1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
|
//===- ARM.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "OutputSections.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Filesystem.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::support::endian;
using namespace llvm::support;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
using namespace llvm::object;
namespace {
class ARM final : public TargetInfo {
public:
ARM();
uint32_t calcEFlags() const override;
RelExpr getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const override;
RelType getDynRel(RelType type) const override;
int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
void writePltHeader(uint8_t *buf) const override;
void writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const override;
void addPltSymbols(InputSection &isec, uint64_t off) const override;
void addPltHeaderSymbols(InputSection &isd) const override;
bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
uint64_t branchAddr, const Symbol &s,
int64_t a) const override;
uint32_t getThunkSectionSpacing() const override;
bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
void relocate(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
};
enum class CodeState { Data = 0, Thumb = 2, Arm = 4 };
} // namespace
static DenseMap<InputSection *, SmallVector<const Defined *, 0>> sectionMap{};
ARM::ARM() {
copyRel = R_ARM_COPY;
relativeRel = R_ARM_RELATIVE;
iRelativeRel = R_ARM_IRELATIVE;
gotRel = R_ARM_GLOB_DAT;
pltRel = R_ARM_JUMP_SLOT;
symbolicRel = R_ARM_ABS32;
tlsGotRel = R_ARM_TLS_TPOFF32;
tlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
tlsOffsetRel = R_ARM_TLS_DTPOFF32;
pltHeaderSize = 32;
pltEntrySize = 16;
ipltEntrySize = 16;
trapInstr = {0xd4, 0xd4, 0xd4, 0xd4};
needsThunks = true;
defaultMaxPageSize = 65536;
}
uint32_t ARM::calcEFlags() const {
// The ABIFloatType is used by loaders to detect the floating point calling
// convention.
uint32_t abiFloatType = 0;
// Set the EF_ARM_BE8 flag in the ELF header, if ELF file is big-endian
// with BE-8 code.
uint32_t armBE8 = 0;
if (config->armVFPArgs == ARMVFPArgKind::Base ||
config->armVFPArgs == ARMVFPArgKind::Default)
abiFloatType = EF_ARM_ABI_FLOAT_SOFT;
else if (config->armVFPArgs == ARMVFPArgKind::VFP)
abiFloatType = EF_ARM_ABI_FLOAT_HARD;
if (!config->isLE && config->armBe8)
armBE8 = EF_ARM_BE8;
// We don't currently use any features incompatible with EF_ARM_EABI_VER5,
// but we don't have any firm guarantees of conformance. Linux AArch64
// kernels (as of 2016) require an EABI version to be set.
return EF_ARM_EABI_VER5 | abiFloatType | armBE8;
}
RelExpr ARM::getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const {
switch (type) {
case R_ARM_ABS32:
case R_ARM_MOVW_ABS_NC:
case R_ARM_MOVT_ABS:
case R_ARM_THM_MOVW_ABS_NC:
case R_ARM_THM_MOVT_ABS:
case R_ARM_THM_ALU_ABS_G0_NC:
case R_ARM_THM_ALU_ABS_G1_NC:
case R_ARM_THM_ALU_ABS_G2_NC:
case R_ARM_THM_ALU_ABS_G3:
return R_ABS;
case R_ARM_THM_JUMP8:
case R_ARM_THM_JUMP11:
return R_PC;
case R_ARM_CALL:
case R_ARM_JUMP24:
case R_ARM_PC24:
case R_ARM_PLT32:
case R_ARM_PREL31:
case R_ARM_THM_JUMP19:
case R_ARM_THM_JUMP24:
case R_ARM_THM_CALL:
return R_PLT_PC;
case R_ARM_GOTOFF32:
// (S + A) - GOT_ORG
return R_GOTREL;
case R_ARM_GOT_BREL:
// GOT(S) + A - GOT_ORG
return R_GOT_OFF;
case R_ARM_GOT_PREL:
case R_ARM_TLS_IE32:
// GOT(S) + A - P
return R_GOT_PC;
case R_ARM_SBREL32:
return R_ARM_SBREL;
case R_ARM_TARGET1:
return config->target1Rel ? R_PC : R_ABS;
case R_ARM_TARGET2:
if (config->target2 == Target2Policy::Rel)
return R_PC;
if (config->target2 == Target2Policy::Abs)
return R_ABS;
return R_GOT_PC;
case R_ARM_TLS_GD32:
return R_TLSGD_PC;
case R_ARM_TLS_LDM32:
return R_TLSLD_PC;
case R_ARM_TLS_LDO32:
return R_DTPREL;
case R_ARM_BASE_PREL:
// B(S) + A - P
// FIXME: currently B(S) assumed to be .got, this may not hold for all
// platforms.
return R_GOTONLY_PC;
case R_ARM_MOVW_PREL_NC:
case R_ARM_MOVT_PREL:
case R_ARM_REL32:
case R_ARM_THM_MOVW_PREL_NC:
case R_ARM_THM_MOVT_PREL:
return R_PC;
case R_ARM_ALU_PC_G0:
case R_ARM_ALU_PC_G0_NC:
case R_ARM_ALU_PC_G1:
case R_ARM_ALU_PC_G1_NC:
case R_ARM_ALU_PC_G2:
case R_ARM_LDR_PC_G0:
case R_ARM_LDR_PC_G1:
case R_ARM_LDR_PC_G2:
case R_ARM_LDRS_PC_G0:
case R_ARM_LDRS_PC_G1:
case R_ARM_LDRS_PC_G2:
case R_ARM_THM_ALU_PREL_11_0:
case R_ARM_THM_PC8:
case R_ARM_THM_PC12:
return R_ARM_PCA;
case R_ARM_MOVW_BREL_NC:
case R_ARM_MOVW_BREL:
case R_ARM_MOVT_BREL:
case R_ARM_THM_MOVW_BREL_NC:
case R_ARM_THM_MOVW_BREL:
case R_ARM_THM_MOVT_BREL:
return R_ARM_SBREL;
case R_ARM_NONE:
return R_NONE;
case R_ARM_TLS_LE32:
return R_TPREL;
case R_ARM_V4BX:
// V4BX is just a marker to indicate there's a "bx rN" instruction at the
// given address. It can be used to implement a special linker mode which
// rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and
// not ARMv4 output, we can just ignore it.
return R_NONE;
default:
error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
") against symbol " + toString(s));
return R_NONE;
}
}
RelType ARM::getDynRel(RelType type) const {
if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel))
return R_ARM_ABS32;
return R_ARM_NONE;
}
void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const {
write32(buf, in.plt->getVA());
}
void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
// An ARM entry is the address of the ifunc resolver function.
write32(buf, s.getVA());
}
// Long form PLT Header that does not have any restrictions on the displacement
// of the .plt from the .got.plt.
static void writePltHeaderLong(uint8_t *buf) {
write32(buf + 0, 0xe52de004); // str lr, [sp,#-4]!
write32(buf + 4, 0xe59fe004); // ldr lr, L2
write32(buf + 8, 0xe08fe00e); // L1: add lr, pc, lr
write32(buf + 12, 0xe5bef008); // ldr pc, [lr, #8]
write32(buf + 16, 0x00000000); // L2: .word &(.got.plt) - L1 - 8
write32(buf + 20, 0xd4d4d4d4); // Pad to 32-byte boundary
write32(buf + 24, 0xd4d4d4d4); // Pad to 32-byte boundary
write32(buf + 28, 0xd4d4d4d4);
uint64_t gotPlt = in.gotPlt->getVA();
uint64_t l1 = in.plt->getVA() + 8;
write32(buf + 16, gotPlt - l1 - 8);
}
// The default PLT header requires the .got.plt to be within 128 Mb of the
// .plt in the positive direction.
void ARM::writePltHeader(uint8_t *buf) const {
// Use a similar sequence to that in writePlt(), the difference is the calling
// conventions mean we use lr instead of ip. The PLT entry is responsible for
// saving lr on the stack, the dynamic loader is responsible for reloading
// it.
const uint32_t pltData[] = {
0xe52de004, // L1: str lr, [sp,#-4]!
