1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
//===- ICF.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// ICF is short for Identical Code Folding. That is a size optimization to
// identify and merge two or more read-only sections (typically functions)
// that happened to have the same contents. It usually reduces output size
// by a few percent.
//
// On Windows, ICF is enabled by default.
//
// See ELF/ICF.cpp for the details about the algorithm.
//
//===----------------------------------------------------------------------===//
#include "ICF.h"
#include "COFFLinkerContext.h"
#include "Chunks.h"
#include "Symbols.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Timer.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/xxhash.h"
#include <algorithm>
#include <atomic>
#include <vector>
using namespace llvm;
namespace lld::coff {
class ICF {
public:
ICF(COFFLinkerContext &c) : ctx(c){};
void run();
private:
void segregate(size_t begin, size_t end, bool constant);
bool assocEquals(const SectionChunk *a, const SectionChunk *b);
bool equalsConstant(const SectionChunk *a, const SectionChunk *b);
bool equalsVariable(const SectionChunk *a, const SectionChunk *b);
bool isEligible(SectionChunk *c);
size_t findBoundary(size_t begin, size_t end);
void forEachClassRange(size_t begin, size_t end,
std::function<void(size_t, size_t)> fn);
void forEachClass(std::function<void(size_t, size_t)> fn);
std::vector<SectionChunk *> chunks;
int cnt = 0;
std::atomic<bool> repeat = {false};
COFFLinkerContext &ctx;
};
// Returns true if section S is subject of ICF.
//
// Microsoft's documentation
// (https://msdn.microsoft.com/en-us/library/bxwfs976.aspx; visited April
// 2017) says that /opt:icf folds both functions and read-only data.
// Despite that, the MSVC linker folds only functions. We found
// a few instances of programs that are not safe for data merging.
// Therefore, we merge only functions just like the MSVC tool. However, we also
// merge read-only sections in a couple of cases where the address of the
// section is insignificant to the user program and the behaviour matches that
// of the Visual C++ linker.
bool ICF::isEligible(SectionChunk *c) {
// Non-comdat chunks, dead chunks, and writable chunks are not eligible.
bool writable = c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_WRITE;
if (!c->isCOMDAT() || !c->live || writable)
return false;
// Under regular (not safe) ICF, all code sections are eligible.
if ((ctx.config.doICF == ICFLevel::All) &&
c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_EXECUTE)
return true;
// .pdata and .xdata unwind info sections are eligible.
StringRef outSecName = c->getSectionName().split('$').first;
if (outSecName == ".pdata" || outSecName == ".xdata")
return true;
// So are vtables.
if (c->sym && c->sym->getName().starts_with("??_7"))
return true;
// Anything else not in an address-significance table is eligible.
return !c->keepUnique;
}
// Split an equivalence class into smaller classes.
void ICF::segregate(size_t begin, size_t end, bool constant) {
while (begin < end) {
// Divide [Begin, End) into two. Let Mid be the start index of the
// second group.
auto bound = std::stable_partition(
chunks.begin() + begin + 1, chunks.begin() + end, [&](SectionChunk *s) {
if (constant)
return equalsConstant(chunks[begin], s);
return equalsVariable(chunks[begin], s);
});
size_t mid = bound - chunks.begin();
// Split [Begin, End) into [Begin, Mid) and [Mid, End). We use Mid as an
// equivalence class ID because every group ends with a unique index.
for (size_t i = begin; i < mid; ++i)
chunks[i]->eqClass[(cnt + 1) % 2] = mid;
// If we created a group, we need to iterate the main loop again.
if (mid != end)
repeat = true;
begin = mid;
}
}
// Returns true if two sections' associative children are equal.
bool ICF::assocEquals(const SectionChunk *a, const SectionChunk *b) {
// Ignore associated metadata sections that don't participate in ICF, such as
// debug info and CFGuard metadata.
auto considerForICF = [](const SectionChunk &assoc) {
StringRef Name = assoc.getSectionName();
return !(Name.starts_with(".debug") || Name == ".gfids$y" ||
Name == ".giats$y" || Name == ".gljmp$y");
};
auto ra = make_filter_range(a->children(), considerForICF);
auto rb = make_filter_range(b->children(), considerForICF);
return std::equal(ra.begin(), ra.end(), rb.begin(), rb.end(),
[&](const SectionChunk &ia, const SectionChunk &ib) {
return ia.eqClass[cnt % 2] == ib.eqClass[cnt % 2];
});
}
// Compare "non-moving" part of two sections, namely everything
// except relocation targets.
bool ICF::equalsConstant(const SectionChunk *a, const SectionChunk *b) {
if (a->relocsSize != b->relocsSize)
return false;
// Compare relocations.
auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
if (r1.Type != r2.Type ||
r1.VirtualAddress != r2.VirtualAddress) {
return false;
}
Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
if (b1 == b2)
return true;
if (auto *d1 = dyn_cast<DefinedRegular>(b1))
if (auto *d2 = dyn_cast<DefinedRegular>(b2))
return d1->getValue() == d2->getValue() &&
d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
return false;
};
if (!std::equal(a->getRelocs().begin(), a->getRelocs().end(),
b->getRelocs().begin(), eq))
return false;
// Compare section attributes and contents.
