File: tools.h

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (400 lines) | stat: -rw-r--r-- 12,820 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
//===-- runtime/tools.h -----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef FORTRAN_RUNTIME_TOOLS_H_
#define FORTRAN_RUNTIME_TOOLS_H_

#include "freestanding-tools.h"
#include "terminator.h"
#include "flang/Runtime/cpp-type.h"
#include "flang/Runtime/descriptor.h"
#include "flang/Runtime/memory.h"
#include <cstring>
#include <functional>
#include <map>
#include <type_traits>

namespace Fortran::runtime {

class Terminator;

std::size_t TrimTrailingSpaces(const char *, std::size_t);

OwningPtr<char> SaveDefaultCharacter(
    const char *, std::size_t, const Terminator &);

// For validating and recognizing default CHARACTER values in a
// case-insensitive manner.  Returns the zero-based index into the
// null-terminated array of upper-case possibilities when the value is valid,
// or -1 when it has no match.
int IdentifyValue(
    const char *value, std::size_t length, const char *possibilities[]);

// Truncates or pads as necessary
void ToFortranDefaultCharacter(
    char *to, std::size_t toLength, const char *from);

// Utility for dealing with elemental LOGICAL arguments
inline RT_API_ATTRS bool IsLogicalElementTrue(
    const Descriptor &logical, const SubscriptValue at[]) {
  // A LOGICAL value is false if and only if all of its bytes are zero.
  const char *p{logical.Element<char>(at)};
  for (std::size_t j{logical.ElementBytes()}; j-- > 0; ++p) {
    if (*p) {
      return true;
    }
  }
  return false;
}

// Check array conformability; a scalar 'x' conforms.  Crashes on error.
RT_API_ATTRS void CheckConformability(const Descriptor &to, const Descriptor &x,
    Terminator &, const char *funcName, const char *toName,
    const char *fromName);

// Helper to store integer value in result[at].
template <int KIND> struct StoreIntegerAt {
  void operator()(const Fortran::runtime::Descriptor &result, std::size_t at,
      std::int64_t value) const {
    *result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
        Fortran::common::TypeCategory::Integer, KIND>>(at) = value;
  }
};

// Validate a KIND= argument
RT_API_ATTRS void CheckIntegerKind(
    Terminator &, int kind, const char *intrinsic);

template <typename TO, typename FROM>
inline void PutContiguousConverted(TO *to, FROM *from, std::size_t count) {
  while (count-- > 0) {
    *to++ = *from++;
  }
}

static inline RT_API_ATTRS std::int64_t GetInt64(
    const char *p, std::size_t bytes, Terminator &terminator) {
  switch (bytes) {
  case 1:
    return *reinterpret_cast<const CppTypeFor<TypeCategory::Integer, 1> *>(p);
  case 2:
    return *reinterpret_cast<const CppTypeFor<TypeCategory::Integer, 2> *>(p);
  case 4:
    return *reinterpret_cast<const CppTypeFor<TypeCategory::Integer, 4> *>(p);
  case 8:
    return *reinterpret_cast<const CppTypeFor<TypeCategory::Integer, 8> *>(p);
  default:
    terminator.Crash("GetInt64: no case for %zd bytes", bytes);
  }
}

template <typename INT>
inline bool SetInteger(INT &x, int kind, std::int64_t value) {
  switch (kind) {
  case 1:
    reinterpret_cast<CppTypeFor<TypeCategory::Integer, 1> &>(x) = value;
    return value == reinterpret_cast<CppTypeFor<TypeCategory::Integer, 1> &>(x);
  case 2:
    reinterpret_cast<CppTypeFor<TypeCategory::Integer, 2> &>(x) = value;
    return value == reinterpret_cast<CppTypeFor<TypeCategory::Integer, 2> &>(x);
  case 4:
    reinterpret_cast<CppTypeFor<TypeCategory::Integer, 4> &>(x) = value;
    return value == reinterpret_cast<CppTypeFor<TypeCategory::Integer, 4> &>(x);
  case 8:
    reinterpret_cast<CppTypeFor<TypeCategory::Integer, 8> &>(x) = value;
    return value == reinterpret_cast<CppTypeFor<TypeCategory::Integer, 8> &>(x);
  default:
    return false;
  }
}

