File: ARM64.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (715 lines) | stat: -rw-r--r-- 23,575 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
//===- ARM64.cpp ----------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Arch/ARM64Common.h"
#include "InputFiles.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"

#include "lld/Common/ErrorHandler.h"
#include "mach-o/compact_unwind_encoding.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MathExtras.h"

using namespace llvm;
using namespace llvm::MachO;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::macho;

namespace {

struct ARM64 : ARM64Common {
  ARM64();
  void writeStub(uint8_t *buf, const Symbol &, uint64_t) const override;
  void writeStubHelperHeader(uint8_t *buf) const override;
  void writeStubHelperEntry(uint8_t *buf, const Symbol &,
                            uint64_t entryAddr) const override;

  void writeObjCMsgSendStub(uint8_t *buf, Symbol *sym, uint64_t stubsAddr,
                            uint64_t stubOffset, uint64_t selrefsVA,
                            uint64_t selectorIndex, uint64_t gotAddr,
                            uint64_t msgSendIndex) const override;
  void populateThunk(InputSection *thunk, Symbol *funcSym) override;
  void applyOptimizationHints(uint8_t *, const ObjFile &) const override;
};

} // namespace

// Random notes on reloc types:
// ADDEND always pairs with BRANCH26, PAGE21, or PAGEOFF12
// POINTER_TO_GOT: ld64 supports a 4-byte pc-relative form as well as an 8-byte
// absolute version of this relocation. The semantics of the absolute relocation
// are weird -- it results in the value of the GOT slot being written, instead
// of the address. Let's not support it unless we find a real-world use case.
static constexpr std::array<RelocAttrs, 11> relocAttrsArray{{
#define B(x) RelocAttrBits::x
    {"UNSIGNED",
     B(UNSIGNED) | B(ABSOLUTE) | B(EXTERN) | B(LOCAL) | B(BYTE4) | B(BYTE8)},
    {"SUBTRACTOR", B(SUBTRAHEND) | B(EXTERN) | B(BYTE4) | B(BYTE8)},
    {"BRANCH26", B(PCREL) | B(EXTERN) | B(BRANCH) | B(BYTE4)},
    {"PAGE21", B(PCREL) | B(EXTERN) | B(BYTE4)},
    {"PAGEOFF12", B(ABSOLUTE) | B(EXTERN) | B(BYTE4)},
    {"GOT_LOAD_PAGE21", B(PCREL) | B(EXTERN) | B(GOT) | B(BYTE4)},
    {"GOT_LOAD_PAGEOFF12",
     B(ABSOLUTE) | B(EXTERN) | B(GOT) | B(LOAD) | B(BYTE4)},
    {"POINTER_TO_GOT", B(PCREL) | B(EXTERN) | B(GOT) | B(POINTER) | B(BYTE4)},
    {"TLVP_LOAD_PAGE21", B(PCREL) | B(EXTERN) | B(TLV) | B(BYTE4)},
    {"TLVP_LOAD_PAGEOFF12",
     B(ABSOLUTE) | B(EXTERN) | B(TLV) | B(LOAD) | B(BYTE4)},
    {"ADDEND", B(ADDEND)},
#undef B
}};

static constexpr uint32_t stubCode[] = {
    0x90000010, // 00: adrp  x16, __la_symbol_ptr@page
    0xf9400210, // 04: ldr   x16, [x16, __la_symbol_ptr@pageoff]
    0xd61f0200, // 08: br    x16
};

void ARM64::writeStub(uint8_t *buf8, const Symbol &sym,
                      uint64_t pointerVA) const {
  ::writeStub(buf8, stubCode, sym, pointerVA);
}

static constexpr uint32_t stubHelperHeaderCode[] = {
    0x90000011, // 00: adrp  x17, _dyld_private@page
    0x91000231, // 04: add   x17, x17, _dyld_private@pageoff
    0xa9bf47f0, // 08: stp   x16/x17, [sp, #-16]!
    0x90000010, // 0c: adrp  x16, dyld_stub_binder@page
    0xf9400210, // 10: ldr   x16, [x16, dyld_stub_binder@pageoff]
    0xd61f0200, // 14: br    x16
};

