1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This version is derived from the generic fma software implementation
// (__clc_sw_fma), but avoids the use of ulong in favor of uint2. The logic has
// been updated as appropriate.
#include <clc/clc.h>
#include "../../../generic/lib/clcmacro.h"
#include "../../../generic/lib/math/math.h"
struct fp {
uint2 mantissa;
int exponent;
uint sign;
};
static uint2 u2_set(uint hi, uint lo) {
uint2 res;
res.lo = lo;
res.hi = hi;
return res;
}
static uint2 u2_set_u(uint val) { return u2_set(0, val); }
static uint2 u2_mul(uint a, uint b) {
uint2 res;
res.hi = mul_hi(a, b);
res.lo = a * b;
return res;
}
static uint2 u2_sll(uint2 val, uint shift) {
if (shift == 0)
return val;
if (shift < 32) {
val.hi <<= shift;
val.hi |= val.lo >> (32 - shift);
val.lo <<= shift;
} else {
val.hi = val.lo << (shift - 32);
val.lo = 0;
}
return val;
}
static uint2 u2_srl(uint2 val, uint shift) {
if (shift == 0)
return val;
if (shift < 32) {
val.lo >>= shift;
val.lo |= val.hi << (32 - shift);
val.hi >>= shift;
} else {
val.lo = val.hi >> (shift - 32);
val.hi = 0;
}
return val;
}
static uint2 u2_or(uint2 a, uint b) {
a.lo |= b;
return a;
}
static uint2 u2_and(uint2 a, uint2 b) {
a.lo &= b.lo;
a.hi &= b.hi;
return a;
}
static uint2 u2_add(uint2 a, uint2 b) {
uint carry = (hadd(a.lo, b.lo) >> 31) & 0x1;
a.lo += b.lo;
a.hi += b.hi + carry;
return a;
}
static uint2 u2_add_u(uint2 a, uint b) { return u2_add(a, u2_set_u(b)); }
static uint2 u2_inv(uint2 a) {
a.lo = ~a.lo;
a.hi = ~a.hi;
return u2_add_u(a, 1);
}
static uint u2_clz(uint2 a) {
uint leading_zeroes = clz(a.hi);
if (leading_zeroes == 32) {
leading_zeroes += clz(a.lo);
}
return leading_zeroes;
}
static bool u2_eq(uint2 a, uint2 b) { return a.lo == b.lo && a.hi == b.hi; }
static bool u2_zero(uint2 a) { return u2_eq(a, u2_set_u(0)); }
static bool u2_gt(uint2 a, uint2 b) {
return a.hi > b.hi || (a.hi == b.hi && a.lo > b.lo);
}
_CLC_DEF _CLC_OVERLOAD float fma(float a, float b, float c) {
/* special cases */
if (isnan(a) || isnan(b) || isnan(c) || isinf(a) || isinf(b)) {
return mad(a, b, c);
}
/* If only c is inf, and both a,b are regular numbers, the result is c*/
if (isinf(c)) {
return c;
}
a = __clc_flush_denormal_if_not_supported(a);
b = __clc_flush_denormal_if_not_supported(b);
c = __clc_flush_denormal_if_not_supported(c);
if (a == 0.0f || b == 0.0f) {
return c;
}
if (c == 0) {
return a * b;
}
struct fp st_a, st_b, st_c;
st_a.exponent = a == .0f ? 0 : ((as_uint(a) & 0x7f800000) >> 23) - 127;
st_b.exponent = b == .0f ? 0 : ((as_uint(b) & 0x7f800000) >> 23) - 127;
st_c.exponent = c == .0f ? 0 : ((as_uint(c) & 0x7f800000) >> 23) - 127;
st_a.mantissa = u2_set_u(a == .0f ? 0 : (as_uint(a) & 0x7fffff) | 0x800000);
st_b.mantissa = u2_set_u(b == .0f ? 0 : (as_uint(b) & 0x7fffff) | 0x800000);
st_c.mantissa = u2_set_u(c == .0f ? 0 : (as_uint(c) & 0x7fffff) | 0x800000);
st_a.sign = as_uint(a) & 0x80000000;
st_b.sign = as_uint(b) & 0x80000000;
st_c.sign = as_uint(c) & 0x80000000;
// Multiplication.
// Move the product to the highest bits to maximize precision
// mantissa is 24 bits => product is 48 bits, 2bits non-fraction.
