1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
|
//===- ARM64.cpp ----------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Arch/ARM64Common.h"
#include "InputFiles.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "mach-o/compact_unwind_encoding.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
using namespace llvm::MachO;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::macho;
namespace {
struct ARM64 : ARM64Common {
ARM64();
void writeStub(uint8_t *buf, const Symbol &, uint64_t) const override;
void writeStubHelperHeader(uint8_t *buf) const override;
void writeStubHelperEntry(uint8_t *buf, const Symbol &,
uint64_t entryAddr) const override;
void writeObjCMsgSendStub(uint8_t *buf, Symbol *sym, uint64_t stubsAddr,
uint64_t stubOffset, uint64_t selrefsVA,
uint64_t selectorIndex, uint64_t gotAddr,
uint64_t msgSendIndex) const override;
void populateThunk(InputSection *thunk, Symbol *funcSym) override;
void applyOptimizationHints(uint8_t *, const ObjFile &) const override;
};
} // namespace
// Random notes on reloc types:
// ADDEND always pairs with BRANCH26, PAGE21, or PAGEOFF12
// POINTER_TO_GOT: ld64 supports a 4-byte pc-relative form as well as an 8-byte
// absolute version of this relocation. The semantics of the absolute relocation
// are weird -- it results in the value of the GOT slot being written, instead
// of the address. Let's not support it unless we find a real-world use case.
static constexpr std::array<RelocAttrs, 11> relocAttrsArray{{
#define B(x) RelocAttrBits::x
{"UNSIGNED",
B(UNSIGNED) | B(ABSOLUTE) | B(EXTERN) | B(LOCAL) | B(BYTE4) | B(BYTE8)},
{"SUBTRACTOR", B(SUBTRAHEND) | B(EXTERN) | B(BYTE4) | B(BYTE8)},
{"BRANCH26", B(PCREL) | B(EXTERN) | B(BRANCH) | B(BYTE4)},
{"PAGE21", B(PCREL) | B(EXTERN) | B(BYTE4)},
{"PAGEOFF12", B(ABSOLUTE) | B(EXTERN) | B(BYTE4)},
{"GOT_LOAD_PAGE21", B(PCREL) | B(EXTERN) | B(GOT) | B(BYTE4)},
{"GOT_LOAD_PAGEOFF12",
B(ABSOLUTE) | B(EXTERN) | B(GOT) | B(LOAD) | B(BYTE4)},
{"POINTER_TO_GOT", B(PCREL) | B(EXTERN) | B(GOT) | B(POINTER) | B(BYTE4)},
{"TLVP_LOAD_PAGE21", B(PCREL) | B(EXTERN) | B(TLV) | B(BYTE4)},
{"TLVP_LOAD_PAGEOFF12",
B(ABSOLUTE) | B(EXTERN) | B(TLV) | B(LOAD) | B(BYTE4)},
{"ADDEND", B(ADDEND)},
#undef B
}};
static constexpr uint32_t stubCode[] = {
0x90000010, // 00: adrp x16, __la_symbol_ptr@page
0xf9400210, // 04: ldr x16, [x16, __la_symbol_ptr@pageoff]
0xd61f0200, // 08: br x16
};
void ARM64::writeStub(uint8_t *buf8, const Symbol &sym,
uint64_t pointerVA) const {
::writeStub(buf8, stubCode, sym, pointerVA);
}
static constexpr uint32_t stubHelperHeaderCode[] = {
0x90000011, // 00: adrp x17, _dyld_private@page
0x91000231, // 04: add x17, x17, _dyld_private@pageoff
0xa9bf47f0, // 08: stp x16/x17, [sp, #-16]!