void ARM64::writeStubHelperHeader(uint8_t *buf8) const {
  ::writeStubHelperHeader<LP64>(buf8, stubHelperHeaderCode);
}

static constexpr uint32_t stubHelperEntryCode[] = {
    0x18000050, // 00: ldr  w16, l0
    0x14000000, // 04: b    stubHelperHeader
    0x00000000, // 08: l0: .long 0
};

void ARM64::writeStubHelperEntry(uint8_t *buf8, const Symbol &sym,
                                 uint64_t entryVA) const {
  ::writeStubHelperEntry(buf8, stubHelperEntryCode, sym, entryVA);
}

static constexpr uint32_t objcStubsFastCode[] = {
    0x90000001, // adrp  x1, __objc_selrefs@page
    0xf9400021, // ldr   x1, [x1, @selector("foo")@pageoff]
    0x90000010, // adrp  x16, _got@page
    0xf9400210, // ldr   x16, [x16, _objc_msgSend@pageoff]
    0xd61f0200, // br    x16
    0xd4200020, // brk   #0x1
    0xd4200020, // brk   #0x1
    0xd4200020, // brk   #0x1
};

void ARM64::writeObjCMsgSendStub(uint8_t *buf, Symbol *sym, uint64_t stubsAddr,
                                 uint64_t stubOffset, uint64_t selrefsVA,
                                 uint64_t selectorIndex, uint64_t gotAddr,
                                 uint64_t msgSendIndex) const {
  ::writeObjCMsgSendStub<LP64>(buf, objcStubsFastCode, sym, stubsAddr,
                               stubOffset, selrefsVA, selectorIndex, gotAddr,
                               msgSendIndex);
}

// A thunk is the relaxed variation of stubCode. We don't need the
// extra indirection through a lazy pointer because the target address
// is known at link time.
static constexpr uint32_t thunkCode[] = {
    0x90000010, // 00: adrp  x16, <thunk.ptr>@page
    0x91000210, // 04: add   x16, [x16,<thunk.ptr>@pageoff]
    0xd61f0200, // 08: br    x16
};

void ARM64::populateThunk(InputSection *thunk, Symbol *funcSym) {
  thunk->align = 4;
  thunk->data = {reinterpret_cast<const uint8_t *>(thunkCode),
                 sizeof(thunkCode)};
  thunk->relocs.emplace_back(/*type=*/ARM64_RELOC_PAGEOFF12,
                             /*pcrel=*/false, /*length=*/2,
                             /*offset=*/4, /*addend=*/0,
                             /*referent=*/funcSym);
  thunk->relocs.emplace_back(/*type=*/ARM64_RELOC_PAGE21,
                             /*pcrel=*/true, /*length=*/2,
                             /*offset=*/0, /*addend=*/0,
                             /*referent=*/funcSym);
}

ARM64::ARM64() : ARM64Common(LP64()) {
  cpuType = CPU_TYPE_ARM64;
  cpuSubtype = CPU_SUBTYPE_ARM64_ALL;

  stubSize = sizeof(stubCode);
  thunkSize = sizeof(thunkCode);

  objcStubsFastSize = sizeof(objcStubsFastCode);
  objcStubsAlignment = 32;

  // Branch immediate is two's complement 26 bits, which is implicitly
  // multiplied by 4 (since all functions are 4-aligned: The branch range
  // is -4*(2**(26-1))..4*(2**(26-1) - 1).
  backwardBranchRange = 128 * 1024 * 1024;
  forwardBranchRange = backwardBranchRange - 4;

  modeDwarfEncoding = UNWIND_ARM64_MODE_DWARF;
  subtractorRelocType = ARM64_RELOC_SUBTRACTOR;
  unsignedRelocType = ARM64_RELOC_UNSIGNED;

  stubHelperHeaderSize = sizeof(stubHelperHeaderCode);
  stubHelperEntrySize = sizeof(stubHelperEntryCode);

  relocAttrs = {relocAttrsArray.data(), relocAttrsArray.size()};
}

namespace {
struct Adrp {
  uint32_t destRegister;
  int64_t addend;
};

struct Add {
  uint8_t destRegister;
  uint8_t srcRegister;
  uint32_t addend;
};