0xe28fe600, // add lr, pc, #0x0NN00000 &(.got.plt - L1 - 4)
0xe28eea00, // add lr, lr, #0x000NN000 &(.got.plt - L1 - 4)
0xe5bef000, // ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
};
uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4;
if (!llvm::isUInt<27>(offset)) {
// We cannot encode the Offset, use the long form.
writePltHeaderLong(buf);
return;
}
write32(buf + 0, pltData[0]);
write32(buf + 4, pltData[1] | ((offset >> 20) & 0xff));
write32(buf + 8, pltData[2] | ((offset >> 12) & 0xff));
write32(buf + 12, pltData[3] | (offset & 0xfff));
memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary
memcpy(buf + 20, trapInstr.data(), 4);
memcpy(buf + 24, trapInstr.data(), 4);
memcpy(buf + 28, trapInstr.data(), 4);
}
void ARM::addPltHeaderSymbols(InputSection &isec) const {
addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec);
addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec);
}
// Long form PLT entries that do not have any restrictions on the displacement
// of the .plt from the .got.plt.
static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr,
uint64_t pltEntryAddr) {
write32(buf + 0, 0xe59fc004); // ldr ip, L2
write32(buf + 4, 0xe08cc00f); // L1: add ip, ip, pc
write32(buf + 8, 0xe59cf000); // ldr pc, [ip]
write32(buf + 12, 0x00000000); // L2: .word Offset(&(.got.plt) - L1 - 8
uint64_t l1 = pltEntryAddr + 4;
write32(buf + 12, gotPltEntryAddr - l1 - 8);
}
// The default PLT entries require the .got.plt to be within 128 Mb of the
// .plt in the positive direction.
void ARM::writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const {
// The PLT entry is similar to the example given in Appendix A of ELF for
// the Arm Architecture. Instead of using the Group Relocations to find the
// optimal rotation for the 8-bit immediate used in the add instructions we
// hard code the most compact rotations for simplicity. This saves a load
// instruction over the long plt sequences.
const uint32_t pltData[] = {
0xe28fc600, // L1: add ip, pc, #0x0NN00000 Offset(&(.got.plt) - L1 - 8
0xe28cca00, // add ip, ip, #0x000NN000 Offset(&(.got.plt) - L1 - 8
0xe5bcf000, // ldr pc, [ip, #0x00000NNN] Offset(&(.got.plt) - L1 - 8
};
uint64_t offset = sym.getGotPltVA() - pltEntryAddr - 8;
if (!llvm::isUInt<27>(offset)) {
// We cannot encode the Offset, use the long form.
writePltLong(buf, sym.getGotPltVA(), pltEntryAddr);
return;
}
write32(buf + 0, pltData[0] | ((offset >> 20) & 0xff));
write32(buf + 4, pltData[1] | ((offset >> 12) & 0xff));
write32(buf + 8, pltData[2] | (offset & 0xfff));
memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary
}
void ARM::addPltSymbols(InputSection &isec, uint64_t off) const {
addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec);
addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec);
}
bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
uint64_t branchAddr, const Symbol &s,
int64_t a) const {
// If s is an undefined weak symbol and does not have a PLT entry then it will
// be resolved as a branch to the next instruction. If it is hidden, its
// binding has been converted to local, so we just check isUndefined() here. A
// undefined non-weak symbol will have been errored.
if (s.isUndefined() && !s.isInPlt())
return false;
// A state change from ARM to Thumb and vice versa must go through an
// interworking thunk if the relocation type is not R_ARM_CALL or
// R_ARM_THM_CALL.
switch (type) {
case R_ARM_PC24:
case R_ARM_PLT32:
case R_ARM_JUMP24:
// Source is ARM, all PLT entries are ARM so no interworking required.
// Otherwise we need to interwork if STT_FUNC Symbol has bit 0 set (Thumb).
if (s.isFunc() && expr == R_PC && (s.getVA() & 1))
return true;
[[fallthrough]];
case R_ARM_CALL: {
uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
return !inBranchRange(type, branchAddr, dst + a) ||
(!config->armHasBlx && (s.getVA() & 1));
}
case R_ARM_THM_JUMP19:
case R_ARM_THM_JUMP24:
// Source is Thumb, all PLT entries are ARM so interworking is required.
// Otherwise we need to interwork if STT_FUNC Symbol has bit 0 clear (ARM).
if (expr == R_PLT_PC || (s.isFunc() && (s.getVA() & 1) == 0))
return true;
[[fallthrough]];
case R_ARM_THM_CALL: {
uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
return !inBranchRange(type, branchAddr, dst + a) ||
(!config->armHasBlx && (s.getVA() & 1) == 0);;
}
}
return false;
}
uint32_t ARM::getThunkSectionSpacing() const {
// The placing of pre-created ThunkSections is controlled by the value
// thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
// place the ThunkSection such that all branches from the InputSections
// prior to the ThunkSection can reach a Thunk placed at the end of the
// ThunkSection. Graphically:
// | up to thunkSectionSpacing .text input sections |
// | ThunkSection |
// | up to thunkSectionSpacing .text input sections |
// | ThunkSection |
// Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
// is to match the most common expected case of a Thumb 2 encoded BL, BLX or
// B.W:
// ARM B, BL, BLX range +/- 32MiB
// Thumb B.W, BL, BLX range +/- 16MiB
// Thumb B<cc>.W range +/- 1MiB
// If a branch cannot reach a pre-created ThunkSection a new one will be
// created so we can handle the rare cases of a Thumb 2 conditional branch.
// We intentionally use a lower size for thunkSectionSpacing than the maximum
// branch range so the end of the ThunkSection is more likely to be within
// range of the branch instruction that is furthest away. The value we shorten
// thunkSectionSpacing by is set conservatively to allow us to create 16,384
// 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
// one of the Thunks going out of range.
// On Arm the thunkSectionSpacing depends on the range of the Thumb Branch
// range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
// ARMv6T2) the range is +/- 4MiB.
return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000
: 0x400000 - 0x7500;
}
bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
if ((dst & 0x1) == 0)
// Destination is ARM, if ARM caller then Src is already 4-byte aligned.