0x90000010, // 0c: adrp x16, dyld_stub_binder@page
0xf9400210, // 10: ldr x16, [x16, dyld_stub_binder@pageoff]
0xd61f0200, // 14: br x16
};
void ARM64::writeStubHelperHeader(uint8_t *buf8) const {
::writeStubHelperHeader<LP64>(buf8, stubHelperHeaderCode);
}
static constexpr uint32_t stubHelperEntryCode[] = {
0x18000050, // 00: ldr w16, l0
0x14000000, // 04: b stubHelperHeader
0x00000000, // 08: l0: .long 0
};
void ARM64::writeStubHelperEntry(uint8_t *buf8, const Symbol &sym,
uint64_t entryVA) const {
::writeStubHelperEntry(buf8, stubHelperEntryCode, sym, entryVA);
}
static constexpr uint32_t objcStubsFastCode[] = {
0x90000001, // adrp x1, __objc_selrefs@page
0xf9400021, // ldr x1, [x1, @selector("foo")@pageoff]
0x90000010, // adrp x16, _got@page
0xf9400210, // ldr x16, [x16, _objc_msgSend@pageoff]
0xd61f0200, // br x16
0xd4200020, // brk #0x1
0xd4200020, // brk #0x1
0xd4200020, // brk #0x1
};
void ARM64::writeObjCMsgSendStub(uint8_t *buf, Symbol *sym, uint64_t stubsAddr,
uint64_t stubOffset, uint64_t selrefsVA,
uint64_t selectorIndex, uint64_t gotAddr,
uint64_t msgSendIndex) const {
::writeObjCMsgSendStub<LP64>(buf, objcStubsFastCode, sym, stubsAddr,
stubOffset, selrefsVA, selectorIndex, gotAddr,
msgSendIndex);
}
// A thunk is the relaxed variation of stubCode. We don't need the
// extra indirection through a lazy pointer because the target address
// is known at link time.
static constexpr uint32_t thunkCode[] = {
0x90000010, // 00: adrp x16, <thunk.ptr>@page
0x91000210, // 04: add x16, [x16,<thunk.ptr>@pageoff]
0xd61f0200, // 08: br x16
};
void ARM64::populateThunk(InputSection *thunk, Symbol *funcSym) {
thunk->align = 4;
thunk->data = {reinterpret_cast<const uint8_t *>(thunkCode),
sizeof(thunkCode)};
thunk->relocs.emplace_back(/*type=*/ARM64_RELOC_PAGEOFF12,
/*pcrel=*/false, /*length=*/2,
/*offset=*/4, /*addend=*/0,
/*referent=*/funcSym);
thunk->relocs.emplace_back(/*type=*/ARM64_RELOC_PAGE21,
/*pcrel=*/true, /*length=*/2,
/*offset=*/0, /*addend=*/0,
/*referent=*/funcSym);
}
ARM64::ARM64() : ARM64Common(LP64()) {
cpuType = CPU_TYPE_ARM64;
cpuSubtype = CPU_SUBTYPE_ARM64_ALL;
stubSize = sizeof(stubCode);
thunkSize = sizeof(thunkCode);
objcStubsFastSize = sizeof(objcStubsFastCode);
objcStubsAlignment = 32;
// Branch immediate is two's complement 26 bits, which is implicitly
// multiplied by 4 (since all functions are 4-aligned: The branch range
// is -4*(2**(26-1))..4*(2**(26-1) - 1).
