1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
! RUN: %python %S/test_folding.py %s %flang_fc1
! Check intrinsic function folding with host runtime library
module m
real(2), parameter :: eps2 = 0.001_2
real(2), parameter :: eps3 = 0.001_3
real(4), parameter :: eps4 = 0.000001_4
real(8), parameter :: eps8 = 0.000000000000001_8
! These eps have been set so that constant folding of intrinsic
! functions that use host runtime can be tested independently of
! the underlying math library used.
! C++ <cmath> and libpgmath precise, relaxed and fast libraries pass the test.
! It may have to be relaxed to pass on all architectures.
! The purpose is to check that the "correct" runtime functions are mapped
! to intrinsic functions but not to test the stability between different libraries.
! The eps should just be low enough to give confidence that intrinsic
! functions are mapped to runtime functions implementing the same math
! function.
! Compared values were selected to be around 1 +/- 0.5 so that eps is meaningful.
! Expected values come from libpgmath-precise for Real(4) and Real(8) and
! were computed on X86_64.
logical, parameter :: test_sign_i4 = sign(1_4,2) == 1_4 .and. sign(1_4,-3_8) == -1_4
logical, parameter :: test_sign_i8 = sign(1_8,2) == 1_8 .and. sign(1_8,-3_8) == -1_8
! Real scalar intrinsic function tests
#define TEST_FLOATING(name, result, expected, t, k) \
t(kind = k), parameter ::res_##name##_##t##k = result; \
t(kind = k), parameter ::exp_##name##_##t##k = expected; \
logical, parameter ::test_##name##_##t##k = abs(res_##name##_##t##k - exp_##name##_##t##k).LE.(eps##k)
#define TEST_R2(name, result, expected) TEST_FLOATING(name, result, expected, real, 2)
#define TEST_R3(name, result, expected) TEST_FLOATING(name, result, expected, real, 3)
#define TEST_R4(name, result, expected) TEST_FLOATING(name, result, expected, real, 4)
#define TEST_R8(name, result, expected) TEST_FLOATING(name, result, expected, real, 8)
#define TEST_C4(name, result, expected) TEST_FLOATING(name, result, expected, complex, 4)
#define TEST_C8(name, result, expected) TEST_FLOATING(name, result, expected, complex, 8)
! REAL(4) tests.
logical, parameter :: test_abs_r4 = abs(-2._4).EQ.(2._4)
TEST_R4(acos, acos(0.5_4), 1.0471975803375244140625_4)
TEST_R4(acosh, acosh(1.5_4), 0.96242368221282958984375_4)
logical, parameter :: test_aint1 = aint(2.783).EQ.(2.)
logical, parameter :: test_anint1 = anint(2.783).EQ.(3.)
logical, parameter :: test_floor1 = floor(-2.783).EQ.(-3.)
logical, parameter :: test_floor2 = floor(2.783).EQ.(2.)
logical, parameter :: test_ceiling1 = ceiling(-2.783).EQ.(-2.)
logical, parameter :: test_ceiling2 = ceiling(2.783).EQ.(3.)
