1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
|
//===-- runtime/tools.h -----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_RUNTIME_TOOLS_H_
#define FORTRAN_RUNTIME_TOOLS_H_
#include "freestanding-tools.h"
#include "terminator.h"
#include "flang/Runtime/cpp-type.h"
#include "flang/Runtime/descriptor.h"
#include "flang/Runtime/memory.h"
#include <cstring>
#include <functional>
#include <map>
#include <type_traits>
namespace Fortran::runtime {
class Terminator;
std::size_t TrimTrailingSpaces(const char *, std::size_t);
OwningPtr<char> SaveDefaultCharacter(
const char *, std::size_t, const Terminator &);
// For validating and recognizing default CHARACTER values in a
// case-insensitive manner. Returns the zero-based index into the
// null-terminated array of upper-case possibilities when the value is valid,
// or -1 when it has no match.
int IdentifyValue(
const char *value, std::size_t length, const char *possibilities[]);
// Truncates or pads as necessary
void ToFortranDefaultCharacter(
char *to, std::size_t toLength, const char *from);
// Utility for dealing with elemental LOGICAL arguments
inline RT_API_ATTRS bool IsLogicalElementTrue(
const Descriptor &logical, const SubscriptValue at[]) {
// A LOGICAL value is false if and only if all of its bytes are zero.
const char *p{logical.Element<char>(at)};
for (std::size_t j{logical.ElementBytes()}; j-- > 0; ++p) {
if (*p) {
return true;
}
}
return false;
}
// Check array conformability; a scalar 'x' conforms. Crashes on error.
RT_API_ATTRS void CheckConformability(const Descriptor &to, const Descriptor &x,
Terminator &, const char *funcName, const char *toName,
const char *fromName);
// Helper to store integer value in result[at].
template <int KIND> struct StoreIntegerAt {
void operator()(const Fortran::runtime::Descriptor &result, std::size_t at,
std::int64_t value) const {
*result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
Fortran::common::TypeCategory::Integer, KIND>>(at) = value;
}
};
// Validate a KIND= argument
RT_API_ATTRS void CheckIntegerKind(
Terminator &, int kind, const char *intrinsic);
template <typename TO, typename FROM>
inline void PutContiguousConverted(TO *to, FROM *from, std::size_t count) {
while (count-- > 0) {
*to++ = *from++;
}
}
static inline RT_API_ATTRS std::int64_t GetInt64(
const char *p, std::size_t bytes, Terminator &terminator) {
switch (bytes) {
case 1:
return *reinterpret_cast<const CppTypeFor<TypeCategory::Integer, 1> *>(p);
case 2:
return *reinterpret_cast<const CppTypeFor<TypeCategory::Integer, 2> *>(p);
case 4:
return *reinterpret_cast<const CppTypeFor<TypeCategory::Integer, 4> *>(p);
case 8:
return *reinterpret_cast<const CppTypeFor<TypeCategory::Integer, 8> *>(p);
default:
terminator.Crash("GetInt64: no case for %zd bytes", bytes);
}
}
template <typename INT>
inline bool SetInteger(INT &x, int kind, std::int64_t value) {
switch (kind) {
case 1:
reinterpret_cast<CppTypeFor<TypeCategory::Integer, 1> &>(x) = value;
return value == reinterpret_cast<CppTypeFor<TypeCategory::Integer, 1> &>(x);
case 2:
reinterpret_cast<CppTypeFor<TypeCategory::Integer, 2> &>(x) = value;
return value == reinterpret_cast<CppTypeFor<TypeCategory::Integer, 2> &>(x);
case 4:
reinterpret_cast<CppTypeFor<TypeCategory::Integer, 4> &>(x) = value;
return value == reinterpret_cast<CppTypeFor<TypeCategory::Integer, 4> &>(x);
case 8:
reinterpret_cast<CppTypeFor<TypeCategory::Integer, 8> &>(x) = value;
return value == reinterpret_cast<CppTypeFor<TypeCategory::Integer, 8> &>(x);
default:
return false;
}
}
// Maps intrinsic runtime type category and kind values to the appropriate
// instantiation of a function object template and calls it with the supplied
// arguments.