backwardBranchRange = 128 * 1024 * 1024;
forwardBranchRange = backwardBranchRange - 4;
modeDwarfEncoding = UNWIND_ARM64_MODE_DWARF;
subtractorRelocType = ARM64_RELOC_SUBTRACTOR;
unsignedRelocType = ARM64_RELOC_UNSIGNED;
stubHelperHeaderSize = sizeof(stubHelperHeaderCode);
stubHelperEntrySize = sizeof(stubHelperEntryCode);
relocAttrs = {relocAttrsArray.data(), relocAttrsArray.size()};
}
namespace {
struct Adrp {
uint32_t destRegister;
int64_t addend;
};
struct Add {
uint8_t destRegister;
uint8_t srcRegister;
uint32_t addend;
};
enum ExtendType { ZeroExtend = 1, Sign64 = 2, Sign32 = 3 };
struct Ldr {
uint8_t destRegister;
uint8_t baseRegister;
uint8_t p2Size;
bool isFloat;
ExtendType extendType;
int64_t offset;
};
} // namespace
static bool parseAdrp(uint32_t insn, Adrp &adrp) {
if ((insn & 0x9f000000) != 0x90000000)
return false;
adrp.destRegister = insn & 0x1f;
uint64_t immHi = (insn >> 5) & 0x7ffff;
uint64_t immLo = (insn >> 29) & 0x3;
adrp.addend = SignExtend64<21>(immLo | (immHi << 2)) * 4096;
return true;
}
static bool parseAdd(uint32_t insn, Add &add) {
if ((insn & 0xffc00000) != 0x91000000)
return false;
add.destRegister = insn & 0x1f;
add.srcRegister = (insn >> 5) & 0x1f;
add.addend = (insn >> 10) & 0xfff;
return true;
}
static bool parseLdr(uint32_t insn, Ldr &ldr) {
ldr.destRegister = insn & 0x1f;
ldr.baseRegister = (insn >> 5) & 0x1f;
uint8_t size = insn >> 30;
uint8_t opc = (insn >> 22) & 3;
if ((insn & 0x3fc00000) == 0x39400000) {
// LDR (immediate), LDRB (immediate), LDRH (immediate)
ldr.p2Size = size;
ldr.extendType = ZeroExtend;
ldr.isFloat = false;
} else if ((insn & 0x3f800000) == 0x39800000) {
// LDRSB (immediate), LDRSH (immediate), LDRSW (immediate)
ldr.p2Size = size;
ldr.extendType = static_cast<ExtendType>(opc);
ldr.isFloat = false;
} else if ((insn & 0x3f400000) == 0x3d400000) {
// LDR (immediate, SIMD&FP)
ldr.extendType = ZeroExtend;
ldr.isFloat = true;
if (opc == 1)
ldr.p2Size = size;
else if (size == 0 && opc == 3)
ldr.p2Size = 4;
else
return false;
} else {
return false;
}
ldr.offset = ((insn >> 10) & 0xfff) << ldr.p2Size;
return true;
}
static bool isValidAdrOffset(int32_t delta) { return isInt<21>(delta); }
static void writeAdr(void *loc, uint32_t dest, int32_t delta) {
assert(isValidAdrOffset(delta));
uint32_t opcode = 0x10000000;
uint32_t immHi = (delta & 0x001ffffc) << 3;
uint32_t immLo = (delta & 0x00000003) << 29;
write32le(loc, opcode | immHi | immLo | dest);
}
static void writeNop(void *loc) { write32le(loc, 0xd503201f); }
static bool isLiteralLdrEligible(const Ldr &ldr) {
return ldr.p2Size > 1 && isShiftedInt<19, 2>(ldr.offset);
}
static void writeLiteralLdr(void *loc, const Ldr &ldr) {
assert(isLiteralLdrEligible(ldr));
uint32_t imm19 = (ldr.offset / 4 & maskTrailingOnes<uint32_t>(19)) << 5;
uint32_t opcode;
switch (ldr.p2Size) {
case 2:
if (ldr.isFloat)
opcode = 0x1c000000;
else
opcode = ldr.extendType == Sign64 ? 0x98000000 : 0x18000000;
break;
case 3:
opcode = ldr.isFloat ? 0x5c000000 : 0x58000000;
break;
case 4:
opcode = 0x9c000000;
break;
default:
llvm_unreachable("Invalid literal ldr size");
}
write32le(loc, opcode | imm19 | ldr.destRegister);
}
static bool isImmediateLdrEligible(const Ldr &ldr) {
// Note: We deviate from ld64's behavior, which converts to immediate loads
// only if ldr.offset < 4096, even though the offset is divided by the load's
// size in the 12-bit immediate operand. Only the unsigned offset variant is
// supported.
