1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
|
//===- InputSection.h -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLD_ELF_INPUT_SECTION_H
#define LLD_ELF_INPUT_SECTION_H
#include "Relocations.h"
#include "lld/Common/CommonLinkerContext.h"
#include "lld/Common/LLVM.h"
#include "lld/Common/Memory.h"
#include "llvm/ADT/CachedHashString.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Compiler.h"
namespace lld {
namespace elf {
class InputFile;
class Symbol;
class Defined;
struct Partition;
class SyntheticSection;
template <class ELFT> class ObjFile;
class OutputSection;
LLVM_LIBRARY_VISIBILITY extern std::vector<Partition> partitions;
// Returned by InputSectionBase::relsOrRelas. At least one member is empty.
template <class ELFT> struct RelsOrRelas {
ArrayRef<typename ELFT::Rel> rels;
ArrayRef<typename ELFT::Rela> relas;
bool areRelocsRel() const { return rels.size(); }
};
// This is the base class of all sections that lld handles. Some are sections in
// input files, some are sections in the produced output file and some exist
// just as a convenience for implementing special ways of combining some
// sections.
class SectionBase {
public:
enum Kind { Regular, Synthetic, EHFrame, Merge, Output };
Kind kind() const { return (Kind)sectionKind; }
uint8_t sectionKind : 3;
// The next two bit fields are only used by InputSectionBase, but we
// put them here so the struct packs better.
uint8_t bss : 1;
// Set for sections that should not be folded by ICF.
uint8_t keepUnique : 1;
uint8_t partition = 1;
uint32_t type;
StringRef name;
// The 1-indexed partition that this section is assigned to by the garbage
// collector, or 0 if this section is dead. Normally there is only one
// partition, so this will either be 0 or 1.
elf::Partition &getPartition() const;
// These corresponds to the fields in Elf_Shdr.
uint64_t flags;
uint32_t addralign;
uint32_t entsize;
uint32_t link;
uint32_t info;
OutputSection *getOutputSection();
const OutputSection *getOutputSection() const {
return const_cast<SectionBase *>(this)->getOutputSection();
}
// Translate an offset in the input section to an offset in the output
// section.
uint64_t getOffset(uint64_t offset) const;
uint64_t getVA(uint64_t offset = 0) const;
bool isLive() const { return partition != 0; }
void markLive() { partition = 1; }
void markDead() { partition = 0; }
protected:
constexpr SectionBase(Kind sectionKind, StringRef name, uint64_t flags,
uint32_t entsize, uint32_t addralign, uint32_t type,
uint32_t info, uint32_t link)
: sectionKind(sectionKind), bss(false), keepUnique(false), type(type),
name(name), flags(flags), addralign(addralign), entsize(entsize),
link(link), info(info) {}
};
struct RISCVRelaxAux;
// This corresponds to a section of an input file.
class InputSectionBase : public SectionBase {
public:
template <class ELFT>
InputSectionBase(ObjFile<ELFT> &file, const typename ELFT::Shdr &header,
StringRef name, Kind sectionKind);
InputSectionBase(InputFile *file, uint64_t flags, uint32_t type,
uint64_t entsize, uint32_t link, uint32_t info,
uint32_t addralign, ArrayRef<uint8_t> data, StringRef name,
Kind sectionKind);
static bool classof(const SectionBase *s) { return s->kind() != Output; }
// The file which contains this section. Its dynamic type is always
// ObjFile<ELFT>, but in order to avoid ELFT, we use InputFile as
// its static type.
InputFile *file;
// Input sections are part of an output section. Special sections
// like .eh_frame and merge sections are first combined into a
// synthetic section that is then added to an output section. In all
// cases this points one level up.
SectionBase *parent = nullptr;
// Section index of the relocation section if exists.
uint32_t relSecIdx = 0;
template <class ELFT> ObjFile<ELFT> *getFile() const {
return cast_or_null<ObjFile<ELFT>>(file);
}
// Used by --optimize-bb-jumps and RISC-V linker relaxation temporarily to
// indicate the number of bytes which is not counted in the size. This should
// be reset to zero after uses.
uint32_t bytesDropped = 0;
mutable bool compressed = false;
// Whether the section needs to be padded with a NOP filler due to
// deleteFallThruJmpInsn.
bool nopFiller = false;
void drop_back(unsigned num) {
assert(bytesDropped + num < 256);
bytesDropped += num;
}
void push_back(uint64_t num) {
assert(bytesDropped >= num);
bytesDropped -= num;
}
mutable const uint8_t *content_;
uint64_t size;
void trim() {
if (bytesDropped) {
size -= bytesDropped;
bytesDropped = 0;
}
}
ArrayRef<uint8_t> content() const {
return ArrayRef<uint8_t>(content_, size);
}
ArrayRef<uint8_t> contentMaybeDecompress() const {
if (compressed)
decompress();
return content();
}
// The next member in the section group if this section is in a group. This is
// used by --gc-sections.
