankPadCharacterAssignment<char32_t>(to, from, toAt, fromAt,
toElements, toElementBytes, fromElementBytes);
break;
default:
terminator.Crash("unexpected type code %d in blank padded Assign()",
to.type().raw());
}
} else { // elemental copies, possibly with character truncation
for (std::size_t n{toElements}; n-- > 0;
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
std::memmove(to.Element<char>(toAt), from.Element<const char>(fromAt),
toElementBytes);
}
}
}
if (deferDeallocation) {
// deferDeallocation is used only when LHS is an allocatable.
// The finalization has already been run for it.
deferDeallocation->Destroy();
}
}
void DoFromSourceAssign(
Descriptor &alloc, const Descriptor &source, Terminator &terminator) {
if (alloc.rank() > 0 && source.rank() == 0) {
// The value of each element of allocate object becomes the value of source.
DescriptorAddendum *allocAddendum{alloc.Addendum()};
const typeInfo::DerivedType *allocDerived{
allocAddendum ? allocAddendum->derivedType() : nullptr};
SubscriptValue allocAt[maxRank];
alloc.GetLowerBounds(allocAt);
if (allocDerived) {
for (std::size_t n{alloc.Elements()}; n-- > 0;
alloc.IncrementSubscripts(allocAt)) {
Descriptor allocElement{*Descriptor::Create(*allocDerived,
reinterpret_cast<void *>(alloc.Element<char>(allocAt)), 0)};
Assign(allocElement, source, terminator, NoAssignFlags);
}
} else { // intrinsic type
for (std::size_t n{alloc.Elements()}; n-- > 0;
alloc.IncrementSubscripts(allocAt)) {
std::memmove(alloc.Element<char>(allocAt), source.raw().base_addr,
alloc.ElementBytes());
}
}
} else {
Assign(alloc, source, terminator, NoAssignFlags);
}
}
extern "C" {
void RTNAME(Assign)(Descriptor &to, const Descriptor &from,
const char *sourceFile, int sourceLine) {
Terminator terminator{sourceFile, sourceLine};
// All top-level defined assignments can be recognized in semantics and
// will have been already been converted to calls, so don't check for
// defined assignment apart from components.
Assign(to, from, terminator,
MaybeReallocate | NeedFinalization | ComponentCanBeDefinedAssignment);
}
void RTNAME(AssignTemporary)(Descriptor &to, const Descriptor &from,
const char *sourceFile, int sourceLine) {
Terminator terminator{sourceFile, sourceLine};
// Initialize the "to" if it is of derived type that needs initialization.
if (const DescriptorAddendum * addendum{to.Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
// Do not invoke the initialization, if the descriptor is unallocated.
// AssignTemporary() is used for component-by-component assignments,
// for example, for structure constructors. This means that the LHS
// may be an allocatable component with unallocated status.
// The initialization will just fail in this case. By skipping
// the initialization we let Assign() automatically allocate
// and initialize the component according to the RHS.
// So we only need to initialize the LHS here if it is allocated.
// Note that initializing already initialized entity has no visible
// effect, though, it is assumed that the compiler does not initialize
// the temporary and leaves the initialization to this runtime code.
if (!derived->noInitializationNeeded() && to.IsAllocated()) {
if (ReturnError(terminator, Initialize(to, *derived, terminator)) !=
StatOk) {
return;
}
}
}
}
Assign(to, from, terminator, PolymorphicLHS);
}
void RTNAME(CopyOutAssign)(Descriptor &to, const Descriptor &from,
bool skipToInit, const char *sourceFile, int sourceLine) {
Terminator terminator{sourceFile, sourceLine};
// Initialize the "to" if it is of derived type that needs initialization.
if (!skipToInit) {
if (const DescriptorAddendum * addendum{to.Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
if (!derived->noInitializationNeeded()) {
if (ReturnError(terminator, Initialize(to, *derived, terminator)) !=
StatOk) {
return;
}
}
}
}
}
// Copyout from the temporary must not cause any finalizations
// for LHS.
Assign(to, from, terminator, NoAssignFlags);
}
void RTNAME(AssignExplicitLengthCharacter)(Descriptor &to,
const Descriptor &from, const char *sourceFile, int sourceLine) {
Terminator terminator{sourceFile, sourceLine};
Assign(to, from, terminator,
MaybeReallocate | NeedFinalization | ComponentCanBeDefinedAssignment |
ExplicitLengthCharacterLHS);
}
void RTNAME(AssignPolymorphic)(Descriptor &to, const Descriptor &from,
const char *sourceFile, int sourceLine) {
Terminator terminator{sourceFile, sourceLine};
Assign(to, from, terminator,
MaybeReallocate | NeedFinalization | ComponentCanBeDefinedAssignment |
PolymorphicLHS);
}
} // extern "C"
} // namespace Fortran::runtime
|