// If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
// destination will be 4 byte aligned.
src &= ~0x3;
else
// Bit 0 == 1 denotes Thumb state, it is not part of the range.
dst &= ~0x1;
int64_t offset = dst - src;
switch (type) {
case R_ARM_PC24:
case R_ARM_PLT32:
case R_ARM_JUMP24:
case R_ARM_CALL:
return llvm::isInt<26>(offset);
case R_ARM_THM_JUMP19:
return llvm::isInt<21>(offset);
case R_ARM_THM_JUMP24:
case R_ARM_THM_CALL:
return config->armJ1J2BranchEncoding ? llvm::isInt<25>(offset)
: llvm::isInt<23>(offset);
default:
return true;
}
}
// Helper to produce message text when LLD detects that a CALL relocation to
// a non STT_FUNC symbol that may result in incorrect interworking between ARM
// or Thumb.
static void stateChangeWarning(uint8_t *loc, RelType relt, const Symbol &s) {
assert(!s.isFunc());
const ErrorPlace place = getErrorPlace(loc);
std::string hint;
if (!place.srcLoc.empty())
hint = "; " + place.srcLoc;
if (s.isSection()) {
// Section symbols must be defined and in a section. Users cannot change
// the type. Use the section name as getName() returns an empty string.
warn(place.loc + "branch and link relocation: " + toString(relt) +
" to STT_SECTION symbol " + cast<Defined>(s).section->name +
" ; interworking not performed" + hint);
} else {
// Warn with hint on how to alter the symbol type.
warn(getErrorLocation(loc) + "branch and link relocation: " +
toString(relt) + " to non STT_FUNC symbol: " + s.getName() +
" interworking not performed; consider using directive '.type " +
s.getName() +
", %function' to give symbol type STT_FUNC if interworking between "
"ARM and Thumb is required" +
hint);
}
}
// Rotate a 32-bit unsigned value right by a specified amt of bits.
static uint32_t rotr32(uint32_t val, uint32_t amt) {
assert(amt < 32 && "Invalid rotate amount");
return (val >> amt) | (val << ((32 - amt) & 31));
}
static std::pair<uint32_t, uint32_t> getRemAndLZForGroup(unsigned group,
uint32_t val) {
uint32_t rem, lz;
do {
lz = llvm::countl_zero(val) & ~1;
rem = val;
if (lz == 32) // implies rem == 0
break;
val &= 0xffffff >> lz;
} while (group--);
return {rem, lz};
}
static void encodeAluGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
int group, bool check) {
// ADD/SUB (immediate) add = bit23, sub = bit22
// immediate field carries is a 12-bit modified immediate, made up of a 4-bit
// even rotate right and an 8-bit immediate.
uint32_t opcode = 0x00800000;
if (val >> 63) {
opcode = 0x00400000;
val = -val;
}
uint32_t imm, lz;
std::tie(imm, lz) = getRemAndLZForGroup(group, val);
uint32_t rot = 0;
if (lz < 24) {
imm = rotr32(imm, 24 - lz);
rot = (lz + 8) << 7;
}
if (check && imm > 0xff)
error(getErrorLocation(loc) + "unencodeable immediate " + Twine(val).str() +
" for relocation " + toString(rel.type));
write32(loc, (read32(loc) & 0xff3ff000) | opcode | rot | (imm & 0xff));
}
static void encodeLdrGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
int group) {
// R_ARM_LDR_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a
// function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
// bottom bit to recover S + A - P.
if (rel.sym->isFunc())
val &= ~0x1;
// LDR (literal) u = bit23
uint32_t opcode = 0x00800000;
if (val >> 63) {
opcode = 0x0;
val = -val;
}
uint32_t imm = getRemAndLZForGroup(group, val).first;
checkUInt(loc, imm, 12, rel);
write32(loc, (read32(loc) & 0xff7ff000) | opcode | imm);
}
static void encodeLdrsGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
int group) {
// R_ARM_LDRS_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a
// function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
// bottom bit to recover S + A - P.
if (rel.sym->isFunc())
val &= ~0x1;
// LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23
uint32_t opcode = 0x00800000;
if (val >> 63) {
opcode = 0x0;
val = -val;
}
uint32_t imm = getRemAndLZForGroup(group, val).first;
checkUInt(loc, imm, 8, rel);
write32(loc, (read32(loc) & 0xff7ff0f0) | opcode | ((imm & 0xf0) << 4) |
(imm & 0xf));
}
void ARM::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
switch (rel.type) {
case R_ARM_ABS32:
case R_ARM_BASE_PREL:
case R_ARM_GOTOFF32:
case R_ARM_GOT_BREL:
case R_ARM_GOT_PREL:
case R_ARM_REL32:
case R_ARM_RELATIVE:
case R_ARM_SBREL32:
case R_ARM_TARGET1:
case R_ARM_TARGET2:
case R_ARM_TLS_GD32:
case R_ARM_TLS_IE32:
case R_ARM_TLS_LDM32:
case R_ARM_TLS_LDO32:
case R_ARM_TLS_LE32:
case R_ARM_TLS_TPOFF32:
case R_ARM_TLS_DTPOFF32:
write32(loc, val);
break;
case R_ARM_PREL31:
checkInt(loc, val, 31, rel);
write32(loc, (read32(loc) & 0x80000000) | (val & ~0x80000000));
break;
case R_ARM_CALL: {
// R_ARM_CALL is used for BL and BLX instructions, for symbols of type
// STT_FUNC we choose whether to write a BL or BLX depending on the
// value of bit 0 of Val. With bit 0 == 1 denoting Thumb. If the symbol is
// not of type STT_FUNC then we must preserve the original instruction.
// PLT entries are always ARM state so we know we don't need to interwork.
assert(rel.sym); // R_ARM_CALL is always reached via relocate().
bool bit0Thumb = val & 1;
bool isBlx = (read32(loc) & 0xfe000000) == 0xfa000000;
// lld 10.0 and before always used bit0Thumb when deciding to write a BLX
// even when type not STT_FUNC.
if (!rel.sym->isFunc() && isBlx != bit0Thumb)
stateChangeWarning(loc, rel.type, *rel.sym);
if (rel.sym->isFunc() ? bit0Thumb : isBlx) {
// The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
checkInt(loc, val, 26, rel);
write32(loc, 0xfa000000 | // opcode
((val & 2) << 23) | // H
((val >> 2) & 0x00ffffff)); // imm24
break;
}
// BLX (always unconditional) instruction to an ARM Target, select an
// unconditional BL.
write32(loc, 0xeb000000 | (read32(loc) & 0x00ffffff));
// fall through as BL encoding is shared with B
}
[[fallthrough]];
case R_ARM_JUMP24:
case R_ARM_PC24:
case R_ARM_PLT32:
checkInt(loc, val, 26, rel);
write32(loc, (read32(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff));
break;
case R_ARM_THM_JUMP8:
// We do a 9 bit check because val is right-shifted by 1 bit.
checkInt(loc, val, 9, rel);
write16(loc, (read32(loc) & 0xff00) | ((val >> 1) & 0x00ff));
break;
case R_ARM_THM_JUMP11:
// We do a 12 bit check because val is right-shifted by 1 bit.
checkInt(loc, val, 12, rel);
write16(loc, (read32(loc) & 0xf800) | ((val >> 1) & 0x07ff));
break;
case R_ARM_THM_JUMP19:
// Encoding T3: Val = S:J2:J1:imm6:imm11:0
checkInt(loc, val, 21, rel);
write16(loc,
(read16(loc) & 0xfbc0) | // opcode cond
((val >> 10) & 0x0400) | // S
((val >> 12) & 0x003f)); // imm6
write16(loc + 2,
0x8000 | // opcode
((val >> 8) & 0x0800) | // J2
((val >> 5) & 0x2000) | // J1
((val >> 1) & 0x07ff)); // imm11
break;
case R_ARM_THM_CALL: {
// R_ARM_THM_CALL is used for BL and BLX instructions, for symbols of type
// STT_FUNC we choose whether to write a BL or BLX depending on the
// value of bit 0 of Val. With bit 0 == 0 denoting ARM, if the symbol is
// not of type STT_FUNC then we must preserve the original instruction.