uint32_t size = 1 << ldr.p2Size;
return ldr.offset >= 0 && (ldr.offset % size) == 0 &&
isUInt<12>(ldr.offset >> ldr.p2Size);
}
static void writeImmediateLdr(void *loc, const Ldr &ldr) {
assert(isImmediateLdrEligible(ldr));
uint32_t opcode = 0x39000000;
if (ldr.isFloat) {
opcode |= 0x04000000;
assert(ldr.extendType == ZeroExtend);
}
opcode |= ldr.destRegister;
opcode |= ldr.baseRegister << 5;
uint8_t size, opc;
if (ldr.p2Size == 4) {
size = 0;
opc = 3;
} else {
opc = ldr.extendType;
size = ldr.p2Size;
}
uint32_t immBits = ldr.offset >> ldr.p2Size;
write32le(loc, opcode | (immBits << 10) | (opc << 22) | (size << 30));
}
// Transforms a pair of adrp+add instructions into an adr instruction if the
// target is within the +/- 1 MiB range allowed by the adr's 21 bit signed
// immediate offset.
//
// adrp xN, _foo@PAGE
// add xM, xN, _foo@PAGEOFF
// ->
// adr xM, _foo
// nop
static void applyAdrpAdd(uint8_t *buf, const ConcatInputSection *isec,
uint64_t offset1, uint64_t offset2) {
uint32_t ins1 = read32le(buf + offset1);
uint32_t ins2 = read32le(buf + offset2);
Adrp adrp;
Add add;
if (!parseAdrp(ins1, adrp) || !parseAdd(ins2, add))
return;
if (adrp.destRegister != add.srcRegister)
return;
uint64_t addr1 = isec->getVA() + offset1;
uint64_t referent = pageBits(addr1) + adrp.addend + add.addend;
int64_t delta = referent - addr1;
if (!isValidAdrOffset(delta))
return;
writeAdr(buf + offset1, add.destRegister, delta);
writeNop(buf + offset2);
}
// Transforms two adrp instructions into a single adrp if their referent
// addresses are located on the same 4096 byte page.
//
// adrp xN, _foo@PAGE
// adrp xN, _bar@PAGE
// ->
// adrp xN, _foo@PAGE
// nop
static void applyAdrpAdrp(uint8_t *buf, const ConcatInputSection *isec,
uint64_t offset1, uint64_t offset2) {
uint32_t ins1 = read32le(buf + offset1);
uint32_t ins2 = read32le(buf + offset2);
Adrp adrp1, adrp2;
if (!parseAdrp(ins1, adrp1) || !parseAdrp(ins2, adrp2))
return;
if (adrp1.destRegister != adrp2.destRegister)
return;
uint64_t page1 = pageBits(offset1 + isec->getVA()) + adrp1.addend;
uint64_t page2 = pageBits(offset2 + isec->getVA()) + adrp2.addend;
if (page1 != page2)
return;
writeNop(buf + offset2);
}
// Transforms a pair of adrp+ldr (immediate) instructions into an ldr (literal)
// load from a PC-relative address if it is 4-byte aligned and within +/- 1 MiB,
// as ldr can encode a signed 19-bit offset that gets multiplied by 4.