TEST_R4(asin, asin(0.9_4), 1.11976945400238037109375_4)
TEST_R4(asinh, asinh(1._4), 0.881373584270477294921875_4)
TEST_R4(atan, atan(1.5_4), 0.982793748378753662109375_4)
TEST_R4(atan2, atan2(1.5_4, 1._4), 0.982793748378753662109375_4)
TEST_R4(atan_2, atan(1.5_4, 1._4), 0.982793748378753662109375_4)
TEST_R4(atanh, atanh(0.8_4), 1.098612308502197265625_4)
TEST_R4(cos, cos(0.5_4), 0.877582550048828125_4)
TEST_R4(cosh, cosh(0.1_4), 1.0050041675567626953125_4)
TEST_R4(erf, erf(1._4), 0.842700779438018798828125_4)
TEST_R4(erfc, erfc(0.1_4), 0.887537062168121337890625_4)
TEST_R4(exp, exp(0.1_4), 1.1051709651947021484375_4)
TEST_R4(gamma, gamma(0.9_4), 1.06862866878509521484375_4)
TEST_R4(hypot, hypot(1.1_4, 0.1_4), 1.10453617572784423828125_4)
TEST_R4(log, log(3._4), 1.098612308502197265625_4)
TEST_R4(log10, log10(10.5_4), 1.02118933200836181640625_4)
TEST_R4(log_gamma, log_gamma(3.5_4), 1.20097362995147705078125_4)
TEST_R4(mod, mod(-8.1_4, 5._4), (-3.1000003814697265625_4))
TEST_R4(real, real(z'3f800000'), 1._4)
logical, parameter :: test_sign_r4 = sign(1._4,2._8) == 1._4 .and. sign(1._4,-2._4) == -1._4
TEST_R4(sin, sin(1.6_4), 0.99957358837127685546875_4)
TEST_R4(sinh, sinh(0.9_4), 1.0265166759490966796875_4)
TEST_R4(sqrt, sqrt(1.1_4), 1.0488088130950927734375_4)
TEST_R4(tan, tan(0.8_4), 1.0296385288238525390625_4)
TEST_R4(tanh, tanh(3._4), 0.995054781436920166015625_4)
! REAL(8) tests.
logical, parameter :: test_abs_r8 = abs(-2._8).EQ.(2._8)
TEST_R8(acos, acos(0.5_8), &
1.047197551196597853362391106202267110347747802734375_8)
TEST_R8(acosh, acosh(1.5_8), &
0.9624236501192069415111518537742085754871368408203125_8)
TEST_R8(asin, asin(0.9_8), &
1.119769514998634196700777465594001114368438720703125_8)
TEST_R8(asinh, asinh(1._8), &
0.88137358701954304773806825323845259845256805419921875_8)
TEST_R8(atan, atan(1.5_8), &
0.98279372324732905408239957978366874158382415771484375_8)
TEST_R8(atan2, atan2(1.5_8, 1._8), &
0.98279372324732905408239957978366874158382415771484375_8)
TEST_R8(atan_2, atan(1.5_8, 1._8), &
0.98279372324732905408239957978366874158382415771484375_8)
TEST_R8(atanh, atanh(0.8_8), &
1.0986122886681097821082175869378261268138885498046875_8)
TEST_R8(cos, cos(0.5_8), &
0.8775825618903727587394314468838274478912353515625_8)
TEST_R8(cosh, cosh(0.1_8), &
1.0050041680558035039894093642942607402801513671875_8)
TEST_R8(erf, erf(1._8), &
0.84270079294971489414223242420121096074581146240234375_8)
TEST_R8(erfc, erfc(0.1_8), &
0.8875370839817151580319887216319330036640167236328125_8)
TEST_R8(exp, exp(0.1_8), &
1.10517091807564771244187795673497021198272705078125_8)
TEST_R8(gamma, gamma(0.9_8), &
1.0686287021193192625645451698801480233669281005859375_8)
TEST_R8(hypot, hypot(1.1_8, 0.1_8), &
1.1045361017187260710414875575224868953227996826171875_8)
TEST_R8(log, log(3._8), &
1.0986122886681097821082175869378261268138885498046875_8)
TEST_R8(log10, log10(10.5_8), &
1.0211892990699380501240511875948868691921234130859375_8)
TEST_R8(log_gamma, log_gamma(3.5_8), &
1.200973602347074287166606154642067849636077880859375_8)
TEST_R8(mod, mod(-8.1_8, 5._8), &
(-3.0999999999999996447286321199499070644378662109375_8))
TEST_R8(real, real(z'3ff0000000000000',8), 1._8)
logical, parameter :: test_sign_r8 = sign(1._8,2._8) == 1._8 .and. sign(1._8,-2._4) == -1._8
TEST_R8(sin, sin(1.6_8), &
0.99957360304150510987852840116829611361026763916015625_8)
TEST_R8(sinh, sinh(0.9_8), &
1.0265167257081753149350333842448890209197998046875_8)
TEST_R8(sqrt, sqrt(1.1_8), &
1.048808848170151630796453900984488427639007568359375_8)
TEST_R8(tan, tan(0.8_8), &
1.0296385570503641115891468871268443763256072998046875_8)
TEST_R8(tanh, tanh(3._8), &
0.995054753686730464323773048818111419677734375_8)
! COMPLEX(4) tests.
