File: stack-arrays.fir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (374 lines) | stat: -rw-r--r-- 13,343 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
// RUN: fir-opt --stack-arrays %s | FileCheck %s

// Simplest transformation
func.func @simple() {
  %0 = fir.allocmem !fir.array<42xi32>
  fir.freemem %0 : !fir.heap<!fir.array<42xi32>>
  return
}
// CHECK: func.func @simple() {
// CHECK-NEXT: fir.alloca !fir.array<42xi32>
// CHECK-NEXT: return
// CHECK-NEXT: }

// Check fir.must_be_heap allocations are not moved
func.func @must_be_heap() {
  %0 = fir.allocmem !fir.array<42xi32> {fir.must_be_heap = true}
  fir.freemem %0 : !fir.heap<!fir.array<42xi32>>
  return
}
// CHECK:      func.func @must_be_heap() {
// CHECK-NEXT:   %[[ALLOC:.*]] = fir.allocmem !fir.array<42xi32> {fir.must_be_heap = true}
// CHECK-NEXT:   fir.freemem %[[ALLOC]] : !fir.heap<!fir.array<42xi32>>
// CHECK-NEXT:   return
// CHECK-NEXT: }

// Check the data-flow-analysis can detect cases where we aren't sure if memory
// is freed by the end of the function
func.func @dfa1(%arg0: !fir.ref<!fir.logical<4>> {fir.bindc_name = "cond"}) {
  %7 = arith.constant 42 : index
  %8 = fir.allocmem !fir.array<?xi32>, %7 {uniq_name = "_QFdfa1Earr.alloc"}
  %9 = fir.load %arg0 : !fir.ref<!fir.logical<4>>
  %10 = fir.convert %9 : (!fir.logical<4>) -> i1
  fir.if %10 {
    fir.freemem %8 : !fir.heap<!fir.array<?xi32>>
  } else {
  }
  return
}
// CHECK:      func.func @dfa1(%arg0: !fir.ref<!fir.logical<4>> {fir.bindc_name = "cond"}) {
// CHECK-NEXT:   %[[C42:.*]] = arith.constant 42 : index
// CHECK-NEXT:   %[[MEM:.*]] = fir.allocmem !fir.array<?xi32>, %[[C42]] {uniq_name = "_QFdfa1Earr.alloc"}
// CHECK-NEXT:   %[[LOGICAL:.*]] = fir.load %arg0 : !fir.ref<!fir.logical<4>>
// CHECK-NEXT:   %[[BOOL:.*]] = fir.convert %[[LOGICAL]] : (!fir.logical<4>) -> i1
// CHECK-NEXT:   fir.if %[[BOOL]] {
// CHECK-NEXT:     fir.freemem %[[MEM]] : !fir.heap<!fir.array<?xi32>>
// CHECK-NEXT:   } else {
// CHECK-NEXT:   }
// CHECK-NEXT:   return
// CHECK-NEXT: }

// Check scf.if
func.func @dfa2(%arg0: i1) {
  %a = fir.allocmem !fir.array<1xi8>
  scf.if %arg0 {
    fir.freemem %a : !fir.heap<!fir.array<1xi8>>
  } else {
  }
  return
}
// CHECK:     func.func @dfa2(%arg0: i1) {
// CHECK-NEXT:  %[[MEM:.*]] = fir.allocmem !fir.array<1xi8>
// CHECK-NEXT:  scf.if %arg0 {
// CHECK-NEXT:    fir.freemem %[[MEM]] : !fir.heap<!fir.array<1xi8>>
// CHECK-NEXT:  } else {
// CHECK-NEXT:  }
// CHECK-NEXT:  return
// CHECK-NEXT:  }

