1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
// RUN: fir-opt --stack-arrays %s | FileCheck %s
// Simplest transformation
func.func @simple() {
%0 = fir.allocmem !fir.array<42xi32>
fir.freemem %0 : !fir.heap<!fir.array<42xi32>>
return
}
// CHECK: func.func @simple() {
// CHECK-NEXT: fir.alloca !fir.array<42xi32>
// CHECK-NEXT: return
// CHECK-NEXT: }
// Check fir.must_be_heap allocations are not moved
func.func @must_be_heap() {
%0 = fir.allocmem !fir.array<42xi32> {fir.must_be_heap = true}
fir.freemem %0 : !fir.heap<!fir.array<42xi32>>
return
}
// CHECK: func.func @must_be_heap() {
// CHECK-NEXT: %[[ALLOC:.*]] = fir.allocmem !fir.array<42xi32> {fir.must_be_heap = true}
// CHECK-NEXT: fir.freemem %[[ALLOC]] : !fir.heap<!fir.array<42xi32>>
// CHECK-NEXT: return
// CHECK-NEXT: }
// Check the data-flow-analysis can detect cases where we aren't sure if memory
// is freed by the end of the function
func.func @dfa1(%arg0: !fir.ref<!fir.logical<4>> {fir.bindc_name = "cond"}) {
%7 = arith.constant 42 : index
%8 = fir.allocmem !fir.array<?xi32>, %7 {uniq_name = "_QFdfa1Earr.alloc"}
%9 = fir.load %arg0 : !fir.ref<!fir.logical<4>>
%10 = fir.convert %9 : (!fir.logical<4>) -> i1
fir.if %10 {
fir.freemem %8 : !fir.heap<!fir.array<?xi32>>
} else {
}
return
}
// CHECK: func.func @dfa1(%arg0: !fir.ref<!fir.logical<4>> {fir.bindc_name = "cond"}) {
// CHECK-NEXT: %[[C42:.*]] = arith.constant 42 : index
// CHECK-NEXT: %[[MEM:.*]] = fir.allocmem !fir.array<?xi32>, %[[C42]] {uniq_name = "_QFdfa1Earr.alloc"}
// CHECK-NEXT: %[[LOGICAL:.*]] = fir.load %arg0 : !fir.ref<!fir.logical<4>>
// CHECK-NEXT: %[[BOOL:.*]] = fir.convert %[[LOGICAL]] : (!fir.logical<4>) -> i1
// CHECK-NEXT: fir.if %[[BOOL]] {
// CHECK-NEXT: fir.freemem %[[MEM]] : !fir.heap<!fir.array<?xi32>>
// CHECK-NEXT: } else {
// CHECK-NEXT: }
// CHECK-NEXT: return
// CHECK-NEXT: }
// Check scf.if
func.func @dfa2(%arg0: i1) {
%a = fir.allocmem !fir.array<1xi8>
scf.if %arg0 {
fir.freemem %a : !fir.heap<!fir.array<1xi8>>
} else {
}
return
}
// CHECK: func.func @dfa2(%arg0: i1) {
// CHECK-NEXT: %[[MEM:.*]] = fir.allocmem !fir.array<1xi8>
// CHECK-NEXT: scf.if %arg0 {
// CHECK-NEXT: fir.freemem %[[MEM]] : !fir.heap<!fir.array<1xi8>>
// CHECK-NEXT: } else {
// CHECK-NEXT: }
// CHECK-NEXT: return
// CHECK-NEXT: }
// Check freemem in both regions
func.func @dfa3(%arg0: i1) {
%a = fir.allocmem !fir.array<1xi8>
fir.if %arg0 {
fir.freemem %a : !fir.heap<!fir.array<1xi8>>
} else {
fir.freemem %a : !fir.heap<!fir.array<1xi8>>