return a->getOutputCharacteristics() == b->getOutputCharacteristics() &&
a->getSectionName() == b->getSectionName() &&
a->header->SizeOfRawData == b->header->SizeOfRawData &&
a->checksum == b->checksum && a->getContents() == b->getContents() &&
assocEquals(a, b);
}
// Compare "moving" part of two sections, namely relocation targets.
bool ICF::equalsVariable(const SectionChunk *a, const SectionChunk *b) {
// Compare relocations.
auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
if (b1 == b2)
return true;
if (auto *d1 = dyn_cast<DefinedRegular>(b1))
if (auto *d2 = dyn_cast<DefinedRegular>(b2))
return d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
return false;
};
return std::equal(a->getRelocs().begin(), a->getRelocs().end(),
b->getRelocs().begin(), eq) &&
assocEquals(a, b);
}
// Find the first Chunk after Begin that has a different class from Begin.
size_t ICF::findBoundary(size_t begin, size_t end) {
for (size_t i = begin + 1; i < end; ++i)
if (chunks[begin]->eqClass[cnt % 2] != chunks[i]->eqClass[cnt % 2])
return i;
return end;
}
void ICF::forEachClassRange(size_t begin, size_t end,
std::function<void(size_t, size_t)> fn) {
while (begin < end) {
size_t mid = findBoundary(begin, end);
fn(begin, mid);
begin = mid;
}
}
// Call Fn on each class group.
void ICF::forEachClass(std::function<void(size_t, size_t)> fn) {
// If the number of sections are too small to use threading,
// call Fn sequentially.
if (chunks.size() < 1024) {
forEachClassRange(0, chunks.size(), fn);
++cnt;
return;
}
// Shard into non-overlapping intervals, and call Fn in parallel.
// The sharding must be completed before any calls to Fn are made
// so that Fn can modify the Chunks in its shard without causing data
// races.
const size_t numShards = 256;
size_t step = chunks.size() / numShards;
size_t boundaries[numShards + 1];
boundaries[0] = 0;
boundaries[numShards] = chunks.size();
parallelFor(1, numShards, [&](size_t i) {
boundaries[i] = findBoundary((i - 1) * step, chunks.size());
});
parallelFor(1, numShards + 1, [&](size_t i) {
if (boundaries[i - 1] < boundaries[i]) {
forEachClassRange(boundaries[i - 1], boundaries[i], fn);
}
});
++cnt;
}
// Merge identical COMDAT sections.
// Two sections are considered the same if their section headers,
// contents and relocations are all the same.
void ICF::run() {
ScopedTimer t(ctx.icfTimer);
// Collect only mergeable sections and group by hash value.
uint32_t nextId = 1;
for (Chunk *c : ctx.symtab.getChunks()) {
if (auto *sc = dyn_cast<SectionChunk>(c)) {
if (isEligible(sc))
chunks.push_back(sc);
else
sc->eqClass[0] = nextId++;
}
}
// Make sure that ICF doesn't merge sections that are being handled by string
// tail merging.
for (MergeChunk *mc : ctx.mergeChunkInstances)
if (mc)
for (SectionChunk *sc : mc->sections)
sc->eqClass[0] = nextId++;
// Initially, we use hash values to partition sections.
parallelForEach(chunks, [&](SectionChunk *sc) {
sc->eqClass[0] = xxh3_64bits(sc->getContents());
});
// Combine the hashes of the sections referenced by each section into its
// hash.
for (unsigned cnt = 0; cnt != 2; ++cnt) {
parallelForEach(chunks, [&](SectionChunk *sc) {
uint32_t hash = sc->eqClass[cnt % 2];
for (Symbol *b : sc->symbols())
if (auto *sym = dyn_cast_or_null<DefinedRegular>(b))
hash += sym->getChunk()->eqClass[cnt % 2];
// Set MSB to 1 to avoid collisions with non-hash classes.
sc->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
});
}
// From now on, sections in Chunks are ordered so that sections in
// the same group are consecutive in the vector.
llvm::stable_sort(chunks, [](const SectionChunk *a, const SectionChunk *b) {
return a->eqClass[0] < b->eqClass[0];
});
// Compare static contents and assign unique IDs for each static content.
forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); });
// Split groups by comparing relocations until convergence is obtained.
do {
repeat = false;
forEachClass(
[&](size_t begin, size_t end) { segregate(begin, end, false); });
} while (repeat);
log("ICF needed " + Twine(cnt) + " iterations");
// Merge sections in the same classes.
forEachClass([&](size_t begin, size_t end) {
if (end - begin == 1)
return;
log("Selected " + chunks[begin]->getDebugName());
for (size_t i = begin + 1; i < end; ++i) {
log(" Removed " + chunks[i]->getDebugName());
chunks[begin]->replace(chunks[i]);
}
});
}
// Entry point to ICF.
void doICF(COFFLinkerContext &ctx) { ICF(ctx).run(); }
} // namespace lld::coff
|