//
// adrp xN, _foo@PAGE
// ldr xM, [xN, _foo@PAGEOFF]
// ->
// nop
// ldr xM, _foo
static void applyAdrpLdr(uint8_t *buf, const ConcatInputSection *isec,
uint64_t offset1, uint64_t offset2) {
uint32_t ins1 = read32le(buf + offset1);
uint32_t ins2 = read32le(buf + offset2);
Adrp adrp;
Ldr ldr;
if (!parseAdrp(ins1, adrp) || !parseLdr(ins2, ldr))
return;
if (adrp.destRegister != ldr.baseRegister)
return;
uint64_t addr1 = isec->getVA() + offset1;
uint64_t addr2 = isec->getVA() + offset2;
uint64_t referent = pageBits(addr1) + adrp.addend + ldr.offset;
ldr.offset = referent - addr2;
if (!isLiteralLdrEligible(ldr))
return;
writeNop(buf + offset1);
writeLiteralLdr(buf + offset2, ldr);
}
// GOT loads are emitted by the compiler as a pair of adrp and ldr instructions,
// but they may be changed to adrp+add by relaxGotLoad(). This hint performs
// the AdrpLdr or AdrpAdd transformation depending on whether it was relaxed.
static void applyAdrpLdrGot(uint8_t *buf, const ConcatInputSection *isec,
uint64_t offset1, uint64_t offset2) {
uint32_t ins2 = read32le(buf + offset2);
Add add;
Ldr ldr;
if (parseAdd(ins2, add))
applyAdrpAdd(buf, isec, offset1, offset2);
else if (parseLdr(ins2, ldr))
applyAdrpLdr(buf, isec, offset1, offset2);
}
// Optimizes an adrp+add+ldr sequence used for loading from a local symbol's
// address by loading directly if it's close enough, or to an adrp(p)+ldr
// sequence if it's not.
//
// adrp x0, _foo@PAGE
// add x1, x0, _foo@PAGEOFF
// ldr x2, [x1, #off]
static void applyAdrpAddLdr(uint8_t *buf, const ConcatInputSection *isec,
uint64_t offset1, uint64_t offset2,
uint64_t offset3) {
uint32_t ins1 = read32le(buf + offset1);
Adrp adrp;
if (!parseAdrp(ins1, adrp))
return;
uint32_t ins2 = read32le(buf + offset2);
Add add;
if (!parseAdd(ins2, add))
return;
uint32_t ins3 = read32le(buf + offset3);
Ldr ldr;
if (!parseLdr(ins3, ldr))
return;
if (adrp.destRegister != add.srcRegister)
return;
if (add.destRegister != ldr.baseRegister)
return;
// Load from the target address directly.
// nop
// nop
// ldr x2, [_foo + #off]
uint64_t addr1 = isec->getVA() + offset1;
uint64_t addr3 = isec->getVA() + offset3;
uint64_t referent = pageBits(addr1) + adrp.addend + add.addend;
Ldr literalLdr = ldr;
literalLdr.offset += referent - addr3;
if (isLiteralLdrEligible(literalLdr)) {
writeNop(buf + offset1);
writeNop(buf + offset2);
writeLiteralLdr(buf + offset3, literalLdr);
return;
}
// Load the target address into a register and load from there indirectly.
// adr x1, _foo
// nop
// ldr x2, [x1, #off]
int64_t adrOffset = referent - addr1;
if (isValidAdrOffset(adrOffset)) {
writeAdr(buf + offset1, ldr.baseRegister, adrOffset);
// Note: ld64 moves the offset into the adr instruction for AdrpAddLdr, but
// not for AdrpLdrGotLdr. Its effect is the same either way.
writeNop(buf + offset2);
return;
}
// Move the target's page offset into the ldr's immediate offset.
// adrp x0, _foo@PAGE
// nop
// ldr x2, [x0, _foo@PAGEOFF + #off]
Ldr immediateLdr = ldr;
immediateLdr.baseRegister = adrp.destRegister;
immediateLdr.offset += add.addend;
if (isImmediateLdrEligible(immediateLdr)) {
writeNop(buf + offset2);
writeImmediateLdr(buf + offset3, immediateLdr);
return;
}
}
// Relaxes a GOT-indirect load.
// If the referenced symbol is external and its GOT entry is within +/- 1 MiB,
// the GOT entry can be loaded with a single literal ldr instruction.