// PLT entries are always ARM state so we know we need to interwork.
assert(rel.sym); // R_ARM_THM_CALL is always reached via relocate().
bool bit0Thumb = val & 1;
bool isBlx = (read16(loc + 2) & 0x1000) == 0;
// lld 10.0 and before always used bit0Thumb when deciding to write a BLX
// even when type not STT_FUNC. PLT entries generated by LLD are always ARM.
if (!rel.sym->isFunc() && !rel.sym->isInPlt() && isBlx == bit0Thumb)
stateChangeWarning(loc, rel.type, *rel.sym);
if (rel.sym->isFunc() || rel.sym->isInPlt() ? !bit0Thumb : isBlx) {
// We are writing a BLX. Ensure BLX destination is 4-byte aligned. As
// the BLX instruction may only be two byte aligned. This must be done
// before overflow check.
val = alignTo(val, 4);
write16(loc + 2, read16(loc + 2) & ~0x1000);
} else {
write16(loc + 2, (read16(loc + 2) & ~0x1000) | 1 << 12);
}
if (!config->armJ1J2BranchEncoding) {
// Older Arm architectures do not support R_ARM_THM_JUMP24 and have
// different encoding rules and range due to J1 and J2 always being 1.
checkInt(loc, val, 23, rel);
write16(loc,
0xf000 | // opcode
((val >> 12) & 0x07ff)); // imm11
write16(loc + 2,
(read16(loc + 2) & 0xd000) | // opcode
0x2800 | // J1 == J2 == 1
((val >> 1) & 0x07ff)); // imm11
break;
}
}
// Fall through as rest of encoding is the same as B.W
[[fallthrough]];
case R_ARM_THM_JUMP24:
// Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
checkInt(loc, val, 25, rel);
write16(loc,
0xf000 | // opcode
((val >> 14) & 0x0400) | // S
((val >> 12) & 0x03ff)); // imm10
write16(loc + 2,
(read16(loc + 2) & 0xd000) | // opcode
(((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1
(((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2
((val >> 1) & 0x07ff)); // imm11
break;
case R_ARM_MOVW_ABS_NC:
case R_ARM_MOVW_PREL_NC:
case R_ARM_MOVW_BREL_NC:
write32(loc, (read32(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) |
(val & 0x0fff));
break;
case R_ARM_MOVT_ABS:
case R_ARM_MOVT_PREL:
case R_ARM_MOVT_BREL:
write32(loc, (read32(loc) & ~0x000f0fff) |
(((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff));
break;
case R_ARM_THM_MOVT_ABS:
case R_ARM_THM_MOVT_PREL:
case R_ARM_THM_MOVT_BREL:
// Encoding T1: A = imm4:i:imm3:imm8
write16(loc,
0xf2c0 | // opcode
((val >> 17) & 0x0400) | // i
((val >> 28) & 0x000f)); // imm4
write16(loc + 2,
(read16(loc + 2) & 0x8f00) | // opcode
((val >> 12) & 0x7000) | // imm3
((val >> 16) & 0x00ff)); // imm8
break;
case R_ARM_THM_MOVW_ABS_NC:
case R_ARM_THM_MOVW_PREL_NC:
case R_ARM_THM_MOVW_BREL_NC:
// Encoding T3: A = imm4:i:imm3:imm8
write16(loc,
0xf240 | // opcode
((val >> 1) & 0x0400) | // i
((val >> 12) & 0x000f)); // imm4
write16(loc + 2,
(read16(loc + 2) & 0x8f00) | // opcode
((val << 4) & 0x7000) | // imm3
(val & 0x00ff)); // imm8
break;
case R_ARM_THM_ALU_ABS_G3:
write16(loc, (read16(loc) &~ 0x00ff) | ((val >> 24) & 0x00ff));
break;
case R_ARM_THM_ALU_ABS_G2_NC:
write16(loc, (read16(loc) &~ 0x00ff) | ((val >> 16) & 0x00ff));
break;
case R_ARM_THM_ALU_ABS_G1_NC:
write16(loc, (read16(loc) &~ 0x00ff) | ((val >> 8) & 0x00ff));
break;
case R_ARM_THM_ALU_ABS_G0_NC:
write16(loc, (read16(loc) &~ 0x00ff) | (val & 0x00ff));
break;
case R_ARM_ALU_PC_G0:
encodeAluGroup(loc, rel, val, 0, true);
break;
case R_ARM_ALU_PC_G0_NC:
encodeAluGroup(loc, rel, val, 0, false);
break;
case R_ARM_ALU_PC_G1:
encodeAluGroup(loc, rel, val, 1, true);
break;
case R_ARM_ALU_PC_G1_NC:
encodeAluGroup(loc, rel, val, 1, false);
break;
case R_ARM_ALU_PC_G2:
encodeAluGroup(loc, rel, val, 2, true);
break;
case R_ARM_LDR_PC_G0:
encodeLdrGroup(loc, rel, val, 0);
break;
case R_ARM_LDR_PC_G1:
encodeLdrGroup(loc, rel, val, 1);
break;
case R_ARM_LDR_PC_G2:
encodeLdrGroup(loc, rel, val, 2);
break;
case R_ARM_LDRS_PC_G0:
encodeLdrsGroup(loc, rel, val, 0);
break;
case R_ARM_LDRS_PC_G1:
encodeLdrsGroup(loc, rel, val, 1);
break;
case R_ARM_LDRS_PC_G2:
encodeLdrsGroup(loc, rel, val, 2);
break;
case R_ARM_THM_ALU_PREL_11_0: {
// ADR encoding T2 (sub), T3 (add) i:imm3:imm8
int64_t imm = val;
uint16_t sub = 0;
if (imm < 0) {
imm = -imm;
sub = 0x00a0;
}
checkUInt(loc, imm, 12, rel);
write16(loc, (read16(loc) & 0xfb0f) | sub | (imm & 0x800) >> 1);
write16(loc + 2,
(read16(loc + 2) & 0x8f00) | (imm & 0x700) << 4 | (imm & 0xff));
break;
}
case R_ARM_THM_PC8:
// ADR and LDR literal encoding T1 positive offset only imm8:00
// R_ARM_THM_PC8 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
// function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
// bottom bit to recover S + A - Pa.