logical, parameter :: test_abs_c4 = abs(abs((1.1_4, 0.1_4)) &
- 1.10453617572784423828125_4).LE.(eps4)
TEST_C4(acos, acos((0.7_4, 1.1_4)), &
(1.11259567737579345703125_4, -1.03283786773681640625_4))
TEST_C4(acosh, acosh((0.7_4, 1.1_4)), &
(1.03283774852752685546875_4, 1.11259555816650390625_4))
TEST_C4(asin, asin((1.4_4, 0.7_4)), &
(1.0101039409637451171875_4,1.08838176727294921875_4))
TEST_C4(asinh, asinh((0.7_4, 1.4_4)), &
(1.08838176727294921875_4,1.0101039409637451171875_4))
TEST_C4(atan, atan((0.2_4, 1.1_4)), &
(1.06469786167144775390625_4,1.12215900421142578125_4))
TEST_C4(atanh, atanh((1.1_4, 0.2_4)), &
(1.12215900421142578125_4,1.06469786167144775390625_4))
TEST_C4(cmplx, cmplx(z'bf800000',z'3f000000'), (-1._4,0.5_4))
TEST_C4(cos, cos((0.9_4, 1.1_4)), &
(1.0371677875518798828125_4,(-1.0462486743927001953125_4)))
TEST_C4(cosh, cosh((1.1_4, 0.9_4)), &
(1.0371677875518798828125_4,1.0462486743927001953125_4))
TEST_C4(exp, exp((0.4_4, 0.8_4)), &
(1.039364337921142578125_4,1.07016956806182861328125_4))
TEST_C4(log, log((1.5_4, 2.5_4)), &
(1.07003307342529296875_4,1.03037679195404052734375_4))
TEST_C4(sin, sin((0.7_4, 1.1_4)), &
(1.07488918304443359375_4,1.02155959606170654296875_4))
TEST_C4(sinh, sinh((1.1_4, 0.7_4)), &
(1.02155959606170654296875_4,1.07488918304443359375_4))
TEST_C4(sqrt, sqrt((0.1_4, 2.1_4)), &
(1.04937589168548583984375_4,1.00059473514556884765625_4))
TEST_C4(tan, tan((1.1_4, 0.4_4)), &
(1.07952976226806640625_4,1.1858270168304443359375_4))
TEST_C4(tanh, tanh((0.4_4, 1.1_4)), &
(1.1858270168304443359375_4,1.07952976226806640625_4))
! COMPLEX(8) tests.