InputSectionBase *nextInSectionGroup = nullptr;
template <class ELFT> RelsOrRelas<ELFT> relsOrRelas() const;
// InputSections that are dependent on us (reverse dependency for GC)
llvm::TinyPtrVector<InputSection *> dependentSections;
// Returns the size of this section (even if this is a common or BSS.)
size_t getSize() const;
InputSection *getLinkOrderDep() const;
// Get the function symbol that encloses this offset from within the
// section.
Defined *getEnclosingFunction(uint64_t offset);
// Returns a source location string. Used to construct an error message.
std::string getLocation(uint64_t offset);
std::string getSrcMsg(const Symbol &sym, uint64_t offset);
std::string getObjMsg(uint64_t offset);
// Each section knows how to relocate itself. These functions apply
// relocations, assuming that Buf points to this section's copy in
// the mmap'ed output buffer.
template <class ELFT> void relocate(uint8_t *buf, uint8_t *bufEnd);
static uint64_t getRelocTargetVA(const InputFile *File, RelType Type,
int64_t A, uint64_t P, const Symbol &Sym,
RelExpr Expr);
// The native ELF reloc data type is not very convenient to handle.
// So we convert ELF reloc records to our own records in Relocations.cpp.
// This vector contains such "cooked" relocations.
SmallVector<Relocation, 0> relocations;
void addReloc(const Relocation &r) { relocations.push_back(r); }
MutableArrayRef<Relocation> relocs() { return relocations; }
ArrayRef<Relocation> relocs() const { return relocations; }
union {
// These are modifiers to jump instructions that are necessary when basic
// block sections are enabled. Basic block sections creates opportunities
// to relax jump instructions at basic block boundaries after reordering the
// basic blocks.
JumpInstrMod *jumpInstrMod = nullptr;
// Auxiliary information for RISC-V linker relaxation. RISC-V does not use
// jumpInstrMod.
RISCVRelaxAux *relaxAux;
// The compressed content size when `compressed` is true.
size_t compressedSize;
};
// A function compiled with -fsplit-stack calling a function
// compiled without -fsplit-stack needs its prologue adjusted. Find
// such functions and adjust their prologues. This is very similar
// to relocation. See https://gcc.gnu.org/wiki/SplitStacks for more
// information.
template <typename ELFT>
void adjustSplitStackFunctionPrologues(uint8_t *buf, uint8_t *end);
template <typename T> llvm::ArrayRef<T> getDataAs() const {
size_t s = content().size();
assert(s % sizeof(T) == 0);
return llvm::ArrayRef<T>((const T *)content().data(), s / sizeof(T));
}
protected:
template <typename ELFT>
void parseCompressedHeader();
void decompress() const;
};
// SectionPiece represents a piece of splittable section contents.
// We allocate a lot of these and binary search on them. This means that they
// have to be as compact as possible, which is why we don't store the size (can
// be found by looking at the next one).
struct SectionPiece {
SectionPiece() = default;
SectionPiece(size_t off, uint32_t hash, bool live)
: inputOff(off), live(live), hash(hash >> 1) {}
uint32_t inputOff;
uint32_t live : 1;
uint32_t hash : 31;
uint64_t outputOff = 0;
};
static_assert(sizeof(SectionPiece) == 16, "SectionPiece is too big");
// This corresponds to a SHF_MERGE section of an input file.
class MergeInputSection : public InputSectionBase {
public:
template <class ELFT>
MergeInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
StringRef name);
MergeInputSection(uint64_t flags, uint32_t type, uint64_t entsize,
ArrayRef<uint8_t> data, StringRef name);
static bool classof(const SectionBase *s) { return s->kind() == Merge; }
void splitIntoPieces();
// Translate an offset in the input section to an offset in the parent
// MergeSyntheticSection.
uint64_t getParentOffset(uint64_t offset) const;
// Splittable sections are handled as a sequence of data
// rather than a single large blob of data.
SmallVector<SectionPiece, 0> pieces;
// Returns I'th piece's data. This function is very hot when
// string merging is enabled, so we want to inline.
LLVM_ATTRIBUTE_ALWAYS_INLINE
llvm::CachedHashStringRef getData(size_t i) const {
size_t begin = pieces[i].inputOff;
size_t end =
(pieces.size() - 1 == i) ? content().size() : pieces[i + 1].inputOff;
return {toStringRef(content().slice(begin, end - begin)), pieces[i].hash};
}
// Returns the SectionPiece at a given input section offset.
