1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
//===-- runtime/temporary-stack.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Implements std::vector like storage for a dynamically resizable number of
// temporaries. For use in HLFIR lowering.
#include "flang/Runtime/temporary-stack.h"
#include "terminator.h"
#include "flang/ISO_Fortran_binding.h"
#include "flang/Runtime/assign.h"
#include "flang/Runtime/descriptor.h"
#include "flang/Runtime/memory.h"
namespace {
using namespace Fortran::runtime;
// the number of elements to allocate when first creating the vector
constexpr size_t INITIAL_ALLOC = 8;
/// To store C style data. Does not run constructors/destructors.
/// Not using std::vector to avoid linking the runtime library to stdc++
template <bool COPY_VALUES> class DescriptorStorage final {
using size_type = uint64_t; // see checkedMultiply()
size_type capacity_{0};
size_type size_{0};
Descriptor **data_{nullptr};
Terminator terminator_;
// return true on overflow
static bool checkedMultiply(size_type x, size_type y, size_type &res);
void resize(size_type newCapacity);
Descriptor *cloneDescriptor(const Descriptor &source);
public:
DescriptorStorage(const char *sourceFile, int line);
~DescriptorStorage();
// `new` but using the runtime allocation API
static inline DescriptorStorage *allocate(const char *sourceFile, int line) {
Terminator term{sourceFile, line};
void *ptr = AllocateMemoryOrCrash(term, sizeof(DescriptorStorage));
return new (ptr) DescriptorStorage{sourceFile, line};
}
// `delete` but using the runtime allocation API
static inline void destroy(DescriptorStorage *instance) {
instance->~DescriptorStorage();
FreeMemory(instance);
}
// clones a descriptor into this storage
void push(const Descriptor &source);
// out must be big enough to hold a descriptor of the right rank and addendum
void pop(Descriptor &out);
// out must be big enough to hold a descriptor of the right rank and addendum
void at(size_type i, Descriptor &out);
};
using ValueStack = DescriptorStorage</*COPY_VALUES=*/true>;
using DescriptorStack = DescriptorStorage</*COPY_VALUES=*/false>;
} // namespace
template <bool COPY_VALUES>
bool DescriptorStorage<COPY_VALUES>::checkedMultiply(
size_type x, size_type y, size_type &res) {
// TODO: c++20 [[unlikely]]
if (x > UINT64_MAX / y) {
return true;
}
res = x * y;
return false;
}
template <bool COPY_VALUES>
void DescriptorStorage<COPY_VALUES>::resize(size_type newCapacity) {
if (newCapacity <= capacity_) {
return;
}
size_type bytes;
if (checkedMultiply(newCapacity, sizeof(Descriptor *), bytes)) {
terminator_.Crash("temporary-stack: out of memory");
}
Descriptor **newData =
static_cast<Descriptor **>(AllocateMemoryOrCrash(terminator_, bytes));
memcpy(newData, data_, capacity_ * sizeof(Descriptor *));
FreeMemory(data_);
data_ = newData;
capacity_ = newCapacity;
}
template <bool COPY_VALUES>
Descriptor *DescriptorStorage<COPY_VALUES>::cloneDescriptor(
const Descriptor &source) {
const std::size_t bytes = source.SizeInBytes();
void *memory = AllocateMemoryOrCrash(terminator_, bytes);
Descriptor *desc = new (memory) Descriptor{source};
return desc;
}
template <bool COPY_VALUES>
DescriptorStorage<COPY_VALUES>::DescriptorStorage(
const char *sourceFile, int line)
: terminator_{sourceFile, line} {
resize(INITIAL_ALLOC);
}
template <bool COPY_VALUES>
DescriptorStorage<COPY_VALUES>::~DescriptorStorage() {
for (size_type i = 0; i < size_; ++i) {
Descriptor *element = data_[i];
if constexpr (COPY_VALUES) {
element->Destroy(false, true);
}
FreeMemory(element);
}
FreeMemory(data_);
}
template <bool COPY_VALUES>
void DescriptorStorage<COPY_VALUES>::push(const Descriptor &source) {
if (size_ == capacity_) {
size_type newSize;
if (checkedMultiply(capacity_, 2, newSize)) {
terminator_.Crash("temporary-stack: out of address space");
}
resize(newSize);
}
data_[size_] = cloneDescriptor(source);
Descriptor &box = *data_[size_];
size_ += 1;
if constexpr (COPY_VALUES) {
// copy the data pointed to by the box
box.set_base_addr(nullptr);
box.Allocate();
RTNAME(AssignTemporary)
(box, source, terminator_.sourceFileName(), terminator_.sourceLine());
}
}
template <bool COPY_VALUES>
void DescriptorStorage<COPY_VALUES>::pop(Descriptor &out) {
if (size_ == 0) {
terminator_.Crash("temporary-stack: pop empty storage");
}
size_ -= 1;
Descriptor *ptr = data_[size_];
out = *ptr; // Descriptor::operator= handles the different sizes
FreeMemory(ptr);
}
template <bool COPY_VALUES>
void DescriptorStorage<COPY_VALUES>::at(size_type i, Descriptor &out) {
if (i >= size_) {
terminator_.Crash("temporary-stack: out of bounds access");
}
Descriptor *ptr = data_[i];
out = *ptr; // Descriptor::operator= handles the different sizes
}
inline static ValueStack *getValueStorage(void *opaquePtr) {
return static_cast<ValueStack *>(opaquePtr);
}
inline static DescriptorStack *getDescriptorStorage(void *opaquePtr) {
return static_cast<DescriptorStack *>(opaquePtr);
}
namespace Fortran::runtime {
extern "C" {
void *RTNAME(CreateValueStack)(const char *sourceFile, int line) {
return ValueStack::allocate(sourceFile, line);
}
void RTNAME(PushValue)(void *opaquePtr, const Descriptor &value) {
getValueStorage(opaquePtr)->push(value);
}
void RTNAME(PopValue)(void *opaquePtr, Descriptor &value) {
getValueStorage(opaquePtr)->pop(value);
}
void RTNAME(ValueAt)(void *opaquePtr, uint64_t i, Descriptor &value) {
getValueStorage(opaquePtr)->at(i, value);
}
void RTNAME(DestroyValueStack)(void *opaquePtr) {
ValueStack::destroy(getValueStorage(opaquePtr));
}
void *RTNAME(CreateDescriptorStack)(const char *sourceFile, int line) {
return DescriptorStack::allocate(sourceFile, line);
}
void RTNAME(PushDescriptor)(void *opaquePtr, const Descriptor &value) {
getDescriptorStorage(opaquePtr)->push(value);
}
void RTNAME(PopDescriptor)(void *opaquePtr, Descriptor &value) {
getDescriptorStorage(opaquePtr)->pop(value);
}
void RTNAME(DescriptorAt)(void *opaquePtr, uint64_t i, Descriptor &value) {
getValueStorage(opaquePtr)->at(i, value);
}
void RTNAME(DestroyDescriptorStack)(void *opaquePtr) {
DescriptorStack::destroy(getDescriptorStorage(opaquePtr));
}
} // extern "C"
} // namespace Fortran::runtime
|