logical, parameter :: test_abs_c8 = abs(abs((1.1_8, 0.1_8)) &
- 1.1045361017187260710414875575224868953227996826171875_8).LE.(eps4)
TEST_C8(acos, acos((0.7_8, 1.1_8)), &
(1.1125956244800556671492586247040890157222747802734375_8, &
(-1.032837729564676454430127705563791096210479736328125_8)))
TEST_C8(acosh, acosh((0.7_8, 1.1_8)), &
(1.0328377295646762323855227805324830114841461181640625_8, &
(1.1125956244800558891938635497353971004486083984375_8)))
TEST_C8(asin, asin((1.4_8, 0.7_8)), &
(1.010103922959187716656970223993994295597076416015625_8, &
(1.088381716746653626870511288871057331562042236328125_8)))
TEST_C8(asinh, asinh((0.7_8, 1.4_8)), &
(1.088381716746653626870511288871057331562042236328125_8, &
(1.0101039229591874946123652989626862108707427978515625_8)))
TEST_C8(atan, atan((0.2_8, 1.1_8)), &
(1.064697821069229721757665174663998186588287353515625_8, &
(1.122159092433034910385458715609274804592132568359375_8)))
TEST_C8(atanh, atanh((1.1_8, 0.2_8)), &
(1.122159092433034910385458715609274804592132568359375_8, &
(1.064697821069229721757665174663998186588287353515625_8)))
TEST_C8(cmplx, cmplx(z'bff0000000000000', kind=8), (-1._8,0))
TEST_C8(cos, cos((0.9_8, 1.1_8)), &
(1.03716776530046761450876147137023508548736572265625_8, &
(-1.0462486051241379758636185215436853468418121337890625_8)))
TEST_C8(cosh, cosh((1.1_8, 0.9_8)), &
(1.03716776530046761450876147137023508548736572265625_8, &
(1.0462486051241379758636185215436853468418121337890625_8)))
TEST_C8(exp, exp((0.4_8, 0.8_8)), &
(1.039364276016479404773917849524877965450286865234375_8, &
(1.0701695334073042520373064689920283854007720947265625_8)))
TEST_C8(log, log((1.5_8, 2.5_8)), &
(1.070033081748135384003717263112775981426239013671875_8, &
(1.0303768265243125057395445764996111392974853515625_8)))
TEST_C8(sin, sin((0.7_8, 1.1_8)), &
(1.0748891638565509776270801012287847697734832763671875_8, &
(1.0215595324907689178672853813623078167438507080078125_8)))
TEST_C8(sinh, sinh((1.1_8, 0.7_8)), &
(1.0215595324907689178672853813623078167438507080078125_8, &
(1.0748891638565509776270801012287847697734832763671875_8)))
TEST_C8(sqrt, sqrt((0.1_8, 2.1_8)), &
(1.04937591075907210580453465809114277362823486328125_8, &
(1.0005947241922830059472419228351358112816260614863494993187487125396728515625_8)))
TEST_C8(tan, tan((1.1_8, 0.4_8)), &
(1.07952982287592025301137255155481398105621337890625_8, &
(1.1858270353667335061942367246956564486026763916015625_8)))
TEST_C8(tanh, tanh((0.4_8, 1.1_8)), &
(1.1858270353667335061942367246956564486026763916015625_8, &
(1.07952982287592025301137255155481398105621337890625_8)))
! Only test a few REAL(2)/REAL(3) cases since they anyway use the real 4
! runtime mapping.
TEST_R2(acos, acos(0.5_2), 1.046875_2)
TEST_R2(atan2, atan2(1.5_2, 1._2), 9.8291015625e-1_2)
TEST_R3(acos, acos(0.5_3), 1.046875_3)
TEST_R3(atan2, atan2(1.3_2, 1._3), 9.140625e-1_3)
#ifdef TEST_LIBPGMATH
! Bessel functions and erfc_scaled can only be folded if libpgmath
! is used.