enum ExtendType { ZeroExtend = 1, Sign64 = 2, Sign32 = 3 };

struct Ldr {
  uint8_t destRegister;
  uint8_t baseRegister;
  uint8_t p2Size;
  bool isFloat;
  ExtendType extendType;
  int64_t offset;
};
} // namespace

static bool parseAdrp(uint32_t insn, Adrp &adrp) {
  if ((insn & 0x9f000000) != 0x90000000)
    return false;
  adrp.destRegister = insn & 0x1f;
  uint64_t immHi = (insn >> 5) & 0x7ffff;
  uint64_t immLo = (insn >> 29) & 0x3;
  adrp.addend = SignExtend64<21>(immLo | (immHi << 2)) * 4096;
  return true;
}

static bool parseAdd(uint32_t insn, Add &add) {
  if ((insn & 0xffc00000) != 0x91000000)
    return false;
  add.destRegister = insn & 0x1f;
  add.srcRegister = (insn >> 5) & 0x1f;
  add.addend = (insn >> 10) & 0xfff;
  return true;
}

static bool parseLdr(uint32_t insn, Ldr &ldr) {
  ldr.destRegister = insn & 0x1f;
  ldr.baseRegister = (insn >> 5) & 0x1f;
  uint8_t size = insn >> 30;
  uint8_t opc = (insn >> 22) & 3;

  if ((insn & 0x3fc00000) == 0x39400000) {
    // LDR (immediate), LDRB (immediate), LDRH (immediate)
    ldr.p2Size = size;
    ldr.extendType = ZeroExtend;
    ldr.isFloat = false;
  } else if ((insn & 0x3f800000) == 0x39800000) {
    // LDRSB (immediate), LDRSH (immediate), LDRSW (immediate)
    ldr.p2Size = size;
    ldr.extendType = static_cast<ExtendType>(opc);
    ldr.isFloat = false;
  } else if ((insn & 0x3f400000) == 0x3d400000) {
    // LDR (immediate, SIMD&FP)
    ldr.extendType = ZeroExtend;
    ldr.isFloat = true;
    if (opc == 1)
      ldr.p2Size = size;
    else if (size == 0 && opc == 3)
      ldr.p2Size = 4;
    else
      return false;
  } else {
    return false;
  }
  ldr.offset = ((insn >> 10) & 0xfff) << ldr.p2Size;
  return true;
}

static bool isValidAdrOffset(int32_t delta) { return isInt<21>(delta); }

static void writeAdr(void *loc, uint32_t dest, int32_t delta) {
  assert(isValidAdrOffset(delta));
  uint32_t opcode = 0x10000000;
  uint32_t immHi = (delta & 0x001ffffc) << 3;
  uint32_t immLo = (delta & 0x00000003) << 29;
  write32le(loc, opcode | immHi | immLo | dest);
}

static void writeNop(void *loc) { write32le(loc, 0xd503201f); }

static bool isLiteralLdrEligible(const Ldr &ldr) {
  return ldr.p2Size > 1 && isShiftedInt<19, 2>(ldr.offset);
}

static void writeLiteralLdr(void *loc, const Ldr &ldr) {
  assert(isLiteralLdrEligible(ldr));
  uint32_t imm19 = (ldr.offset / 4 & maskTrailingOnes<uint32_t>(19)) << 5;
  uint32_t opcode;
  switch (ldr.p2Size) {
  case 2:
    if (ldr.isFloat)
      opcode = 0x1c000000;
    else
      opcode = ldr.extendType == Sign64 ? 0x98000000 : 0x18000000;
    break;
  case 3:
    opcode = ldr.isFloat ? 0x5c000000 : 0x58000000;
    break;
  case 4:
    opcode = 0x9c000000;
    break;
  default:
    llvm_unreachable("Invalid literal ldr size");
  }
  write32le(loc, opcode | imm19 | ldr.destRegister);
}

static bool isImmediateLdrEligible(const Ldr &ldr) {
  // Note: We deviate from ld64's behavior, which converts to immediate loads
  // only if ldr.offset < 4096, even though the offset is divided by the load's
  // size in the 12-bit immediate operand. Only the unsigned offset variant is
  // supported.