// Maps intrinsic runtime type category and kind values to the appropriate
// instantiation of a function object template and calls it with the supplied
// arguments.
template <template <TypeCategory, int> class FUNC, typename RESULT,
    typename... A>
inline RT_API_ATTRS RESULT ApplyType(
    TypeCategory cat, int kind, Terminator &terminator, A &&...x) {
  switch (cat) {
  case TypeCategory::Integer:
    switch (kind) {
    case 1:
      return FUNC<TypeCategory::Integer, 1>{}(std::forward<A>(x)...);
    case 2:
      return FUNC<TypeCategory::Integer, 2>{}(std::forward<A>(x)...);
    case 4:
      return FUNC<TypeCategory::Integer, 4>{}(std::forward<A>(x)...);
    case 8:
      return FUNC<TypeCategory::Integer, 8>{}(std::forward<A>(x)...);
#if defined __SIZEOF_INT128__ && !AVOID_NATIVE_UINT128_T
    case 16:
      return FUNC<TypeCategory::Integer, 16>{}(std::forward<A>(x)...);
#endif
    default:
      terminator.Crash("not yet implemented: INTEGER(KIND=%d)", kind);
    }
  case TypeCategory::Real:
    switch (kind) {
#if 0 // TODO: REAL(2 & 3)
    case 2:
      return FUNC<TypeCategory::Real, 2>{}(std::forward<A>(x)...);
    case 3:
      return FUNC<TypeCategory::Real, 3>{}(std::forward<A>(x)...);
#endif
    case 4:
      return FUNC<TypeCategory::Real, 4>{}(std::forward<A>(x)...);
    case 8:
      return FUNC<TypeCategory::Real, 8>{}(std::forward<A>(x)...);
    case 10:
      if constexpr (HasCppTypeFor<TypeCategory::Real, 10>) {
        return FUNC<TypeCategory::Real, 10>{}(std::forward<A>(x)...);
      }
      break;
    case 16:
      if constexpr (HasCppTypeFor<TypeCategory::Real, 16>) {
        return FUNC<TypeCategory::Real, 16>{}(std::forward<A>(x)...);
      }
      break;
    }
    terminator.Crash("not yet implemented: REAL(KIND=%d)", kind);
  case TypeCategory::Complex:
    switch (kind) {
#if 0 // TODO: COMPLEX(2 & 3)
    case 2:
      return FUNC<TypeCategory::Complex, 2>{}(std::forward<A>(x)...);
    case 3:
      return FUNC<TypeCategory::Complex, 3>{}(std::forward<A>(x)...);
#endif
    case 4:
      return FUNC<TypeCategory::Complex, 4>{}(std::forward<A>(x)...);
    case 8:
      return FUNC<TypeCategory::Complex, 8>{}(std::forward<A>(x)...);
    case 10:
      if constexpr (HasCppTypeFor<TypeCategory::Real, 10>) {
        return FUNC<TypeCategory::Complex, 10>{}(std::forward<A>(x)...);
      }
      break;
    case 16:
      if constexpr (HasCppTypeFor<TypeCategory::Real, 16>) {
        return FUNC<TypeCategory::Complex, 16>{}(std::forward<A>(x)...);
      }
      break;
    }
    terminator.Crash("not yet implemented: COMPLEX(KIND=%d)", kind);
  case TypeCategory::Character:
    switch (kind) {
    case 1:
      return FUNC<TypeCategory::Character, 1>{}(std::forward<A>(x)...);
    case 2:
      return FUNC<TypeCategory::Character, 2>{}(std::forward<A>(x)...);
    case 4:
      return FUNC<TypeCategory::Character, 4>{}(std::forward<A>(x)...);
    default:
      terminator.Crash("not yet implemented: CHARACTER(KIND=%d)", kind);
    }
  case TypeCategory::Logical:
    switch (kind) {
    case 1:
      return FUNC<TypeCategory::Logical, 1>{}(std::forward<A>(x)...);
    case 2:
      return FUNC<TypeCategory::Logical, 2>{}(std::forward<A>(x)...);
    case 4:
      return FUNC<TypeCategory::Logical, 4>{}(std::forward<A>(x)...);
    case 8:
      return FUNC<TypeCategory::Logical, 8>{}(std::forward<A>(x)...);
    default:
      terminator.Crash("not yet implemented: LOGICAL(KIND=%d)", kind);
    }
  default:
    terminator.Crash(
        "not yet implemented: type category(%d)", static_cast<int>(cat));
  }
}

// Maps a runtime INTEGER kind value to the appropriate instantiation of
// a function object template and calls it with the supplied arguments.
template <template <int KIND> class FUNC, typename RESULT, typename... A>
inline RT_API_ATTRS RESULT ApplyIntegerKind(
    int kind, Terminator &terminator, A &&...x) {
  switch (kind) {
  case 1:
    return FUNC<1>{}(std::forward<A>(x)...);
  case 2:
    return FUNC<2>{}(std::forward<A>(x)...);
  case 4:
    return FUNC<4>{}(std::forward<A>(x)...);
  case 8:
    return FUNC<8>{}(std::forward<A>(x)...);
#if defined __SIZEOF_INT128__ && !AVOID_NATIVE_UINT128_T
  case 16:
    return FUNC<16>{}(std::forward<A>(x)...);
#endif
  default:
    terminator.Crash("not yet implemented: INTEGER(KIND=%d)", kind);
  }
}