if (rel.sym->isFunc())
val &= ~0x1;
checkUInt(loc, val, 10, rel);
checkAlignment(loc, val, 4, rel);
write16(loc, (read16(loc) & 0xff00) | (val & 0x3fc) >> 2);
break;
case R_ARM_THM_PC12: {
// LDR (literal) encoding T2, add = (U == '1') imm12
// imm12 is unsigned
// R_ARM_THM_PC12 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
// function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
// bottom bit to recover S + A - Pa.
if (rel.sym->isFunc())
val &= ~0x1;
int64_t imm12 = val;
uint16_t u = 0x0080;
if (imm12 < 0) {
imm12 = -imm12;
u = 0;
}
checkUInt(loc, imm12, 12, rel);
write16(loc, read16(loc) | u);
write16(loc + 2, (read16(loc + 2) & 0xf000) | imm12);
break;
}
default:
llvm_unreachable("unknown relocation");
}
}
int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const {
switch (type) {
default:
internalLinkerError(getErrorLocation(buf),
"cannot read addend for relocation " + toString(type));
return 0;
case R_ARM_ABS32:
case R_ARM_BASE_PREL:
case R_ARM_GLOB_DAT:
case R_ARM_GOTOFF32:
case R_ARM_GOT_BREL:
case R_ARM_GOT_PREL:
case R_ARM_IRELATIVE:
case R_ARM_REL32:
case R_ARM_RELATIVE:
case R_ARM_SBREL32:
case R_ARM_TARGET1:
case R_ARM_TARGET2:
case R_ARM_TLS_DTPMOD32:
case R_ARM_TLS_DTPOFF32:
case R_ARM_TLS_GD32:
case R_ARM_TLS_IE32:
case R_ARM_TLS_LDM32:
case R_ARM_TLS_LE32:
case R_ARM_TLS_LDO32:
case R_ARM_TLS_TPOFF32:
return SignExtend64<32>(read32(buf));
case R_ARM_PREL31:
return SignExtend64<31>(read32(buf));
case R_ARM_CALL:
case R_ARM_JUMP24:
case R_ARM_PC24:
case R_ARM_PLT32:
return SignExtend64<26>(read32(buf) << 2);
case R_ARM_THM_JUMP8:
return SignExtend64<9>(read16(buf) << 1);
case R_ARM_THM_JUMP11:
return SignExtend64<12>(read16(buf) << 1);
case R_ARM_THM_JUMP19: {
// Encoding T3: A = S:J2:J1:imm10:imm6:0
uint16_t hi = read16(buf);
uint16_t lo = read16(buf + 2);
return SignExtend64<20>(((hi & 0x0400) << 10) | // S
((lo & 0x0800) << 8) | // J2
((lo & 0x2000) << 5) | // J1
((hi & 0x003f) << 12) | // imm6
((lo & 0x07ff) << 1)); // imm11:0
}
case R_ARM_THM_CALL:
if (!config->armJ1J2BranchEncoding) {
// Older Arm architectures do not support R_ARM_THM_JUMP24 and have
// different encoding rules and range due to J1 and J2 always being 1.
uint16_t hi = read16(buf);
uint16_t lo = read16(buf + 2);
return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11
((lo & 0x7ff) << 1)); // imm11:0
break;
}
[[fallthrough]];
case R_ARM_THM_JUMP24: {
// Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
// I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
uint16_t hi = read16(buf);
uint16_t lo = read16(buf + 2);
return SignExtend64<24>(((hi & 0x0400) << 14) | // S
(~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1
(~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2
((hi & 0x003ff) << 12) | // imm0
((lo & 0x007ff) << 1)); // imm11:0
}
// ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
// MOVT is in the range -32768 <= A < 32768
case R_ARM_MOVW_ABS_NC:
case R_ARM_MOVT_ABS:
case R_ARM_MOVW_PREL_NC:
case R_ARM_MOVT_PREL:
case R_ARM_MOVW_BREL_NC:
case R_ARM_MOVT_BREL: {
uint64_t val = read32(buf) & 0x000f0fff;
return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff));
}
case R_ARM_THM_MOVW_ABS_NC:
case R_ARM_THM_MOVT_ABS:
case R_ARM_THM_MOVW_PREL_NC:
case R_ARM_THM_MOVT_PREL:
case R_ARM_THM_MOVW_BREL_NC:
case R_ARM_THM_MOVT_BREL: {
// Encoding T3: A = imm4:i:imm3:imm8
uint16_t hi = read16(buf);
uint16_t lo = read16(buf + 2);
return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4
((hi & 0x0400) << 1) | // i
((lo & 0x7000) >> 4) | // imm3
(lo & 0x00ff)); // imm8
}
case R_ARM_THM_ALU_ABS_G0_NC:
case R_ARM_THM_ALU_ABS_G1_NC:
case R_ARM_THM_ALU_ABS_G2_NC:
case R_ARM_THM_ALU_ABS_G3:
return read16(buf) & 0xff;
case R_ARM_ALU_PC_G0:
case R_ARM_ALU_PC_G0_NC:
case R_ARM_ALU_PC_G1:
case R_ARM_ALU_PC_G1_NC:
case R_ARM_ALU_PC_G2: {
// 12-bit immediate is a modified immediate made up of a 4-bit even
// right rotation and 8-bit constant. After the rotation the value
// is zero-extended. When bit 23 is set the instruction is an add, when
// bit 22 is set it is a sub.
uint32_t instr = read32(buf);
uint32_t val = rotr32(instr & 0xff, ((instr & 0xf00) >> 8) * 2);
return (instr & 0x00400000) ? -val : val;
}
case R_ARM_LDR_PC_G0:
case R_ARM_LDR_PC_G1:
case R_ARM_LDR_PC_G2: {
// ADR (literal) add = bit23, sub = bit22
// LDR (literal) u = bit23 unsigned imm12
bool u = read32(buf) & 0x00800000;
uint32_t imm12 = read32(buf) & 0xfff;
return u ? imm12 : -imm12;
}
case R_ARM_LDRS_PC_G0:
case R_ARM_LDRS_PC_G1:
case R_ARM_LDRS_PC_G2: {
// LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23 unsigned imm8
uint32_t opcode = read32(buf);
bool u = opcode & 0x00800000;
uint32_t imm4l = opcode & 0xf;
uint32_t imm4h = (opcode & 0xf00) >> 4;
return u ? (imm4h | imm4l) : -(imm4h | imm4l);
}
case R_ARM_THM_ALU_PREL_11_0: {
// Thumb2 ADR, which is an alias for a sub or add instruction with an
// unsigned immediate.