// Check freemem in both regions
func.func @dfa3(%arg0: i1) {
  %a = fir.allocmem !fir.array<1xi8>
  fir.if %arg0 {
    fir.freemem %a : !fir.heap<!fir.array<1xi8>>
  } else {
    fir.freemem %a : !fir.heap<!fir.array<1xi8>>
  }
  return
}
// CHECK:     func.func @dfa3(%arg0: i1) {
// CHECK-NEXT:  %[[MEM:.*]] = fir.alloca !fir.array<1xi8>
// CHECK-NEXT:  fir.if %arg0 {
// CHECK-NEXT:  } else {
// CHECK-NEXT:  }
// CHECK-NEXT:  return
// CHECK-NEXT:  }

func.func private @dfa3a_foo(!fir.ref<!fir.array<1xi8>>) -> ()
func.func private @dfa3a_bar(!fir.ref<!fir.array<1xi8>>) -> ()

// Check freemem in both regions, with other uses
func.func @dfa3a(%arg0: i1) {
  %a = fir.allocmem !fir.array<1xi8>
  fir.if %arg0 {
    %ref = fir.convert %a : (!fir.heap<!fir.array<1xi8>>) -> !fir.ref<!fir.array<1xi8>>
    func.call @dfa3a_foo(%ref) : (!fir.ref<!fir.array<1xi8>>) -> ()
    fir.freemem %a : !fir.heap<!fir.array<1xi8>>
  } else {
    %ref = fir.convert %a : (!fir.heap<!fir.array<1xi8>>) -> !fir.ref<!fir.array<1xi8>>
    func.call @dfa3a_bar(%ref) : (!fir.ref<!fir.array<1xi8>>) -> ()
    fir.freemem %a : !fir.heap<!fir.array<1xi8>>
  }
  return
}
// CHECK:     func.func @dfa3a(%arg0: i1) {
// CHECK-NEXT:  %[[MEM:.*]] = fir.alloca !fir.array<1xi8>
// CHECK-NEXT:  %[[HEAP:.*]] = fir.convert %[[MEM]] : (!fir.ref<!fir.array<1xi8>>) -> !fir.heap<!fir.array<1xi8>>
// CHECK-NEXT:  fir.if %arg0 {
// CHECK-NEXT:    %[[REF:.*]] = fir.convert %[[HEAP]] : (!fir.heap<!fir.array<1xi8>>) -> !fir.ref<!fir.array<1xi8>>
// CHECK-NEXT:    func.call @dfa3a_foo(%[[REF]])
// CHECK-NEXT:  } else {
// CHECK-NEXT:    %[[REF:.*]] = fir.convert %[[HEAP]] : (!fir.heap<!fir.array<1xi8>>) -> !fir.ref<!fir.array<1xi8>>
// CHECK-NEXT:    func.call @dfa3a_bar(%[[REF]])
// CHECK-NEXT:  }
// CHECK-NEXT:  return
// CHECK-NEXT:  }

// check the alloca is placed after all operands become available
func.func @placement1() {
  // do some stuff with other ssa values
  %1 = arith.constant 1 : index
  %2 = arith.constant 2 : index
  %3 = arith.addi %1, %2 : index
  // operand is now available
  %4 = fir.allocmem !fir.array<?xi32>, %3
  // ...
  fir.freemem %4 : !fir.heap<!fir.array<?xi32>>
  return
}
// CHECK:      func.func @placement1() {
// CHECK-NEXT:   %[[ONE:.*]] = arith.constant 1 : index
// CHECK-NEXT:   %[[TWO:.*]] = arith.constant 2 : index
// CHECK-NEXT:   %[[ARG:.*]] = arith.addi %[[ONE]], %[[TWO]] : index
// CHECK-NEXT:   %[[MEM:.*]] = fir.alloca !fir.array<?xi32>, %[[ARG]]
// CHECK-NEXT:   return
// CHECK-NEXT: }

// check that if there are no operands, then the alloca is placed early
func.func @placement2() {
  // do some stuff with other ssa values
  %1 = arith.constant 1 : index
  %2 = arith.constant 2 : index
  %3 = arith.addi %1, %2 : index
  %4 = fir.allocmem !fir.array<42xi32>
  // ...
  fir.freemem %4 : !fir.heap<!fir.array<42xi32>>
  return
}
// CHECK:      func.func @placement2() {
// CHECK-NEXT:   %[[MEM:.*]] = fir.alloca !fir.array<42xi32>
// CHECK-NEXT:   %[[ONE:.*]] = arith.constant 1 : index
// CHECK-NEXT:   %[[TWO:.*]] = arith.constant 2 : index
// CHECK-NEXT:   %[[SUM:.*]] = arith.addi %[[ONE]], %[[TWO]] : index
// CHECK-NEXT:   return
// CHECK-NEXT: }