  uint32_t size = 1 << ldr.p2Size;
  return ldr.offset >= 0 && (ldr.offset % size) == 0 &&
         isUInt<12>(ldr.offset >> ldr.p2Size);
}

static void writeImmediateLdr(void *loc, const Ldr &ldr) {
  assert(isImmediateLdrEligible(ldr));
  uint32_t opcode = 0x39000000;
  if (ldr.isFloat) {
    opcode |= 0x04000000;
    assert(ldr.extendType == ZeroExtend);
  }
  opcode |= ldr.destRegister;
  opcode |= ldr.baseRegister << 5;
  uint8_t size, opc;
  if (ldr.p2Size == 4) {
    size = 0;
    opc = 3;
  } else {
    opc = ldr.extendType;
    size = ldr.p2Size;
  }
  uint32_t immBits = ldr.offset >> ldr.p2Size;
  write32le(loc, opcode | (immBits << 10) | (opc << 22) | (size << 30));
}

// Transforms a pair of adrp+add instructions into an adr instruction if the
// target is within the +/- 1 MiB range allowed by the adr's 21 bit signed
// immediate offset.
//
//   adrp xN, _foo@PAGE
//   add  xM, xN, _foo@PAGEOFF
// ->
//   adr  xM, _foo
//   nop
static void applyAdrpAdd(uint8_t *buf, const ConcatInputSection *isec,
                         uint64_t offset1, uint64_t offset2) {
  uint32_t ins1 = read32le(buf + offset1);
  uint32_t ins2 = read32le(buf + offset2);
  Adrp adrp;
  Add add;
  if (!parseAdrp(ins1, adrp) || !parseAdd(ins2, add))
    return;
  if (adrp.destRegister != add.srcRegister)
    return;

  uint64_t addr1 = isec->getVA() + offset1;
  uint64_t referent = pageBits(addr1) + adrp.addend + add.addend;
  int64_t delta = referent - addr1;
  if (!isValidAdrOffset(delta))
    return;

  writeAdr(buf + offset1, add.destRegister, delta);
  writeNop(buf + offset2);
}

// Transforms two adrp instructions into a single adrp if their referent
// addresses are located on the same 4096 byte page.
//
//   adrp xN, _foo@PAGE
//   adrp xN, _bar@PAGE
// ->
//   adrp xN, _foo@PAGE
//   nop
static void applyAdrpAdrp(uint8_t *buf, const ConcatInputSection *isec,
                          uint64_t offset1, uint64_t offset2) {
  uint32_t ins1 = read32le(buf + offset1);
  uint32_t ins2 = read32le(buf + offset2);
  Adrp adrp1, adrp2;
  if (!parseAdrp(ins1, adrp1) || !parseAdrp(ins2, adrp2))
    return;
  if (adrp1.destRegister != adrp2.destRegister)
    return;

  uint64_t page1 = pageBits(offset1 + isec->getVA()) + adrp1.addend;
  uint64_t page2 = pageBits(offset2 + isec->getVA()) + adrp2.addend;
  if (page1 != page2)
    return;

  writeNop(buf + offset2);
}

// Transforms a pair of adrp+ldr (immediate) instructions into an ldr (literal)
// load from a PC-relative address if it is 4-byte aligned and within +/- 1 MiB,
// as ldr can encode a signed 19-bit offset that gets multiplied by 4.
//
//   adrp xN, _foo@PAGE
//   ldr  xM, [xN, _foo@PAGEOFF]
// ->
//   nop
//   ldr  xM, _foo
static void applyAdrpLdr(uint8_t *buf, const ConcatInputSection *isec,
                         uint64_t offset1, uint64_t offset2) {
  uint32_t ins1 = read32le(buf + offset1);
  uint32_t ins2 = read32le(buf + offset2);
  Adrp adrp;
  Ldr ldr;
  if (!parseAdrp(ins1, adrp) || !parseLdr(ins2, ldr))
    return;
  if (adrp.destRegister != ldr.baseRegister)
    return;

  uint64_t addr1 = isec->getVA() + offset1;
  uint64_t addr2 = isec->getVA() + offset2;
  uint64_t referent = pageBits(addr1) + adrp.addend + ldr.offset;
  ldr.offset = referent - addr2;
  if (!isLiteralLdrEligible(ldr))
    return;