// If the referenced symbol is local and thus has been relaxed to adrp+add+ldr,
// we perform the AdrpAddLdr transformation.
static void applyAdrpLdrGotLdr(uint8_t *buf, const ConcatInputSection *isec,
uint64_t offset1, uint64_t offset2,
uint64_t offset3) {
uint32_t ins2 = read32le(buf + offset2);
Add add;
Ldr ldr2;
if (parseAdd(ins2, add)) {
applyAdrpAddLdr(buf, isec, offset1, offset2, offset3);
} else if (parseLdr(ins2, ldr2)) {
// adrp x1, _foo@GOTPAGE
// ldr x2, [x1, _foo@GOTPAGEOFF]
// ldr x3, [x2, #off]
uint32_t ins1 = read32le(buf + offset1);
Adrp adrp;
if (!parseAdrp(ins1, adrp))
return;
uint32_t ins3 = read32le(buf + offset3);
Ldr ldr3;
if (!parseLdr(ins3, ldr3))
return;
if (ldr2.baseRegister != adrp.destRegister)
return;
if (ldr3.baseRegister != ldr2.destRegister)
return;
// Loads from the GOT must be pointer sized.
if (ldr2.p2Size != 3 || ldr2.isFloat)
return;
uint64_t addr1 = isec->getVA() + offset1;
uint64_t addr2 = isec->getVA() + offset2;
uint64_t referent = pageBits(addr1) + adrp.addend + ldr2.offset;
// Load the GOT entry's address directly.
// nop
// ldr x2, _foo@GOTPAGE + _foo@GOTPAGEOFF
// ldr x3, [x2, #off]
Ldr literalLdr = ldr2;
literalLdr.offset = referent - addr2;
if (isLiteralLdrEligible(literalLdr)) {
writeNop(buf + offset1);
writeLiteralLdr(buf + offset2, literalLdr);
}
}
}
static uint64_t readValue(const uint8_t *&ptr, const uint8_t *end) {
unsigned int n = 0;
uint64_t value = decodeULEB128(ptr, &n, end);
ptr += n;
return value;
}
template <typename Callback>
static void forEachHint(ArrayRef<uint8_t> data, Callback callback) {
std::array<uint64_t, 3> args;
for (const uint8_t *p = data.begin(), *end = data.end(); p < end;) {
uint64_t type = readValue(p, end);
if (type == 0)
break;
uint64_t argCount = readValue(p, end);
// All known LOH types as of 2022-09 have 3 or fewer arguments; skip others.
if (argCount > 3) {
for (unsigned i = 0; i < argCount; ++i)
readValue(p, end);
continue;
}
for (unsigned i = 0; i < argCount; ++i)
args[i] = readValue(p, end);
callback(type, ArrayRef<uint64_t>(args.data(), argCount));
}
}
// On RISC architectures like arm64, materializing a memory address generally
// takes multiple instructions. If the referenced symbol is located close enough
// in memory, fewer instructions are needed.
//
// Linker optimization hints record where addresses are computed. After
// addresses have been assigned, if possible, we change them to a shorter
// sequence of instructions. The size of the binary is not modified; the
// eliminated instructions are replaced with NOPs. This still leads to faster
// code as the CPU can skip over NOPs quickly.
//
// LOHs are specified by the LC_LINKER_OPTIMIZATION_HINTS load command, which
// points to a sequence of ULEB128-encoded numbers. Each entry specifies a
// transformation kind, and 2 or 3 addresses where the instructions are located.