// check that stack allocations which must be placed in loops use stacksave
func.func @placement3() {
  %c1 = arith.constant 1 : index
  %c1_i32 = fir.convert %c1 : (index) -> i32
  %c2 = arith.constant 2 : index
  %c10 = arith.constant 10 : index
  %0:2 = fir.do_loop %arg0 = %c1 to %c10 step %c1 iter_args(%arg1 = %c1_i32) -> (index, i32) {
    %3 = arith.addi %c1, %c2 : index
    // operand is now available
    %4 = fir.allocmem !fir.array<?xi32>, %3
    // ...
    fir.freemem %4 : !fir.heap<!fir.array<?xi32>>
    fir.result %3, %c1_i32 : index, i32
  }
  return
}
// CHECK:      func.func @placement3() {
// CHECK-NEXT:   %[[C1:.*]] = arith.constant 1 : index
// CHECK-NEXT:   %[[C1_I32:.*]] = fir.convert %[[C1]] : (index) -> i32
// CHECK-NEXT:   %[[C2:.*]] = arith.constant 2 : index
// CHECK-NEXT:   %[[C10:.*]] = arith.constant 10 : index
// CHECK-NEXT:   fir.do_loop
// CHECK-NEXT:     %[[SUM:.*]] = arith.addi %[[C1]], %[[C2]] : index
// CHECK-NEXT:     %[[SP:.*]] = fir.call @llvm.stacksave() : () -> !fir.ref<i8>
// CHECK-NEXT:     %[[MEM:.*]] = fir.alloca !fir.array<?xi32>, %[[SUM]]
// CHECK-NEXT:     fir.call @llvm.stackrestore(%[[SP]])
// CHECK-NEXT:     fir.result
// CHECK-NEXT:   }
// CHECK-NEXT:   return
// CHECK-NEXT: }

// check that stack save/restore are used in CFG loops
func.func @placement4(%arg0 : i1) {
  %c1 = arith.constant 1 : index
  %c1_i32 = fir.convert %c1 : (index) -> i32
  %c2 = arith.constant 2 : index
  %c10 = arith.constant 10 : index
  cf.br ^bb1
^bb1:
  %3 = arith.addi %c1, %c2 : index
  // operand is now available
  %4 = fir.allocmem !fir.array<?xi32>, %3
  // ...
  fir.freemem %4 : !fir.heap<!fir.array<?xi32>>
  cf.cond_br %arg0, ^bb1, ^bb2
^bb2:
  return
}
// CHECK:      func.func @placement4(%arg0: i1) {
// CHECK-NEXT:   %[[C1:.*]] = arith.constant 1 : index
// CHECK-NEXT:   %[[C1_I32:.*]] = fir.convert %[[C1]] : (index) -> i32
// CHECK-NEXT:   %[[C2:.*]] = arith.constant 2 : index
// CHECK-NEXT:   %[[C10:.*]] = arith.constant 10 : index
// CHECK-NEXT:   cf.br ^bb1
// CHECK-NEXT: ^bb1:
// CHECK-NEXT:   %[[SUM:.*]] = arith.addi %[[C1]], %[[C2]] : index
// CHECK-NEXT:   %[[SP:.*]] = fir.call @llvm.stacksave() : () -> !fir.ref<i8>
// CHECK-NEXT:   %[[MEM:.*]] = fir.alloca !fir.array<?xi32>, %[[SUM]]
// CHECK-NEXT:   fir.call @llvm.stackrestore(%[[SP]]) : (!fir.ref<i8>) -> ()
// CHECK-NEXT:   cf.cond_br %arg0, ^bb1, ^bb2
// CHECK-NEXT: ^bb2:
// CHECK-NEXT:   return
// CHECK-NEXT: }