template <template <int KIND> class FUNC, typename RESULT, typename... A>
inline RT_API_ATTRS RESULT ApplyFloatingPointKind(
    int kind, Terminator &terminator, A &&...x) {
  switch (kind) {
#if 0 // TODO: REAL/COMPLEX (2 & 3)
  case 2:
    return FUNC<2>{}(std::forward<A>(x)...);
  case 3:
    return FUNC<3>{}(std::forward<A>(x)...);
#endif
  case 4:
    return FUNC<4>{}(std::forward<A>(x)...);
  case 8:
    return FUNC<8>{}(std::forward<A>(x)...);
  case 10:
    if constexpr (HasCppTypeFor<TypeCategory::Real, 10>) {
      return FUNC<10>{}(std::forward<A>(x)...);
    }
    break;
  case 16:
    if constexpr (HasCppTypeFor<TypeCategory::Real, 16>) {
      return FUNC<16>{}(std::forward<A>(x)...);
    }
    break;
  }
  terminator.Crash("not yet implemented: REAL/COMPLEX(KIND=%d)", kind);
}

template <template <int KIND> class FUNC, typename RESULT, typename... A>
inline RT_API_ATTRS RESULT ApplyCharacterKind(
    int kind, Terminator &terminator, A &&...x) {
  switch (kind) {
  case 1:
    return FUNC<1>{}(std::forward<A>(x)...);
  case 2:
    return FUNC<2>{}(std::forward<A>(x)...);
  case 4:
    return FUNC<4>{}(std::forward<A>(x)...);
  default:
    terminator.Crash("not yet implemented: CHARACTER(KIND=%d)", kind);
  }
}

template <template <int KIND> class FUNC, typename RESULT, typename... A>
inline RT_API_ATTRS RESULT ApplyLogicalKind(
    int kind, Terminator &terminator, A &&...x) {
  switch (kind) {
  case 1:
    return FUNC<1>{}(std::forward<A>(x)...);
  case 2:
    return FUNC<2>{}(std::forward<A>(x)...);
  case 4:
    return FUNC<4>{}(std::forward<A>(x)...);
  case 8:
    return FUNC<8>{}(std::forward<A>(x)...);
  default:
    terminator.Crash("not yet implemented: LOGICAL(KIND=%d)", kind);
  }
}

// Calculate result type of (X op Y) for *, //, DOT_PRODUCT, &c.
std::optional<std::pair<TypeCategory, int>> inline constexpr GetResultType(
    TypeCategory xCat, int xKind, TypeCategory yCat, int yKind) {
  int maxKind{std::max(xKind, yKind)};
  switch (xCat) {
  case TypeCategory::Integer:
    switch (yCat) {
    case TypeCategory::Integer:
      return std::make_pair(TypeCategory::Integer, maxKind);
    case TypeCategory::Real:
    case TypeCategory::Complex:
#if !(defined __SIZEOF_INT128__ && !AVOID_NATIVE_UINT128_T)
      if (xKind == 16) {
        break;
      }
#endif
      return std::make_pair(yCat, yKind);
    default:
      break;
    }
    break;
  case TypeCategory::Real:
    switch (yCat) {
    case TypeCategory::Integer:
#if !(defined __SIZEOF_INT128__ && !AVOID_NATIVE_UINT128_T)
      if (yKind == 16) {
        break;
      }
#endif
      return std::make_pair(TypeCategory::Real, xKind);
    case TypeCategory::Real:
    case TypeCategory::Complex:
      return std::make_pair(yCat, maxKind);
    default:
      break;
    }
    break;
  case TypeCategory::Complex:
    switch (yCat) {
    case TypeCategory::Integer:
#if !(defined __SIZEOF_INT128__ && !AVOID_NATIVE_UINT128_T)
      if (yKind == 16) {
        break;
      }
#endif
      return std::make_pair(TypeCategory::Complex, xKind);
    case TypeCategory::Real:
    case TypeCategory::Complex:
      return std::make_pair(TypeCategory::Complex, maxKind);
    default:
      break;
    }
    break;
  case TypeCategory::Character:
    if (yCat == TypeCategory::Character) {
      return std::make_pair(TypeCategory::Character, maxKind);
    } else {
      return std::nullopt;
    }
  case TypeCategory::Logical:
    if (yCat == TypeCategory::Logical) {
      return std::make_pair(TypeCategory::Logical, maxKind);
    } else {
      return std::nullopt;
    }
  default:
    break;
  }
  return std::nullopt;
}

// Accumulate floating-point results in (at least) double precision
template <TypeCategory CAT, int KIND>
using AccumulationType = CppTypeFor<CAT,
    CAT == TypeCategory::Real || CAT == TypeCategory::Complex
        ? std::max(KIND, static_cast<int>(sizeof(double)))
        : KIND>;

// memchr() for any character type
template <typename CHAR>
static inline const CHAR *FindCharacter(
    const CHAR *data, CHAR ch, std::size_t chars) {
  const CHAR *end{data + chars};
  for (const CHAR *p{data}; p < end; ++p) {
    if (*p == ch) {
      return p;
    }
  }
  return nullptr;
}

template <>
inline const char *FindCharacter(const char *data, char ch, std::size_t chars) {
  return reinterpret_cast<const char *>(
      std::memchr(data, static_cast<int>(ch), chars));
}

} // namespace Fortran::runtime
#endif // FORTRAN_RUNTIME_TOOLS_H_