File: x86_long_double_test.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (87 lines) | stat: -rw-r--r-- 3,139 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
//===-- Unittests for x86 long double -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "src/__support/FPUtil/FPBits.h"
#include "test/UnitTest/Test.h"

#include <math.h>

using FPBits = __llvm_libc::fputil::FPBits<long double>;

TEST(LlvmLibcX86LongDoubleTest, is_nan) {
  // In the nan checks below, we use the macro isnan from math.h to ensure that
  // a number is actually a NaN. The isnan macro resolves to the compiler
  // builtin function. Hence, matching LLVM-libc's notion of NaN with the
  // isnan result ensures that LLVM-libc's behavior matches the compiler's
  // behavior.
  constexpr uint32_t COUNT = 100'000;

  FPBits bits(0.0l);
  bits.set_unbiased_exponent(FPBits::MAX_EXPONENT);
  for (unsigned int i = 0; i < COUNT; ++i) {
    // If exponent has the max value and the implicit bit is 0,
    // then the number is a NaN for all values of mantissa.
    bits.set_mantissa(i);
    long double nan = bits;
    ASSERT_NE(static_cast<int>(isnan(nan)), 0);
    ASSERT_TRUE(bits.is_nan());
  }

  bits.set_implicit_bit(1);
  for (unsigned int i = 1; i < COUNT; ++i) {
    // If exponent has the max value and the implicit bit is 1,
    // then the number is a NaN for all non-zero values of mantissa.
    // Note the initial value of |i| of 1 to avoid a zero mantissa.
    bits.set_mantissa(i);
    long double nan = bits;
    ASSERT_NE(static_cast<int>(isnan(nan)), 0);
    ASSERT_TRUE(bits.is_nan());
  }

  bits.set_unbiased_exponent(1);
  bits.set_implicit_bit(0);
  for (unsigned int i = 0; i < COUNT; ++i) {
    // If exponent is non-zero and also not max, and the implicit bit is 0,
    // then the number is a NaN for all values of mantissa.
    bits.set_mantissa(i);
    long double nan = bits;
    ASSERT_NE(static_cast<int>(isnan(nan)), 0);
    ASSERT_TRUE(bits.is_nan());
  }

  bits.set_unbiased_exponent(1);
  bits.set_implicit_bit(1);
  for (unsigned int i = 0; i < COUNT; ++i) {
    // If exponent is non-zero and also not max, and the implicit bit is 1,
    // then the number is normal value for all values of mantissa.
    bits.set_mantissa(i);
    long double valid = bits;
    ASSERT_EQ(static_cast<int>(isnan(valid)), 0);
    ASSERT_FALSE(bits.is_nan());
  }

  bits.set_unbiased_exponent(0);
  bits.set_implicit_bit(1);
  for (unsigned int i = 0; i < COUNT; ++i) {
    // If exponent is zero, then the number is a valid but denormal value.
    bits.set_mantissa(i);
    long double valid = bits;
    ASSERT_EQ(static_cast<int>(isnan(valid)), 0);
    ASSERT_FALSE(bits.is_nan());
  }

  bits.set_unbiased_exponent(0);
  bits.set_implicit_bit(0);
  for (unsigned int i = 0; i < COUNT; ++i) {
    // If exponent is zero, then the number is a valid but denormal value.
    bits.set_mantissa(i);
    long double valid = bits;
    ASSERT_EQ(static_cast<int>(isnan(valid)), 0);
    ASSERT_FALSE(bits.is_nan());
  }
}