// ADR encoding T2 (sub), T3 (add) i:imm3:imm8
uint16_t hi = read16(buf);
uint16_t lo = read16(buf + 2);
uint64_t imm = (hi & 0x0400) << 1 | // i
(lo & 0x7000) >> 4 | // imm3
(lo & 0x00ff); // imm8
// For sub, addend is negative, add is positive.
return (hi & 0x00f0) ? -imm : imm;
}
case R_ARM_THM_PC8:
// ADR and LDR (literal) encoding T1
// From ELF for the ARM Architecture the initial signed addend is formed
// from an unsigned field using expression (((imm8:00 + 4) & 0x3ff) – 4)
// this trick permits the PC bias of -4 to be encoded using imm8 = 0xff
return ((((read16(buf) & 0xff) << 2) + 4) & 0x3ff) - 4;
case R_ARM_THM_PC12: {
// LDR (literal) encoding T2, add = (U == '1') imm12
bool u = read16(buf) & 0x0080;
uint64_t imm12 = read16(buf + 2) & 0x0fff;
return u ? imm12 : -imm12;
}
case R_ARM_NONE:
case R_ARM_V4BX:
case R_ARM_JUMP_SLOT:
// These relocations are defined as not having an implicit addend.
return 0;
}
}
static bool isArmMapSymbol(const Symbol *b) {
return b->getName() == "$a" || b->getName().startswith("$a.");
}
static bool isThumbMapSymbol(const Symbol *s) {
return s->getName() == "$t" || s->getName().startswith("$t.");
}
static bool isDataMapSymbol(const Symbol *b) {
return b->getName() == "$d" || b->getName().startswith("$d.");
}
void elf::sortArmMappingSymbols() {
// For each input section make sure the mapping symbols are sorted in
// ascending order.
for (auto &kv : sectionMap) {
SmallVector<const Defined *, 0> &mapSyms = kv.second;
llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
return a->value < b->value;
});
}
}
void elf::addArmInputSectionMappingSymbols() {
// Collect mapping symbols for every executable input sections.
// The linker generated mapping symbols for all the synthetic
// sections are adding into the sectionmap through the function
// addArmSyntheitcSectionMappingSymbol.
for (ELFFileBase *file : ctx.objectFiles) {
for (Symbol *sym : file->getLocalSymbols()) {
auto *def = dyn_cast<Defined>(sym);
if (!def)
continue;
if (!isArmMapSymbol(def) && !isDataMapSymbol(def) &&
!isThumbMapSymbol(def))
continue;
if (auto *sec = cast_if_present<InputSection>(def->section))
if (sec->flags & SHF_EXECINSTR)
sectionMap[sec].push_back(def);
}
}
}
// Synthetic sections are not backed by an ELF file where we can access the
// symbol table, instead mapping symbols added to synthetic sections are stored
// in the synthetic symbol table. Due to the presence of strip (--strip-all),
// we can not rely on the synthetic symbol table retaining the mapping symbols.
// Instead we record the mapping symbols locally.
void elf::addArmSyntheticSectionMappingSymbol(Defined *sym) {
if (!isArmMapSymbol(sym) && !isDataMapSymbol(sym) && !isThumbMapSymbol(sym))
return;
if (auto *sec = cast_if_present<InputSection>(sym->section))
if (sec->flags & SHF_EXECINSTR)
sectionMap[sec].push_back(sym);
}
static void toLittleEndianInstructions(uint8_t *buf, uint64_t start,
uint64_t end, uint64_t width) {
CodeState curState = static_cast<CodeState>(width);
if (curState == CodeState::Arm)
for (uint64_t i = start; i < end; i += width)
write32le(buf + i, read32(buf + i));
if (curState == CodeState::Thumb)
for (uint64_t i = start; i < end; i += width)
write16le(buf + i, read16(buf + i));
}
// Arm BE8 big endian format requires instructions to be little endian, with
// the initial contents big-endian. Convert the big-endian instructions to
// little endian leaving literal data untouched. We use mapping symbols to
// identify half open intervals of Arm code [$a, non $a) and Thumb code
// [$t, non $t) and convert these to little endian a word or half word at a
// time respectively.
void elf::convertArmInstructionstoBE8(InputSection *sec, uint8_t *buf) {
if (!sectionMap.contains(sec))
return;
SmallVector<const Defined *, 0> &mapSyms = sectionMap[sec];
if (mapSyms.empty())
return;
CodeState curState = CodeState::Data;
uint64_t start = 0, width = 0, size = sec->getSize();
for (auto &msym : mapSyms) {
CodeState newState = CodeState::Data;
if (isThumbMapSymbol(msym))
newState = CodeState::Thumb;
else if (isArmMapSymbol(msym))
newState = CodeState::Arm;
if (newState == curState)
continue;
if (curState != CodeState::Data) {
width = static_cast<uint64_t>(curState);
toLittleEndianInstructions(buf, start, msym->value, width);
}
start = msym->value;
curState = newState;
}
// Passed last mapping symbol, may need to reverse
// up to end of section.
if (curState != CodeState::Data) {
width = static_cast<uint64_t>(curState);
toLittleEndianInstructions(buf, start, size, width);
}
}
// The Arm Cortex-M Security Extensions (CMSE) splits a system into two parts;
// the non-secure and secure states with the secure state inaccessible from the
// non-secure state, apart from an area of memory in secure state called the
// secure gateway which is accessible from non-secure state. The secure gateway
// contains one or more entry points which must start with a landing pad
// instruction SG. Arm recommends that the secure gateway consists only of
// secure gateway veneers, which are made up of a SG instruction followed by a
// branch to the destination in secure state. Full details can be found in Arm
// v8-M Security Extensions Requirements on Development Tools.
//
// The CMSE model of software development requires the non-secure and secure
// states to be developed as two separate programs. The non-secure developer is
// provided with an import library defining symbols describing the entry points
// in the secure gateway. No additional linker support is required for the
// non-secure state.
//
// Development of the secure state requires linker support to manage the secure
// gateway veneers. The management consists of:
// - Creation of new secure gateway veneers based on symbol conventions.
// - Checking the address of existing secure gateway veneers.
// - Warning when existing secure gateway veneers removed.
//
// The secure gateway veneers are created in an import library, which is just an
// ELF object with a symbol table. The import library is controlled by two
// command line options:
// --in-implib (specify an input import library from a previous revision of the
// program).
// --out-implib (specify an output import library to be created by the linker).
//
// The input import library is used to manage consistency of the secure entry
// points. The output import library is for new and updated secure entry points.
//
// The symbol convention that identifies secure entry functions is the prefix
// __acle_se_ for a symbol called name the linker is expected to create a secure
// gateway veneer if symbols __acle_se_name and name have the same address.
// After creating a secure gateway veneer the symbol name labels the secure
// gateway veneer and the __acle_se_name labels the function definition.
//
// The LLD implementation:
// - Reads an existing import library with importCmseSymbols().
// - Determines which new secure gateway veneers to create and redirects calls
// within the secure state to the __acle_se_ prefixed symbol with
// processArmCmseSymbols().
// - Models the SG veneers as a synthetic section.