// check that stacksave is not used when there is an intervening alloca
func.func @placement5() {
  %c1 = arith.constant 1 : index
  %c1_i32 = fir.convert %c1 : (index) -> i32
  %c2 = arith.constant 2 : index
  %c10 = arith.constant 10 : index
  %0:2 = fir.do_loop %arg0 = %c1 to %c10 step %c1 iter_args(%arg1 = %c1_i32) -> (index, i32) {
    %3 = arith.addi %c1, %c2 : index
    // operand is now available
    %4 = fir.allocmem !fir.array<?xi32>, %3
    %5 = fir.alloca i32
    fir.freemem %4 : !fir.heap<!fir.array<?xi32>>
    fir.result %3, %c1_i32 : index, i32
  }
  return
}
// CHECK:      func.func @placement5() {
// CHECK-NEXT:   %[[C1:.*]] = arith.constant 1 : index
// CHECK-NEXT:   %[[C1_I32:.*]] = fir.convert %[[C1]] : (index) -> i32
// CHECK-NEXT:   %[[C2:.*]] = arith.constant 2 : index
// CHECK-NEXT:   %[[C10:.*]] = arith.constant 10 : index
// CHECK-NEXT:   fir.do_loop
// CHECK-NEXT:     %[[SUM:.*]] = arith.addi %[[C1]], %[[C2]] : index
// CHECK-NEXT:     %[[MEM:.*]] = fir.allocmem !fir.array<?xi32>, %[[SUM]]
// CHECK-NEXT:     %[[IDX:.*]] = fir.alloca i32
// CHECK-NEXT:     fir.freemem %[[MEM]] : !fir.heap<!fir.array<?xi32>>
// CHECK-NEXT:     fir.result
// CHECK-NEXT:   }
// CHECK-NEXT:   return
// CHECK-NEXT: }

// check that stack save/restore are not used when the memalloc and freemem are
// in different blocks
func.func @placement6(%arg0: i1) {
  %c1 = arith.constant 1 : index
  %c1_i32 = fir.convert %c1 : (index) -> i32
  %c2 = arith.constant 2 : index
  %c10 = arith.constant 10 : index
  cf.br ^bb1
^bb1:
  %3 = arith.addi %c1, %c2 : index
  // operand is now available
  %4 = fir.allocmem !fir.array<?xi32>, %3
  // ...
  cf.cond_br %arg0, ^bb2, ^bb3
^bb2:
  // ...
  fir.freemem %4 : !fir.heap<!fir.array<?xi32>>
  cf.br ^bb1
^bb3:
  // ...
  fir.freemem %4 : !fir.heap<!fir.array<?xi32>>
  cf.br ^bb1
}
// CHECK:      func.func @placement6(%arg0: i1) {
// CHECK-NEXT:   %[[c1:.*]] = arith.constant 1 : index
// CHECK-NEXT:   %[[c1_i32:.*]] = fir.convert %[[c1]] : (index) -> i32
// CHECK-NEXT:   %[[c2:.*]] = arith.constant 2 : index
// CHECK-NEXT:   %[[c10:.*]] = arith.constant 10 : index
// CHECK-NEXT:   cf.br ^bb1
// CHECK-NEXT: ^bb1:
// CHECK-NEXT:   %[[ADD:.*]] = arith.addi %[[c1]], %[[c2]] : index
// CHECK-NEXT:   %[[MEM:.*]] = fir.allocmem !fir.array<?xi32>, %[[ADD]]
// CHECK-NEXT:   cf.cond_br %arg0, ^bb2, ^bb3
// CHECK-NEXT: ^bb2:
// CHECK-NEXT:   fir.freemem %[[MEM]] : !fir.heap<!fir.array<?xi32>>
// CHECK-NEXT:   cf.br ^bb1
// CHECK-NEXT: ^bb3:
// CHECK-NEXT:   fir.freemem %[[MEM]] : !fir.heap<!fir.array<?xi32>>
// CHECK-NEXT:   cf.br ^bb1
// CHECK-NEXT: }