}
return
}
// CHECK: func.func @dfa3(%arg0: i1) {
// CHECK-NEXT: %[[MEM:.*]] = fir.alloca !fir.array<1xi8>
// CHECK-NEXT: fir.if %arg0 {
// CHECK-NEXT: } else {
// CHECK-NEXT: }
// CHECK-NEXT: return
// CHECK-NEXT: }
func.func private @dfa3a_foo(!fir.ref<!fir.array<1xi8>>) -> ()
func.func private @dfa3a_bar(!fir.ref<!fir.array<1xi8>>) -> ()
// Check freemem in both regions, with other uses
func.func @dfa3a(%arg0: i1) {
%a = fir.allocmem !fir.array<1xi8>
fir.if %arg0 {
%ref = fir.convert %a : (!fir.heap<!fir.array<1xi8>>) -> !fir.ref<!fir.array<1xi8>>
func.call @dfa3a_foo(%ref) : (!fir.ref<!fir.array<1xi8>>) -> ()
fir.freemem %a : !fir.heap<!fir.array<1xi8>>
} else {
%ref = fir.convert %a : (!fir.heap<!fir.array<1xi8>>) -> !fir.ref<!fir.array<1xi8>>
func.call @dfa3a_bar(%ref) : (!fir.ref<!fir.array<1xi8>>) -> ()
fir.freemem %a : !fir.heap<!fir.array<1xi8>>
}
return
}
// CHECK: func.func @dfa3a(%arg0: i1) {
// CHECK-NEXT: %[[MEM:.*]] = fir.alloca !fir.array<1xi8>
// CHECK-NEXT: %[[HEAP:.*]] = fir.convert %[[MEM]] : (!fir.ref<!fir.array<1xi8>>) -> !fir.heap<!fir.array<1xi8>>
// CHECK-NEXT: fir.if %arg0 {
// CHECK-NEXT: %[[REF:.*]] = fir.convert %[[HEAP]] : (!fir.heap<!fir.array<1xi8>>) -> !fir.ref<!fir.array<1xi8>>
// CHECK-NEXT: func.call @dfa3a_foo(%[[REF]])
// CHECK-NEXT: } else {
// CHECK-NEXT: %[[REF:.*]] = fir.convert %[[HEAP]] : (!fir.heap<!fir.array<1xi8>>) -> !fir.ref<!fir.array<1xi8>>
// CHECK-NEXT: func.call @dfa3a_bar(%[[REF]])
// CHECK-NEXT: }
// CHECK-NEXT: return
// CHECK-NEXT: }
// check the alloca is placed after all operands become available
func.func @placement1() {
// do some stuff with other ssa values
%1 = arith.constant 1 : index
%2 = arith.constant 2 : index
%3 = arith.addi %1, %2 : index
// operand is now available
%4 = fir.allocmem !fir.array<?xi32>, %3
// ...
fir.freemem %4 : !fir.heap<!fir.array<?xi32>>
return
}
// CHECK: func.func @placement1() {
// CHECK-NEXT: %[[ONE:.*]] = arith.constant 1 : index
// CHECK-NEXT: %[[TWO:.*]] = arith.constant 2 : index
// CHECK-NEXT: %[[ARG:.*]] = arith.addi %[[ONE]], %[[TWO]] : index
// CHECK-NEXT: %[[MEM:.*]] = fir.alloca !fir.array<?xi32>, %[[ARG]]
// CHECK-NEXT: return
// CHECK-NEXT: }
// check that if there are no operands, then the alloca is placed early
func.func @placement2() {
// do some stuff with other ssa values
%1 = arith.constant 1 : index
%2 = arith.constant 2 : index
%3 = arith.addi %1, %2 : index
%4 = fir.allocmem !fir.array<42xi32>
// ...