template <template <TypeCategory, int> class FUNC, typename RESULT,
typename... A>
inline RT_API_ATTRS RESULT ApplyType(
TypeCategory cat, int kind, Terminator &terminator, A &&...x) {
switch (cat) {
case TypeCategory::Integer:
switch (kind) {
case 1:
return FUNC<TypeCategory::Integer, 1>{}(std::forward<A>(x)...);
case 2:
return FUNC<TypeCategory::Integer, 2>{}(std::forward<A>(x)...);
case 4:
return FUNC<TypeCategory::Integer, 4>{}(std::forward<A>(x)...);
case 8:
return FUNC<TypeCategory::Integer, 8>{}(std::forward<A>(x)...);
#if defined __SIZEOF_INT128__ && !AVOID_NATIVE_UINT128_T
case 16:
return FUNC<TypeCategory::Integer, 16>{}(std::forward<A>(x)...);
#endif
default:
terminator.Crash("not yet implemented: INTEGER(KIND=%d)", kind);
}
case TypeCategory::Real:
switch (kind) {
#if 0 // TODO: REAL(2 & 3)
case 2:
return FUNC<TypeCategory::Real, 2>{}(std::forward<A>(x)...);
case 3:
return FUNC<TypeCategory::Real, 3>{}(std::forward<A>(x)...);
#endif
case 4:
return FUNC<TypeCategory::Real, 4>{}(std::forward<A>(x)...);
case 8:
return FUNC<TypeCategory::Real, 8>{}(std::forward<A>(x)...);
case 10:
if constexpr (HasCppTypeFor<TypeCategory::Real, 10>) {
return FUNC<TypeCategory::Real, 10>{}(std::forward<A>(x)...);
}
break;
case 16:
if constexpr (HasCppTypeFor<TypeCategory::Real, 16>) {
return FUNC<TypeCategory::Real, 16>{}(std::forward<A>(x)...);
}
break;
}
terminator.Crash("not yet implemented: REAL(KIND=%d)", kind);
case TypeCategory::Complex:
switch (kind) {
#if 0 // TODO: COMPLEX(2 & 3)
case 2:
return FUNC<TypeCategory::Complex, 2>{}(std::forward<A>(x)...);
case 3:
return FUNC<TypeCategory::Complex, 3>{}(std::forward<A>(x)...);
#endif
case 4:
return FUNC<TypeCategory::Complex, 4>{}(std::forward<A>(x)...);
case 8:
return FUNC<TypeCategory::Complex, 8>{}(std::forward<A>(x)...);
case 10:
if constexpr (HasCppTypeFor<TypeCategory::Real, 10>) {
return FUNC<TypeCategory::Complex, 10>{}(std::forward<A>(x)...);
}
break;
case 16:
if constexpr (HasCppTypeFor<TypeCategory::Real, 16>) {
return FUNC<TypeCategory::Complex, 16>{}(std::forward<A>(x)...);
}
break;
}
terminator.Crash("not yet implemented: COMPLEX(KIND=%d)", kind);
case TypeCategory::Character:
switch (kind) {
case 1:
return FUNC<TypeCategory::Character, 1>{}(std::forward<A>(x)...);
case 2:
return FUNC<TypeCategory::Character, 2>{}(std::forward<A>(x)...);
case 4:
return FUNC<TypeCategory::Character, 4>{}(std::forward<A>(x)...);
default:
terminator.Crash("not yet implemented: CHARACTER(KIND=%d)", kind);
}
case TypeCategory::Logical:
switch (kind) {
case 1:
return FUNC<TypeCategory::Logical, 1>{}(std::forward<A>(x)...);
case 2:
return FUNC<TypeCategory::Logical, 2>{}(std::forward<A>(x)...);
case 4:
return FUNC<TypeCategory::Logical, 4>{}(std::forward<A>(x)...);
case 8:
return FUNC<TypeCategory::Logical, 8>{}(std::forward<A>(x)...);
default:
terminator.Crash("not yet implemented: LOGICAL(KIND=%d)", kind);
}
default:
terminator.Crash(
"not yet implemented: type category(%d)", static_cast<int>(cat));
}
}
// Maps a runtime INTEGER kind value to the appropriate instantiation of
// a function object template and calls it with the supplied arguments.