SectionPiece &getSectionPiece(uint64_t offset);
const SectionPiece &getSectionPiece(uint64_t offset) const {
return const_cast<MergeInputSection *>(this)->getSectionPiece(offset);
}
SyntheticSection *getParent() const {
return cast_or_null<SyntheticSection>(parent);
}
private:
void splitStrings(StringRef s, size_t size);
void splitNonStrings(ArrayRef<uint8_t> a, size_t size);
};
struct EhSectionPiece {
EhSectionPiece(size_t off, InputSectionBase *sec, uint32_t size,
unsigned firstRelocation)
: inputOff(off), sec(sec), size(size), firstRelocation(firstRelocation) {}
ArrayRef<uint8_t> data() const {
return {sec->content().data() + this->inputOff, size};
}
size_t inputOff;
ssize_t outputOff = -1;
InputSectionBase *sec;
uint32_t size;
unsigned firstRelocation;
};
// This corresponds to a .eh_frame section of an input file.
class EhInputSection : public InputSectionBase {
public:
template <class ELFT>
EhInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
StringRef name);
static bool classof(const SectionBase *s) { return s->kind() == EHFrame; }
template <class ELFT> void split();
template <class ELFT, class RelTy> void split(ArrayRef<RelTy> rels);
// Splittable sections are handled as a sequence of data
// rather than a single large blob of data.
SmallVector<EhSectionPiece, 0> cies, fdes;
SyntheticSection *getParent() const;
uint64_t getParentOffset(uint64_t offset) const;
};
// This is a section that is added directly to an output section
// instead of needing special combination via a synthetic section. This
// includes all input sections with the exceptions of SHF_MERGE and
// .eh_frame. It also includes the synthetic sections themselves.
class InputSection : public InputSectionBase {
public:
InputSection(InputFile *f, uint64_t flags, uint32_t type, uint32_t addralign,
ArrayRef<uint8_t> data, StringRef name, Kind k = Regular);
template <class ELFT>
InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
StringRef name);
static bool classof(const SectionBase *s) {
return s->kind() == SectionBase::Regular ||
s->kind() == SectionBase::Synthetic;
}
// Write this section to a mmap'ed file, assuming Buf is pointing to
// beginning of the output section.
template <class ELFT> void writeTo(uint8_t *buf);
OutputSection *getParent() const {
return reinterpret_cast<OutputSection *>(parent);
}
// This variable has two usages. Initially, it represents an index in the
// OutputSection's InputSection list, and is used when ordering SHF_LINK_ORDER
// sections. After assignAddresses is called, it represents the offset from
// the beginning of the output section this section was assigned to.
uint64_t outSecOff = 0;
InputSectionBase *getRelocatedSection() const;
template <class ELFT, class RelTy>
void relocateNonAlloc(uint8_t *buf, llvm::ArrayRef<RelTy> rels);
// Points to the canonical section. If ICF folds two sections, repl pointer of
// one section points to the other.
InputSection *repl = this;
// Used by ICF.
uint32_t eqClass[2] = {0, 0};
// Called by ICF to merge two input sections.
void replace(InputSection *other);
static InputSection discarded;
private:
template <class ELFT, class RelTy>
void copyRelocations(uint8_t *buf, llvm::ArrayRef<RelTy> rels);
template <class ELFT> void copyShtGroup(uint8_t *buf);
};
static_assert(sizeof(InputSection) <= 160, "InputSection is too big");
class SyntheticSection : public InputSection {
public:
SyntheticSection(uint64_t flags, uint32_t type, uint32_t addralign,
StringRef name)
: InputSection(nullptr, flags, type, addralign, {}, name,
InputSectionBase::Synthetic) {}
virtual ~SyntheticSection() = default;
virtual size_t getSize() const = 0;
virtual bool updateAllocSize() { return false; }
// If the section has the SHF_ALLOC flag and the size may be changed if
// thunks are added, update the section size.
virtual bool isNeeded() const { return true; }
virtual void finalizeContents() {}
virtual void writeTo(uint8_t *buf) = 0;
static bool classof(const SectionBase *sec) {
return sec->kind() == InputSectionBase::Synthetic;
}
};
inline bool isDebugSection(const InputSectionBase &sec) {
return (sec.flags & llvm::ELF::SHF_ALLOC) == 0 &&
sec.name.starts_with(".debug");
}
// The set of TOC entries (.toc + addend) for which we should not apply
// toc-indirect to toc-relative relaxation. const Symbol * refers to the
// STT_SECTION symbol associated to the .toc input section.
extern llvm::DenseSet<std::pair<const Symbol *, uint64_t>> ppc64noTocRelax;
} // namespace elf
std::string toString(const elf::InputSectionBase *);
} // namespace lld
#endif
|