fir.freemem %4 : !fir.heap<!fir.array<42xi32>>
return
}
// CHECK: func.func @placement2() {
// CHECK-NEXT: %[[MEM:.*]] = fir.alloca !fir.array<42xi32>
// CHECK-NEXT: %[[ONE:.*]] = arith.constant 1 : index
// CHECK-NEXT: %[[TWO:.*]] = arith.constant 2 : index
// CHECK-NEXT: %[[SUM:.*]] = arith.addi %[[ONE]], %[[TWO]] : index
// CHECK-NEXT: return
// CHECK-NEXT: }
// check that stack allocations which must be placed in loops use stacksave
func.func @placement3() {
%c1 = arith.constant 1 : index
%c1_i32 = fir.convert %c1 : (index) -> i32
%c2 = arith.constant 2 : index
%c10 = arith.constant 10 : index
%0:2 = fir.do_loop %arg0 = %c1 to %c10 step %c1 iter_args(%arg1 = %c1_i32) -> (index, i32) {
%3 = arith.addi %c1, %c2 : index
// operand is now available
%4 = fir.allocmem !fir.array<?xi32>, %3
// ...
fir.freemem %4 : !fir.heap<!fir.array<?xi32>>
fir.result %3, %c1_i32 : index, i32
}
return
}
// CHECK: func.func @placement3() {
// CHECK-NEXT: %[[C1:.*]] = arith.constant 1 : index
// CHECK-NEXT: %[[C1_I32:.*]] = fir.convert %[[C1]] : (index) -> i32
// CHECK-NEXT: %[[C2:.*]] = arith.constant 2 : index
// CHECK-NEXT: %[[C10:.*]] = arith.constant 10 : index
// CHECK-NEXT: fir.do_loop
// CHECK-NEXT: %[[SUM:.*]] = arith.addi %[[C1]], %[[C2]] : index
// CHECK-NEXT: %[[SP:.*]] = fir.call @llvm.stacksave() : () -> !fir.ref<i8>
// CHECK-NEXT: %[[MEM:.*]] = fir.alloca !fir.array<?xi32>, %[[SUM]]
// CHECK-NEXT: fir.call @llvm.stackrestore(%[[SP]])
// CHECK-NEXT: fir.result
// CHECK-NEXT: }
// CHECK-NEXT: return
// CHECK-NEXT: }
// check that stack save/restore are used in CFG loops
func.func @placement4(%arg0 : i1) {
%c1 = arith.constant 1 : index
%c1_i32 = fir.convert %c1 : (index) -> i32
%c2 = arith.constant 2 : index
%c10 = arith.constant 10 : index
cf.br ^bb1
^bb1:
%3 = arith.addi %c1, %c2 : index
// operand is now available
%4 = fir.allocmem !fir.array<?xi32>, %3
// ...
fir.freemem %4 : !fir.heap<!fir.array<?xi32>>
cf.cond_br %arg0, ^bb1, ^bb2
^bb2:
return
}
// CHECK: func.func @placement4(%arg0: i1) {
// CHECK-NEXT: %[[C1:.*]] = arith.constant 1 : index
// CHECK-NEXT: %[[C1_I32:.*]] = fir.convert %[[C1]] : (index) -> i32
// CHECK-NEXT: %[[C2:.*]] = arith.constant 2 : index
// CHECK-NEXT: %[[C10:.*]] = arith.constant 10 : index
// CHECK-NEXT: cf.br ^bb1
// CHECK-NEXT: ^bb1:
// CHECK-NEXT: %[[SUM:.*]] = arith.addi %[[C1]], %[[C2]] : index
// CHECK-NEXT: %[[SP:.*]] = fir.call @llvm.stacksave() : () -> !fir.ref<i8>
// CHECK-NEXT: %[[MEM:.*]] = fir.alloca !fir.array<?xi32>, %[[SUM]]
// CHECK-NEXT: fir.call @llvm.stackrestore(%[[SP]]) : (!fir.ref<i8>) -> ()
