File: v_log.sollya

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (35 lines) | stat: -rw-r--r-- 1,064 bytes parent folder | download | duplicates (23)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
// polynomial used for __v_log(x)
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

deg = 6; // poly degree
a = -0x1.fc1p-9;
b = 0x1.009p-8;

// find log(1+x)/x polynomial with minimal relative error
// (minimal relative error polynomial for log(1+x) is the same * x)
deg = deg-1; // because of /x

// f = log(1+x)/x; using taylor series
f = 0;
for i from 0 to 60 do { f = f + (-x)^i/(i+1); };

// return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)|
approx = proc(poly,d) {
  return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10);
};

// first coeff is fixed, iteratively find optimal double prec coeffs
poly = 1;
for i from 1 to deg do {
  p = roundcoefficients(approx(poly,i), [|D ...|]);
  poly = poly + x^i*coeff(p,0);
};

display = hexadecimal;
print("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30));
print("in [",a,b,"]");
print("coeffs:");
for i from 0 to deg do coeff(poly,i);