TEST_R4(bessel_j0, bessel_j0(0.5_4), 0.938469827175140380859375_4)
TEST_R4(bessel_j1, bessel_j1(1.8_4), 0.5815169811248779296875_4)
TEST_R4(bessel_jn, bessel_jn(2, 3._4), 0.4860912859439849853515625_4)
TEST_R4(bessel_y0, bessel_y0(2._4), 0.510375678539276123046875_4)
TEST_R4(bessel_y1, bessel_y1(1._4), (-0.78121280670166015625_4))
TEST_R4(bessel_yn, bessel_yn(2, 1.5_4), (-0.932193756103515625_4))
TEST_R4(erfc_scaled, erfc_scaled(0.1_4), 0.8964569568634033203125_4)
TEST_R8(bessel_j0, bessel_j0(0.5_8), &
0.938469807240812858850631528184749186038970947265625_8)
TEST_R8(bessel_j1, bessel_j1(1.8_8), &
0.5815169517311653546443039886071346700191497802734375_8)
TEST_R8(bessel_jn, bessel_jn(2, 3._8), &
0.486091260585891082879328450871980749070644378662109375_8)
TEST_R8(bessel_y0, bessel_y0(2._8), &
0.51037567264974514902320379405864514410495758056640625_8)
TEST_R8(bessel_y1, bessel_y1(1._8), &
(-0.781212821300288684511770043172873556613922119140625_8))
TEST_R8(bessel_yn, bessel_yn(2, 1.5_8), &
(-0.93219375976297402797143831776338629424571990966796875_8))
TEST_R8(erfc_scaled, erfc_scaled(0.1_8), &
0.89645697996912654392787089818739332258701324462890625_8)
real(4), parameter :: bessel_jn_transformational(*) = bessel_jn(1,3, 3.2_4)
logical, parameter :: test_bessel_jn_shape = size(bessel_jn_transformational, 1).eq.3
logical, parameter :: test_bessel_jn_t1 = bessel_jn_transformational(1).eq.bessel_jn(1, 3.2_4)
logical, parameter :: test_bessel_jn_t2 = bessel_jn_transformational(2).eq.bessel_jn(2, 3.2_4)
logical, parameter :: test_bessel_jn_t3 = bessel_jn_transformational(3).eq.bessel_jn(3, 3.2_4)
real(4), parameter :: bessel_jn_empty(*) = bessel_jn(3,1, 3.2_4)
logical, parameter :: test_bessel_jn_empty = size(bessel_jn_empty, 1).eq.0
real(4), parameter :: bessel_yn_transformational(*) = bessel_yn(1,3, 1.6_4)
logical, parameter :: test_bessel_yn_shape = size(bessel_yn_transformational, 1).eq.3
logical, parameter :: test_bessel_yn_t1 = bessel_yn_transformational(1).eq.bessel_yn(1, 1.6_4)
logical, parameter :: test_bessel_yn_t2 = bessel_yn_transformational(2).eq.bessel_yn(2, 1.6_4)
logical, parameter :: test_bessel_yn_t3 = bessel_yn_transformational(3).eq.bessel_yn(3, 1.6_4)
real(4), parameter :: bessel_yn_empty(*) = bessel_yn(3,1, 3.2_4)
logical, parameter :: test_bessel_yn_empty = size(bessel_yn_empty, 1).eq.0
#endif
! Test exponentiation by real or complex folding (it is using host runtime)
TEST_R4(pow, (0.5_4**3.14_4), 1.134398877620697021484375e-1_4)
TEST_R8(pow, (0.5_8**3.14_8), &
1.1343989441464509548840311481399112381041049957275390625e-1_8)
TEST_C4(pow, ((0.5_4, 0.6_4)**(0.74_4, -1.1_4)), &
(1.32234990596771240234375_4,1.73712027072906494140625_4))
TEST_C8(pow, ((0.5_8, 0.6_8)**(0.74_8, -1.1_8)), &
(1.3223499632715445262221010125358588993549346923828125_8, &
1.7371201007364975854585509296157397329807281494140625_8))
! Extension specific intrinsic variants of ABS
logical, parameter, test_babs1 = kind(babs(-1_1)) == 1
logical, parameter, test_babs2 = babs(-1_1) == 1_1
logical, parameter, test_iiabs1 = kind(iiabs(-1_2)) == 2
logical, parameter, test_iiabs2 = iiabs(-1_2) == 1_2
logical, parameter, test_jiabs1 = kind(jiabs(-1_4)) == 4
logical, parameter, test_jiabs2 = jiabs(-1_4) == 1_4
logical, parameter, test_kiabs1 = kind(kiabs(-1_8)) == 8
logical, parameter, test_kiabs2 = kiabs(-1_8) == 1_8
logical, parameter, test_zabs1 = kind(zabs((3._8,4._8))) == 8
logical, parameter, test_zabs2 = zabs((3._8,4._8)) == 5_8
logical, parameter, test_cdabs1 = kind(cdabs((3._8,4._8))) == kind(1.d0)
logical, parameter, test_cdabs2 = cdabs((3._8,4._8)) == real(5, kind(1.d0))
end
|