// CHECK-NEXT: cf.cond_br %arg0, ^bb1, ^bb2
// CHECK-NEXT: ^bb2:
// CHECK-NEXT: return
// CHECK-NEXT: }
// check that stacksave is not used when there is an intervening alloca
func.func @placement5() {
%c1 = arith.constant 1 : index
%c1_i32 = fir.convert %c1 : (index) -> i32
%c2 = arith.constant 2 : index
%c10 = arith.constant 10 : index
%0:2 = fir.do_loop %arg0 = %c1 to %c10 step %c1 iter_args(%arg1 = %c1_i32) -> (index, i32) {
%3 = arith.addi %c1, %c2 : index
// operand is now available
%4 = fir.allocmem !fir.array<?xi32>, %3
%5 = fir.alloca i32
fir.freemem %4 : !fir.heap<!fir.array<?xi32>>
fir.result %3, %c1_i32 : index, i32
}
return
}
// CHECK: func.func @placement5() {
// CHECK-NEXT: %[[C1:.*]] = arith.constant 1 : index
// CHECK-NEXT: %[[C1_I32:.*]] = fir.convert %[[C1]] : (index) -> i32
// CHECK-NEXT: %[[C2:.*]] = arith.constant 2 : index
// CHECK-NEXT: %[[C10:.*]] = arith.constant 10 : index
// CHECK-NEXT: fir.do_loop
// CHECK-NEXT: %[[SUM:.*]] = arith.addi %[[C1]], %[[C2]] : index
// CHECK-NEXT: %[[MEM:.*]] = fir.allocmem !fir.array<?xi32>, %[[SUM]]
// CHECK-NEXT: %[[IDX:.*]] = fir.alloca i32
// CHECK-NEXT: fir.freemem %[[MEM]] : !fir.heap<!fir.array<?xi32>>
// CHECK-NEXT: fir.result
// CHECK-NEXT: }
// CHECK-NEXT: return
// CHECK-NEXT: }
// check that stack save/restore are not used when the memalloc and freemem are
// in different blocks
func.func @placement6(%arg0: i1) {
%c1 = arith.constant 1 : index
%c1_i32 = fir.convert %c1 : (index) -> i32
%c2 = arith.constant 2 : index
%c10 = arith.constant 10 : index
cf.br ^bb1
^bb1:
%3 = arith.addi %c1, %c2 : index
// operand is now available
%4 = fir.allocmem !fir.array<?xi32>, %3
// ...
cf.cond_br %arg0, ^bb2, ^bb3
^bb2:
// ...
fir.freemem %4 : !fir.heap<!fir.array<?xi32>>
cf.br ^bb1
^bb3:
// ...
fir.freemem %4 : !fir.heap<!fir.array<?xi32>>
cf.br ^bb1
}
// CHECK: func.func @placement6(%arg0: i1) {
// CHECK-NEXT: %[[c1:.*]] = arith.constant 1 : index
// CHECK-NEXT: %[[c1_i32:.*]] = fir.convert %[[c1]] : (index) -> i32
// CHECK-NEXT: %[[c2:.*]] = arith.constant 2 : index
// CHECK-NEXT: %[[c10:.*]] = arith.constant 10 : index
// CHECK-NEXT: cf.br ^bb1
// CHECK-NEXT: ^bb1:
// CHECK-NEXT: %[[ADD:.*]] = arith.addi %[[c1]], %[[c2]] : index
// CHECK-NEXT: %[[MEM:.*]] = fir.allocmem !fir.array<?xi32>, %[[ADD]]
// CHECK-NEXT: cf.cond_br %arg0, ^bb2, ^bb3
// CHECK-NEXT: ^bb2:
// CHECK-NEXT: fir.freemem %[[MEM]] : !fir.heap<!fir.array<?xi32>>
// CHECK-NEXT: cf.br ^bb1
// CHECK-NEXT: ^bb3:
// CHECK-NEXT: fir.freemem %[[MEM]] : !fir.heap<!fir.array<?xi32>>
// CHECK-NEXT: cf.br ^bb1
// CHECK-NEXT: }