// Initialize symbols. symbols is a parallel array to the corresponding ELF
// symbol table.
template <class ELFT> void ObjFile<ELFT>::importCmseSymbols() {
ArrayRef<Elf_Sym> eSyms = getELFSyms<ELFT>();
// Error for local symbols. The symbol at index 0 is LOCAL. So skip it.
for (size_t i = 1, end = firstGlobal; i != end; ++i) {
errorOrWarn("CMSE symbol '" + CHECK(eSyms[i].getName(stringTable), this) +
"' in import library '" + toString(this) + "' is not global");
}
for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
const Elf_Sym &eSym = eSyms[i];
Defined *sym = reinterpret_cast<Defined *>(make<SymbolUnion>());
// Initialize symbol fields.
memset(sym, 0, sizeof(Symbol));
sym->setName(CHECK(eSyms[i].getName(stringTable), this));
sym->value = eSym.st_value;
sym->size = eSym.st_size;
sym->type = eSym.getType();
sym->binding = eSym.getBinding();
sym->stOther = eSym.st_other;
if (eSym.st_shndx != SHN_ABS) {
error("CMSE symbol '" + sym->getName() + "' in import library '" +
toString(this) + "' is not absolute");
continue;
}
if (!(eSym.st_value & 1) || (eSym.getType() != STT_FUNC)) {
error("CMSE symbol '" + sym->getName() + "' in import library '" +
toString(this) + "' is not a Thumb function definition");
continue;
}
if (symtab.cmseImportLib.count(sym->getName())) {
error("CMSE symbol '" + sym->getName() +
"' is multiply defined in import library '" + toString(this) + "'");
continue;
}
if (eSym.st_size != ACLESESYM_SIZE) {
warn("CMSE symbol '" + sym->getName() + "' in import library '" +
toString(this) + "' does not have correct size of " +
Twine(ACLESESYM_SIZE) + " bytes");
}
symtab.cmseImportLib[sym->getName()] = sym;
}
}
// Check symbol attributes of the acleSeSym, sym pair.
// Both symbols should be global/weak Thumb code symbol definitions.
static std::string checkCmseSymAttributes(Symbol *acleSeSym, Symbol *sym) {
auto check = [](Symbol *s, StringRef type) -> std::optional<std::string> {
auto d = dyn_cast_or_null<Defined>(s);
if (!(d && d->isFunc() && (d->value & 1)))
return (Twine(toString(s->file)) + ": cmse " + type + " symbol '" +
s->getName() + "' is not a Thumb function definition")
.str();
if (!d->section)
return (Twine(toString(s->file)) + ": cmse " + type + " symbol '" +
s->getName() + "' cannot be an absolute symbol")
.str();
return std::nullopt;
};
for (auto [sym, type] :
{std::make_pair(acleSeSym, "special"), std::make_pair(sym, "entry")})
if (auto err = check(sym, type))
return *err;
return "";
}
// Look for [__acle_se_<sym>, <sym>] pairs, as specified in the Cortex-M
// Security Extensions specification.
// 1) <sym> : A standard function name.
// 2) __acle_se_<sym> : A special symbol that prefixes the standard function
// name with __acle_se_.
// Both these symbols are Thumb function symbols with external linkage.
// <sym> may be redefined in .gnu.sgstubs.
void elf::processArmCmseSymbols() {
if (!config->cmseImplib)
return;
// Only symbols with external linkage end up in symtab, so no need to do
// linkage checks. Only check symbol type.
for (Symbol *acleSeSym : symtab.getSymbols()) {
if (!acleSeSym->getName().startswith(ACLESESYM_PREFIX))
continue;
// If input object build attributes do not support CMSE, error and disable
// further scanning for <sym>, __acle_se_<sym> pairs.
if (!config->armCMSESupport) {
error("CMSE is only supported by ARMv8-M architecture or later");
config->cmseImplib = false;
break;
}
// Try to find the associated symbol definition.
// Symbol must have external linkage.
StringRef name = acleSeSym->getName().substr(std::strlen(ACLESESYM_PREFIX));
Symbol *sym = symtab.find(name);
if (!sym) {
error(toString(acleSeSym->file) + ": cmse special symbol '" +
acleSeSym->getName() +
"' detected, but no associated entry function definition '" + name +
"' with external linkage found");
continue;
}
std::string errMsg = checkCmseSymAttributes(acleSeSym, sym);
if (!errMsg.empty()) {
error(errMsg);
continue;
}
// <sym> may be redefined later in the link in .gnu.sgstubs
symtab.cmseSymMap[name] = {acleSeSym, sym};
}
// If this is an Arm CMSE secure app, replace references to entry symbol <sym>
// with its corresponding special symbol __acle_se_<sym>.
parallelForEach(ctx.objectFiles, [&](InputFile *file) {
MutableArrayRef<Symbol *> syms = file->getMutableSymbols();
for (size_t i = 0, e = syms.size(); i != e; ++i) {
StringRef symName = syms[i]->getName();
if (symtab.cmseSymMap.count(symName))
syms[i] = symtab.cmseSymMap[symName].acleSeSym;
}
});
}
class elf::ArmCmseSGVeneer {
public:
ArmCmseSGVeneer(Symbol *sym, Symbol *acleSeSym,
std::optional<uint64_t> addr = std::nullopt)
: sym(sym), acleSeSym(acleSeSym), entAddr{addr} {}
static const size_t size{ACLESESYM_SIZE};
const std::optional<uint64_t> getAddr() const { return entAddr; };
Symbol *sym;
Symbol *acleSeSym;
uint64_t offset = 0;
private:
const std::optional<uint64_t> entAddr;
};
ArmCmseSGSection::ArmCmseSGSection()
: SyntheticSection(llvm::ELF::SHF_ALLOC | llvm::ELF::SHF_EXECINSTR,
llvm::ELF::SHT_PROGBITS,
/*alignment=*/32, ".gnu.sgstubs") {
entsize = ACLESESYM_SIZE;
// The range of addresses used in the CMSE import library should be fixed.
for (auto &[_, sym] : symtab.cmseImportLib) {
if (impLibMaxAddr <= sym->value)
impLibMaxAddr = sym->value + sym->size;
}
if (symtab.cmseSymMap.empty())
return;
addMappingSymbol();
for (auto &[_, entryFunc] : symtab.cmseSymMap)
addSGVeneer(cast<Defined>(entryFunc.acleSeSym),
cast<Defined>(entryFunc.sym));
for (auto &[_, sym] : symtab.cmseImportLib) {
if (!symtab.inCMSEOutImpLib.count(sym->getName()))
warn("entry function '" + sym->getName() +
"' from CMSE import library is not present in secure application");
}
if (!symtab.cmseImportLib.empty() && config->cmseOutputLib.empty()) {
for (auto &[_, entryFunc] : symtab.cmseSymMap) {
Symbol *sym = entryFunc.sym;
if (!symtab.inCMSEOutImpLib.count(sym->getName()))
warn("new entry function '" + sym->getName() +
"' introduced but no output import library specified");
}
}
}
void ArmCmseSGSection::addSGVeneer(Symbol *acleSeSym, Symbol *sym) {
entries.emplace_back(acleSeSym, sym);
if (symtab.cmseImportLib.count(sym->getName()))
symtab.inCMSEOutImpLib[sym->getName()] = true;
// Symbol addresses different, nothing to do.
if (acleSeSym->file != sym->file ||
cast<Defined>(*acleSeSym).value != cast<Defined>(*sym).value)
return;
// Only secure symbols with values equal to that of it's non-secure
// counterpart needs to be in the .gnu.sgstubs section.