  writeNop(buf + offset1);
  writeLiteralLdr(buf + offset2, ldr);
}

// GOT loads are emitted by the compiler as a pair of adrp and ldr instructions,
// but they may be changed to adrp+add by relaxGotLoad(). This hint performs
// the AdrpLdr or AdrpAdd transformation depending on whether it was relaxed.
static void applyAdrpLdrGot(uint8_t *buf, const ConcatInputSection *isec,
                            uint64_t offset1, uint64_t offset2) {
  uint32_t ins2 = read32le(buf + offset2);
  Add add;
  Ldr ldr;
  if (parseAdd(ins2, add))
    applyAdrpAdd(buf, isec, offset1, offset2);
  else if (parseLdr(ins2, ldr))
    applyAdrpLdr(buf, isec, offset1, offset2);
}

// Optimizes an adrp+add+ldr sequence used for loading from a local symbol's
// address by loading directly if it's close enough, or to an adrp(p)+ldr
// sequence if it's not.
//
//   adrp x0, _foo@PAGE
//   add  x1, x0, _foo@PAGEOFF
//   ldr  x2, [x1, #off]
static void applyAdrpAddLdr(uint8_t *buf, const ConcatInputSection *isec,
                            uint64_t offset1, uint64_t offset2,
                            uint64_t offset3) {
  uint32_t ins1 = read32le(buf + offset1);
  Adrp adrp;
  if (!parseAdrp(ins1, adrp))
    return;
  uint32_t ins2 = read32le(buf + offset2);
  Add add;
  if (!parseAdd(ins2, add))
    return;
  uint32_t ins3 = read32le(buf + offset3);
  Ldr ldr;
  if (!parseLdr(ins3, ldr))
    return;
  if (adrp.destRegister != add.srcRegister)
    return;
  if (add.destRegister != ldr.baseRegister)
    return;

  // Load from the target address directly.
  //   nop
  //   nop
  //   ldr x2, [_foo + #off]
  uint64_t addr1 = isec->getVA() + offset1;
  uint64_t addr3 = isec->getVA() + offset3;
  uint64_t referent = pageBits(addr1) + adrp.addend + add.addend;
  Ldr literalLdr = ldr;
  literalLdr.offset += referent - addr3;
  if (isLiteralLdrEligible(literalLdr)) {
    writeNop(buf + offset1);
    writeNop(buf + offset2);
    writeLiteralLdr(buf + offset3, literalLdr);
    return;
  }

  // Load the target address into a register and load from there indirectly.
  //   adr x1, _foo
  //   nop
  //   ldr x2, [x1, #off]
  int64_t adrOffset = referent - addr1;
  if (isValidAdrOffset(adrOffset)) {
    writeAdr(buf + offset1, ldr.baseRegister, adrOffset);
    // Note: ld64 moves the offset into the adr instruction for AdrpAddLdr, but
    // not for AdrpLdrGotLdr. Its effect is the same either way.
    writeNop(buf + offset2);
    return;
  }

  // Move the target's page offset into the ldr's immediate offset.
  //   adrp x0, _foo@PAGE
  //   nop
  //   ldr x2, [x0, _foo@PAGEOFF + #off]
  Ldr immediateLdr = ldr;
  immediateLdr.baseRegister = adrp.destRegister;
  immediateLdr.offset += add.addend;
  if (isImmediateLdrEligible(immediateLdr)) {
    writeNop(buf + offset2);
    writeImmediateLdr(buf + offset3, immediateLdr);
    return;
  }
}