// Add one bit for future addition overflow,
// add another bit to detect subtraction underflow
struct fp st_mul;
st_mul.sign = st_a.sign ^ st_b.sign;
st_mul.mantissa = u2_sll(u2_mul(st_a.mantissa.lo, st_b.mantissa.lo), 14);
st_mul.exponent =
!u2_zero(st_mul.mantissa) ? st_a.exponent + st_b.exponent : 0;
// FIXME: Detecting a == 0 || b == 0 above crashed GCN isel
if (st_mul.exponent == 0 && u2_zero(st_mul.mantissa))
return c;
// Mantissa is 23 fractional bits, shift it the same way as product mantissa
#define C_ADJUST 37ul
// both exponents are bias adjusted
int exp_diff = st_mul.exponent - st_c.exponent;
st_c.mantissa = u2_sll(st_c.mantissa, C_ADJUST);
uint2 cutoff_bits = u2_set_u(0);
uint2 cutoff_mask = u2_add(u2_sll(u2_set_u(1), abs(exp_diff)),
u2_set(0xffffffff, 0xffffffff));
if (exp_diff > 0) {
cutoff_bits =
exp_diff >= 64 ? st_c.mantissa : u2_and(st_c.mantissa, cutoff_mask);
st_c.mantissa =
exp_diff >= 64 ? u2_set_u(0) : u2_srl(st_c.mantissa, exp_diff);
} else {
cutoff_bits = -exp_diff >= 64 ? st_mul.mantissa
: u2_and(st_mul.mantissa, cutoff_mask);
st_mul.mantissa =
-exp_diff >= 64 ? u2_set_u(0) : u2_srl(st_mul.mantissa, -exp_diff);
}
struct fp st_fma;
st_fma.sign = st_mul.sign;
st_fma.exponent = max(st_mul.exponent, st_c.exponent);
if (st_c.sign == st_mul.sign) {
st_fma.mantissa = u2_add(st_mul.mantissa, st_c.mantissa);
} else {
// cutoff bits borrow one
st_fma.mantissa =
u2_add(u2_add(st_mul.mantissa, u2_inv(st_c.mantissa)),
(!u2_zero(cutoff_bits) && (st_mul.exponent > st_c.exponent)
? u2_set(0xffffffff, 0xffffffff)
: u2_set_u(0)));
}
// underflow: st_c.sign != st_mul.sign, and magnitude switches the sign
if (u2_gt(st_fma.mantissa, u2_set(0x7fffffff, 0xffffffff))) {
st_fma.mantissa = u2_inv(st_fma.mantissa);
st_fma.sign = st_mul.sign ^ 0x80000000;
}
// detect overflow/underflow
int overflow_bits = 3 - u2_clz(st_fma.mantissa);
// adjust exponent
st_fma.exponent += overflow_bits;
// handle underflow
if (overflow_bits < 0) {
st_fma.mantissa = u2_sll(st_fma.mantissa, -overflow_bits);
overflow_bits = 0;
}
// rounding
uint2 trunc_mask = u2_add(u2_sll(u2_set_u(1), C_ADJUST + overflow_bits),
u2_set(0xffffffff, 0xffffffff));
uint2 trunc_bits =
u2_or(u2_and(st_fma.mantissa, trunc_mask), !u2_zero(cutoff_bits));
uint2 last_bit =
u2_and(st_fma.mantissa, u2_sll(u2_set_u(1), C_ADJUST + overflow_bits));
uint2 grs_bits = u2_sll(u2_set_u(4), C_ADJUST - 3 + overflow_bits);
// round to nearest even
if (u2_gt(trunc_bits, grs_bits) ||
(u2_eq(trunc_bits, grs_bits) && !u2_zero(last_bit))) {
st_fma.mantissa =
u2_add(st_fma.mantissa, u2_sll(u2_set_u(1), C_ADJUST + overflow_bits));
}
// Shift mantissa back to bit 23
st_fma.mantissa = u2_srl(st_fma.mantissa, C_ADJUST + overflow_bits);
// Detect rounding overflow
if (u2_gt(st_fma.mantissa, u2_set_u(0xffffff))) {
++st_fma.exponent;
st_fma.mantissa = u2_srl(st_fma.mantissa, 1);
}
if (u2_zero(st_fma.mantissa)) {
return 0.0f;
}
// Flating point range limit
if (st_fma.exponent > 127) {
return as_float(as_uint(INFINITY) | st_fma.sign);
}
// Flush denormals
if (st_fma.exponent <= -127) {
return as_float(st_fma.sign);
}
return as_float(st_fma.sign | ((st_fma.exponent + 127) << 23) |
((uint)st_fma.mantissa.lo & 0x7fffff));
}
_CLC_TERNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, fma, float, float, float)
|