ArmCmseSGVeneer *ss = nullptr;
if (symtab.cmseImportLib.count(sym->getName())) {
Defined *impSym = symtab.cmseImportLib[sym->getName()];
ss = make<ArmCmseSGVeneer>(sym, acleSeSym, impSym->value);
} else {
ss = make<ArmCmseSGVeneer>(sym, acleSeSym);
++newEntries;
}
sgVeneers.emplace_back(ss);
}
void ArmCmseSGSection::writeTo(uint8_t *buf) {
for (ArmCmseSGVeneer *s : sgVeneers) {
uint8_t *p = buf + s->offset;
write16(p + 0, 0xe97f); // SG
write16(p + 2, 0xe97f);
write16(p + 4, 0xf000); // B.W S
write16(p + 6, 0xb000);
target->relocateNoSym(p + 4, R_ARM_THM_JUMP24,
s->acleSeSym->getVA() -
(getVA() + s->offset + s->size));
}
}
void ArmCmseSGSection::addMappingSymbol() {
addSyntheticLocal("$t", STT_NOTYPE, /*off=*/0, /*size=*/0, *this);
}
size_t ArmCmseSGSection::getSize() const {
if (sgVeneers.empty())
return (impLibMaxAddr ? impLibMaxAddr - getVA() : 0) + newEntries * entsize;
return entries.size() * entsize;
}
void ArmCmseSGSection::finalizeContents() {
if (sgVeneers.empty())
return;
auto it =
std::stable_partition(sgVeneers.begin(), sgVeneers.end(),
[](auto *i) { return i->getAddr().has_value(); });
std::sort(sgVeneers.begin(), it, [](auto *a, auto *b) {
return a->getAddr().value() < b->getAddr().value();
});
// This is the partition of the veneers with fixed addresses.
uint64_t addr = (*sgVeneers.begin())->getAddr().has_value()
? (*sgVeneers.begin())->getAddr().value()
: getVA();
// Check if the start address of '.gnu.sgstubs' correspond to the
// linker-synthesized veneer with the lowest address.
if ((getVA() & ~1) != (addr & ~1)) {
error("start address of '.gnu.sgstubs' is different from previous link");
return;
}
for (size_t i = 0; i < sgVeneers.size(); ++i) {
ArmCmseSGVeneer *s = sgVeneers[i];
s->offset = i * s->size;
Defined(file, StringRef(), s->sym->binding, s->sym->stOther, s->sym->type,
s->offset | 1, s->size, this)
.overwrite(*s->sym);
}
}
// Write the CMSE import library to disk.
// The CMSE import library is a relocatable object with only a symbol table.
// The symbols are copies of the (absolute) symbols of the secure gateways
// in the executable output by this link.
// See Arm® v8-M Security Extensions: Requirements on Development Tools
// https://developer.arm.com/documentation/ecm0359818/latest
template <typename ELFT> void elf::writeARMCmseImportLib() {
StringTableSection *shstrtab =
make<StringTableSection>(".shstrtab", /*dynamic=*/false);
StringTableSection *strtab =
make<StringTableSection>(".strtab", /*dynamic=*/false);
SymbolTableBaseSection *impSymTab = make<SymbolTableSection<ELFT>>(*strtab);
SmallVector<std::pair<OutputSection *, SyntheticSection *>, 0> osIsPairs;
osIsPairs.emplace_back(make<OutputSection>(strtab->name, 0, 0), strtab);
osIsPairs.emplace_back(make<OutputSection>(impSymTab->name, 0, 0), impSymTab);
osIsPairs.emplace_back(make<OutputSection>(shstrtab->name, 0, 0), shstrtab);
std::sort(symtab.cmseSymMap.begin(), symtab.cmseSymMap.end(),
[](const auto &a, const auto &b) -> bool {
return a.second.sym->getVA() < b.second.sym->getVA();
});
// Copy the secure gateway entry symbols to the import library symbol table.
for (auto &p : symtab.cmseSymMap) {
Defined *d = cast<Defined>(p.second.sym);
impSymTab->addSymbol(makeDefined(nullptr, d->getName(), d->computeBinding(),
/*stOther=*/0, STT_FUNC, d->getVA(),
d->getSize(), nullptr));
}
size_t idx = 0;
uint64_t off = sizeof(typename ELFT::Ehdr);
for (auto &[osec, isec] : osIsPairs) {
osec->sectionIndex = ++idx;
osec->recordSection(isec);
osec->finalizeInputSections();
osec->shName = shstrtab->addString(osec->name);
osec->size = isec->getSize();
isec->finalizeContents();
osec->offset = alignToPowerOf2(off, osec->addralign);
off = osec->offset + osec->size;
}
const uint64_t sectionHeaderOff = alignToPowerOf2(off, config->wordsize);
const auto shnum = osIsPairs.size() + 1;
const uint64_t fileSize =
sectionHeaderOff + shnum * sizeof(typename ELFT::Shdr);
const unsigned flags =
config->mmapOutputFile ? 0 : (unsigned)FileOutputBuffer::F_no_mmap;
unlinkAsync(config->cmseOutputLib);
Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
FileOutputBuffer::create(config->cmseOutputLib, fileSize, flags);
if (!bufferOrErr) {
error("failed to open " + config->cmseOutputLib + ": " +
llvm::toString(bufferOrErr.takeError()));
return;
}
// Write the ELF Header
std::unique_ptr<FileOutputBuffer> &buffer = *bufferOrErr;
uint8_t *const buf = buffer->getBufferStart();
memcpy(buf, "\177ELF", 4);
auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
eHdr->e_type = ET_REL;
eHdr->e_entry = 0;
eHdr->e_shoff = sectionHeaderOff;
eHdr->e_ident[EI_CLASS] = ELFCLASS32;
eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB;
eHdr->e_ident[EI_VERSION] = EV_CURRENT;
eHdr->e_ident[EI_OSABI] = config->osabi;
eHdr->e_ident[EI_ABIVERSION] = 0;
eHdr->e_machine = EM_ARM;
eHdr->e_version = EV_CURRENT;
eHdr->e_flags = config->eflags;
eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
eHdr->e_phnum = 0;
eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
eHdr->e_phoff = 0;
eHdr->e_phentsize = 0;
eHdr->e_shnum = shnum;
eHdr->e_shstrndx = shstrtab->getParent()->sectionIndex;
// Write the section header table.
auto *sHdrs = reinterpret_cast<typename ELFT::Shdr *>(buf + eHdr->e_shoff);
for (auto &[osec, _] : osIsPairs)
osec->template writeHeaderTo<ELFT>(++sHdrs);
// Write section contents to a mmap'ed file.
{
parallel::TaskGroup tg;
for (auto &[osec, _] : osIsPairs)
osec->template writeTo<ELFT>(buf + osec->offset, tg);
}
if (auto e = buffer->commit())
fatal("failed to write output '" + buffer->getPath() +
"': " + toString(std::move(e)));
}
TargetInfo *elf::getARMTargetInfo() {
static ARM target;
return ⌖
}
template void elf::writeARMCmseImportLib<ELF32LE>();
template void elf::writeARMCmseImportLib<ELF32BE>();
template void elf::writeARMCmseImportLib<ELF64LE>();
template void elf::writeARMCmseImportLib<ELF64BE>();
template void ObjFile<ELF32LE>::importCmseSymbols();
template void ObjFile<ELF32BE>::importCmseSymbols();
template void ObjFile<ELF64LE>::importCmseSymbols();
template void ObjFile<ELF64BE>::importCmseSymbols();
|