// Check multiple returns, where the memory is always freed
func.func @returns(%arg0: i1) {
  %0 = fir.allocmem !fir.array<42xi32>
  cf.cond_br %arg0, ^bb1, ^bb2
^bb1:
  fir.freemem %0 : !fir.heap<!fir.array<42xi32>>
  return
^bb2:
  fir.freemem %0 : !fir.heap<!fir.array<42xi32>>
  return
}
// CHECK:      func.func @returns(%[[COND:.*]]: i1) {
// CHECK-NEXT:   %[[ALLOC:.*]] = fir.alloca !fir.array<42xi32>
// CHECK-NEXT:   cf.cond_br %[[COND]], ^bb1, ^bb2
// CHECK-NEXT: ^bb1:
// CHECK-NEXT:   return
// CHECK-NEXT: ^bb2:
// CHECK-NEXT:   return
// CHECK-NEXT: }

// Check multiple returns, where the memory is not freed on one branch
func.func @returns2(%arg0: i1) {
  %0 = fir.allocmem !fir.array<42xi32>
  cf.cond_br %arg0, ^bb1, ^bb2
^bb1:
  fir.freemem %0 : !fir.heap<!fir.array<42xi32>>
  return
^bb2:
  return
}
// CHECK:      func.func @returns2(%[[COND:.*]]: i1) {
// CHECK-NEXT:   %[[ALLOC:.*]] = fir.allocmem !fir.array<42xi32>
// CHECK-NEXT:   cf.cond_br %[[COND]], ^bb1, ^bb2
// CHECK-NEXT: ^bb1:
// CHECK-NEXT:   fir.freemem %[[ALLOC]] : !fir.heap<!fir.array<42xi32>>
// CHECK-NEXT:   return
// CHECK-NEXT: ^bb2:
// CHECK-NEXT:   return
// CHECK-NEXT: }

// Check allocations are not moved outside of an omp region
func.func @omp_placement1() {
  omp.sections {
    omp.section {
      %mem = fir.allocmem !fir.array<42xi32>
      fir.freemem %mem : !fir.heap<!fir.array<42xi32>>
      omp.terminator
    }
    omp.terminator
  }
  return
}
// CHECK:      func.func @omp_placement1() {
// CHECK-NEXT:   omp.sections {
// CHECK-NEXT:     omp.section {
// CHECK-NEXT:       %[[MEM:.*]] = fir.allocmem !fir.array<42xi32>
// TODO: this allocation should be moved to the stack. Unfortunately, the data
// flow analysis fails to propogate the lattice out of the omp region to the
// return satement.
// CHECK-NEXT:       fir.freemem %[[MEM]] : !fir.heap<!fir.array<42xi32>>
// CHECK-NEXT:       omp.terminator
// CHECK-NEXT:     }
// CHECK-NEXT:     omp.terminator
// CHECK-NEXT:   }
// CHECK-NEXT:   return
// CHECK-NEXT: }

// function terminated by stop statement
func.func @stop_terminator() {
  %0 = fir.allocmem !fir.array<42xi32>
  fir.freemem %0 : !fir.heap<!fir.array<42xi32>>
  %c0_i32 = arith.constant 0 : i32
  %false = arith.constant false
  %none = fir.call @_FortranAStopStatement(%c0_i32, %false, %false) : (i32, i1, i1) -> none
  fir.unreachable
}
// CHECK: func.func @stop_terminator() {
// CHECK-NEXT: fir.alloca !fir.array<42xi32>
// CHECK-NEXT:  %[[ZERO:.*]] = arith.constant 0 : i32
// CHECK-NEXT:  %[[FALSE:.*]] = arith.constant false
// CHECK-NEXT:  %[[NONE:.*]] = fir.call @_FortranAStopStatement(%[[ZERO]], %[[FALSE]], %[[FALSE]]) : (i32, i1, i1) -> none
// CHECK-NEXT:  fir.unreachable
// CHECK-NEXT: }