template <template <int KIND> class FUNC, typename RESULT, typename... A>
inline RT_API_ATTRS RESULT ApplyIntegerKind(
int kind, Terminator &terminator, A &&...x) {
switch (kind) {
case 1:
return FUNC<1>{}(std::forward<A>(x)...);
case 2:
return FUNC<2>{}(std::forward<A>(x)...);
case 4:
return FUNC<4>{}(std::forward<A>(x)...);
case 8:
return FUNC<8>{}(std::forward<A>(x)...);
#if defined __SIZEOF_INT128__ && !AVOID_NATIVE_UINT128_T
case 16:
return FUNC<16>{}(std::forward<A>(x)...);
#endif
default:
terminator.Crash("not yet implemented: INTEGER(KIND=%d)", kind);
}
}
template <template <int KIND> class FUNC, typename RESULT, typename... A>
inline RT_API_ATTRS RESULT ApplyFloatingPointKind(
int kind, Terminator &terminator, A &&...x) {
switch (kind) {
#if 0 // TODO: REAL/COMPLEX (2 & 3)
case 2:
return FUNC<2>{}(std::forward<A>(x)...);
case 3:
return FUNC<3>{}(std::forward<A>(x)...);
#endif
case 4:
return FUNC<4>{}(std::forward<A>(x)...);
case 8:
return FUNC<8>{}(std::forward<A>(x)...);
case 10:
if constexpr (HasCppTypeFor<TypeCategory::Real, 10>) {
return FUNC<10>{}(std::forward<A>(x)...);
}
break;
case 16:
if constexpr (HasCppTypeFor<TypeCategory::Real, 16>) {
return FUNC<16>{}(std::forward<A>(x)...);
}
break;
}
terminator.Crash("not yet implemented: REAL/COMPLEX(KIND=%d)", kind);
}
template <template <int KIND> class FUNC, typename RESULT, typename... A>
inline RT_API_ATTRS RESULT ApplyCharacterKind(
int kind, Terminator &terminator, A &&...x) {
switch (kind) {
case 1:
return FUNC<1>{}(std::forward<A>(x)...);
case 2:
return FUNC<2>{}(std::forward<A>(x)...);
case 4:
return FUNC<4>{}(std::forward<A>(x)...);
default:
terminator.Crash("not yet implemented: CHARACTER(KIND=%d)", kind);
}
}
template <template <int KIND> class FUNC, typename RESULT, typename... A>
inline RT_API_ATTRS RESULT ApplyLogicalKind(
int kind, Terminator &terminator, A &&...x) {
switch (kind) {
case 1:
return FUNC<1>{}(std::forward<A>(x)...);
case 2:
return FUNC<2>{}(std::forward<A>(x)...);
case 4:
return FUNC<4>{}(std::forward<A>(x)...);
case 8:
return FUNC<8>{}(std::forward<A>(x)...);
default:
terminator.Crash("not yet implemented: LOGICAL(KIND=%d)", kind);
}
}
// Calculate result type of (X op Y) for *, //, DOT_PRODUCT, &c.
std::optional<std::pair<TypeCategory, int>> inline constexpr GetResultType(
TypeCategory xCat, int xKind, TypeCategory yCat, int yKind) {
int maxKind{std::max(xKind, yKind)};
switch (xCat) {
case TypeCategory::Integer:
switch (yCat) {
case TypeCategory::Integer:
return std::make_pair(TypeCategory::Integer, maxKind);
case TypeCategory::Real:
case TypeCategory::Complex:
#if !(defined __SIZEOF_INT128__ && !AVOID_NATIVE_UINT128_T)
if (xKind == 16) {
break;
}
#endif
return std::make_pair(yCat, yKind);
default:
break;
}
break;
case TypeCategory::Real:
switch (yCat) {
case TypeCategory::Integer:
#if !(defined __SIZEOF_INT128__ && !AVOID_NATIVE_UINT128_T)
if (yKind == 16) {
break;
}
#endif
return std::make_pair(TypeCategory::Real, xKind);
case TypeCategory::Real:
case TypeCategory::Complex:
return std::make_pair(yCat, maxKind);
default:
break;
}
break;
case TypeCategory::Complex:
switch (yCat) {
case TypeCategory::Integer:
#if !(defined __SIZEOF_INT128__ && !AVOID_NATIVE_UINT128_T)
if (yKind == 16) {
break;
}
#endif
return std::make_pair(TypeCategory::Complex, xKind);
case TypeCategory::Real:
case TypeCategory::Complex:
return std::make_pair(TypeCategory::Complex, maxKind);
default:
break;
}
break;
case TypeCategory::Character:
if (yCat == TypeCategory::Character) {
return std::make_pair(TypeCategory::Character, maxKind);
} else {
return std::nullopt;
}
case TypeCategory::Logical:
if (yCat == TypeCategory::Logical) {
return std::make_pair(TypeCategory::Logical, maxKind);
} else {
return std::nullopt;
}
default:
break;
}
return std::nullopt;
}
// Accumulate floating-point results in (at least) double precision
template <TypeCategory CAT, int KIND>
using AccumulationType = CppTypeFor<CAT,
CAT == TypeCategory::Real || CAT == TypeCategory::Complex
? std::max(KIND, static_cast<int>(sizeof(double)))
: KIND>;
// memchr() for any character type
template <typename CHAR>
static inline const CHAR *FindCharacter(
const CHAR *data, CHAR ch, std::size_t chars) {
const CHAR *end{data + chars};
for (const CHAR *p{data}; p < end; ++p) {
if (*p == ch) {
return p;
}
}
return nullptr;
}
template <>
inline const char *FindCharacter(const char *data, char ch, std::size_t chars) {
return reinterpret_cast<const char *>(
std::memchr(data, static_cast<int>(ch), chars));
}
} // namespace Fortran::runtime
#endif // FORTRAN_RUNTIME_TOOLS_H_
|