// Check multiple returns, where the memory is always freed
func.func @returns(%arg0: i1) {
%0 = fir.allocmem !fir.array<42xi32>
cf.cond_br %arg0, ^bb1, ^bb2
^bb1:
fir.freemem %0 : !fir.heap<!fir.array<42xi32>>
return
^bb2:
fir.freemem %0 : !fir.heap<!fir.array<42xi32>>
return
}
// CHECK: func.func @returns(%[[COND:.*]]: i1) {
// CHECK-NEXT: %[[ALLOC:.*]] = fir.alloca !fir.array<42xi32>
// CHECK-NEXT: cf.cond_br %[[COND]], ^bb1, ^bb2
// CHECK-NEXT: ^bb1:
// CHECK-NEXT: return
// CHECK-NEXT: ^bb2:
// CHECK-NEXT: return
// CHECK-NEXT: }
// Check multiple returns, where the memory is not freed on one branch
func.func @returns2(%arg0: i1) {
%0 = fir.allocmem !fir.array<42xi32>
cf.cond_br %arg0, ^bb1, ^bb2
^bb1:
fir.freemem %0 : !fir.heap<!fir.array<42xi32>>
return
^bb2:
return
}
// CHECK: func.func @returns2(%[[COND:.*]]: i1) {
// CHECK-NEXT: %[[ALLOC:.*]] = fir.allocmem !fir.array<42xi32>
// CHECK-NEXT: cf.cond_br %[[COND]], ^bb1, ^bb2
// CHECK-NEXT: ^bb1:
// CHECK-NEXT: fir.freemem %[[ALLOC]] : !fir.heap<!fir.array<42xi32>>
// CHECK-NEXT: return
// CHECK-NEXT: ^bb2:
// CHECK-NEXT: return
// CHECK-NEXT: }
// Check allocations are not moved outside of an omp region
func.func @omp_placement1() {
omp.sections {
omp.section {
%mem = fir.allocmem !fir.array<42xi32>
fir.freemem %mem : !fir.heap<!fir.array<42xi32>>
omp.terminator
}
omp.terminator
}
return
}
// CHECK: func.func @omp_placement1() {
// CHECK-NEXT: omp.sections {
// CHECK-NEXT: omp.section {
// CHECK-NEXT: %[[MEM:.*]] = fir.allocmem !fir.array<42xi32>
// TODO: this allocation should be moved to the stack. Unfortunately, the data
// flow analysis fails to propogate the lattice out of the omp region to the
// return satement.
// CHECK-NEXT: fir.freemem %[[MEM]] : !fir.heap<!fir.array<42xi32>>
// CHECK-NEXT: omp.terminator
// CHECK-NEXT: }
// CHECK-NEXT: omp.terminator
// CHECK-NEXT: }
// CHECK-NEXT: return
// CHECK-NEXT: }
// function terminated by stop statement
func.func @stop_terminator() {
%0 = fir.allocmem !fir.array<42xi32>
fir.freemem %0 : !fir.heap<!fir.array<42xi32>>
%c0_i32 = arith.constant 0 : i32
%false = arith.constant false
%none = fir.call @_FortranAStopStatement(%c0_i32, %false, %false) : (i32, i1, i1) -> none
fir.unreachable
}
// CHECK: func.func @stop_terminator() {
// CHECK-NEXT: fir.alloca !fir.array<42xi32>
// CHECK-NEXT: %[[ZERO:.*]] = arith.constant 0 : i32
// CHECK-NEXT: %[[FALSE:.*]] = arith.constant false
// CHECK-NEXT: %[[NONE:.*]] = fir.call @_FortranAStopStatement(%[[ZERO]], %[[FALSE]], %[[FALSE]]) : (i32, i1, i1) -> none
// CHECK-NEXT: fir.unreachable
// CHECK-NEXT: }
|