void ARM64::applyOptimizationHints(uint8_t *outBuf, const ObjFile &obj) const {
ArrayRef<uint8_t> data = obj.getOptimizationHints();
if (data.empty())
return;
const ConcatInputSection *section = nullptr;
uint64_t sectionAddr = 0;
uint8_t *buf = nullptr;
auto findSection = [&](uint64_t addr) {
if (section && addr >= sectionAddr &&
addr < sectionAddr + section->getSize())
return true;
auto secIt = std::prev(llvm::upper_bound(
obj.sections, addr,
[](uint64_t off, const Section *sec) { return off < sec->addr; }));
const Section *sec = *secIt;
auto subsecIt = std::prev(llvm::upper_bound(
sec->subsections, addr - sec->addr,
[](uint64_t off, Subsection subsec) { return off < subsec.offset; }));
const Subsection &subsec = *subsecIt;
const ConcatInputSection *isec =
dyn_cast_or_null<ConcatInputSection>(subsec.isec);
if (!isec || isec->shouldOmitFromOutput())
return false;
section = isec;
sectionAddr = subsec.offset + sec->addr;
buf = outBuf + section->outSecOff + section->parent->fileOff;
return true;
};
auto isValidOffset = [&](uint64_t offset) {
if (offset < sectionAddr || offset >= sectionAddr + section->getSize()) {
error(toString(&obj) +
": linker optimization hint spans multiple sections");
return false;
}
return true;
};
bool hasAdrpAdrp = false;
forEachHint(data, [&](uint64_t kind, ArrayRef<uint64_t> args) {
if (kind == LOH_ARM64_ADRP_ADRP) {
hasAdrpAdrp = true;
return;
}
if (!findSection(args[0]))
return;
switch (kind) {
case LOH_ARM64_ADRP_ADD:
if (isValidOffset(args[1]))
applyAdrpAdd(buf, section, args[0] - sectionAddr,
args[1] - sectionAddr);
break;
case LOH_ARM64_ADRP_LDR:
if (isValidOffset(args[1]))
applyAdrpLdr(buf, section, args[0] - sectionAddr,
args[1] - sectionAddr);
break;
case LOH_ARM64_ADRP_LDR_GOT:
if (isValidOffset(args[1]))
applyAdrpLdrGot(buf, section, args[0] - sectionAddr,
args[1] - sectionAddr);
break;
case LOH_ARM64_ADRP_ADD_LDR:
if (isValidOffset(args[1]) && isValidOffset(args[2]))
applyAdrpAddLdr(buf, section, args[0] - sectionAddr,
args[1] - sectionAddr, args[2] - sectionAddr);
break;
case LOH_ARM64_ADRP_LDR_GOT_LDR:
if (isValidOffset(args[1]) && isValidOffset(args[2]))
applyAdrpLdrGotLdr(buf, section, args[0] - sectionAddr,
args[1] - sectionAddr, args[2] - sectionAddr);
break;
case LOH_ARM64_ADRP_ADD_STR:
case LOH_ARM64_ADRP_LDR_GOT_STR:
// TODO: Implement these
break;
}
});
if (!hasAdrpAdrp)
return;
// AdrpAdrp optimization hints are performed in a second pass because they
// might interfere with other transformations. For instance, consider the
// following input:
//
// adrp x0, _foo@PAGE
// add x1, x0, _foo@PAGEOFF
// adrp x0, _bar@PAGE
// add x2, x0, _bar@PAGEOFF
//
// If we perform the AdrpAdrp relaxation first, we get:
//
// adrp x0, _foo@PAGE
// add x1, x0, _foo@PAGEOFF
// nop
// add x2, x0, _bar@PAGEOFF
//
// If we then apply AdrpAdd to the first two instructions, the add will have a
// garbage value in x0:
//
// adr x1, _foo
// nop
// nop
// add x2, x0, _bar@PAGEOFF
forEachHint(data, [&](uint64_t kind, ArrayRef<uint64_t> args) {
if (kind != LOH_ARM64_ADRP_ADRP)
return;
if (!findSection(args[0]))
return;
if (isValidOffset(args[1]))
applyAdrpAdrp(buf, section, args[0] - sectionAddr, args[1] - sectionAddr);
});
}
TargetInfo *macho::createARM64TargetInfo() {
static ARM64 t;
return &t;
}
|