// Relaxes a GOT-indirect load.
// If the referenced symbol is external and its GOT entry is within +/- 1 MiB,
// the GOT entry can be loaded with a single literal ldr instruction.
// If the referenced symbol is local and thus has been relaxed to adrp+add+ldr,
// we perform the AdrpAddLdr transformation.
static void applyAdrpLdrGotLdr(uint8_t *buf, const ConcatInputSection *isec,
                               uint64_t offset1, uint64_t offset2,
                               uint64_t offset3) {
  uint32_t ins2 = read32le(buf + offset2);
  Add add;
  Ldr ldr2;

  if (parseAdd(ins2, add)) {
    applyAdrpAddLdr(buf, isec, offset1, offset2, offset3);
  } else if (parseLdr(ins2, ldr2)) {
    // adrp x1, _foo@GOTPAGE
    // ldr  x2, [x1, _foo@GOTPAGEOFF]
    // ldr  x3, [x2, #off]

    uint32_t ins1 = read32le(buf + offset1);
    Adrp adrp;
    if (!parseAdrp(ins1, adrp))
      return;
    uint32_t ins3 = read32le(buf + offset3);
    Ldr ldr3;
    if (!parseLdr(ins3, ldr3))
      return;

    if (ldr2.baseRegister != adrp.destRegister)
      return;
    if (ldr3.baseRegister != ldr2.destRegister)
      return;
    // Loads from the GOT must be pointer sized.
    if (ldr2.p2Size != 3 || ldr2.isFloat)
      return;

    uint64_t addr1 = isec->getVA() + offset1;
    uint64_t addr2 = isec->getVA() + offset2;
    uint64_t referent = pageBits(addr1) + adrp.addend + ldr2.offset;
    // Load the GOT entry's address directly.
    //   nop
    //   ldr x2, _foo@GOTPAGE + _foo@GOTPAGEOFF
    //   ldr x3, [x2, #off]
    Ldr literalLdr = ldr2;
    literalLdr.offset = referent - addr2;
    if (isLiteralLdrEligible(literalLdr)) {
      writeNop(buf + offset1);
      writeLiteralLdr(buf + offset2, literalLdr);
    }
  }
}

static uint64_t readValue(const uint8_t *&ptr, const uint8_t *end) {
  unsigned int n = 0;
  uint64_t value = decodeULEB128(ptr, &n, end);
  ptr += n;
  return value;
}

template <typename Callback>
static void forEachHint(ArrayRef<uint8_t> data, Callback callback) {
  std::array<uint64_t, 3> args;

  for (const uint8_t *p = data.begin(), *end = data.end(); p < end;) {
    uint64_t type = readValue(p, end);
    if (type == 0)
      break;

    uint64_t argCount = readValue(p, end);
    // All known LOH types as of 2022-09 have 3 or fewer arguments; skip others.
    if (argCount > 3) {
      for (unsigned i = 0; i < argCount; ++i)
        readValue(p, end);
      continue;
    }

    for (unsigned i = 0; i < argCount; ++i)
      args[i] = readValue(p, end);
    callback(type, ArrayRef<uint64_t>(args.data(), argCount));
  }
}

// On RISC architectures like arm64, materializing a memory address generally
// takes multiple instructions. If the referenced symbol is located close enough
// in memory, fewer instructions are needed.
//
// Linker optimization hints record where addresses are computed. After
// addresses have been assigned, if possible, we change them to a shorter
// sequence of instructions. The size of the binary is not modified; the
// eliminated instructions are replaced with NOPs. This still leads to faster
// code as the CPU can skip over NOPs quickly.
//
// LOHs are specified by the LC_LINKER_OPTIMIZATION_HINTS load command, which
// points to a sequence of ULEB128-encoded numbers. Each entry specifies a
// transformation kind, and 2 or 3 addresses where the instructions are located.
void ARM64::applyOptimizationHints(uint8_t *outBuf, const ObjFile &obj) const {
  ArrayRef<uint8_t> data = obj.getOptimizationHints();
  if (data.empty())
    return;

  const ConcatInputSection *section = nullptr;
  uint64_t sectionAddr = 0;
  uint8_t *buf = nullptr;

  auto findSection = [&](uint64_t addr) {
    if (section && addr >= sectionAddr &&
        addr < sectionAddr + section->getSize())
      return true;

    auto secIt = std::prev(llvm::upper_bound(
        obj.sections, addr,
        [](uint64_t off, const Section *sec) { return off < sec->addr; }));
    const Section *sec = *secIt;

    auto subsecIt = std::prev(llvm::upper_bound(
        sec->subsections, addr - sec->addr,
        [](uint64_t off, Subsection subsec) { return off < subsec.offset; }));
    const Subsection &subsec = *subsecIt;
    const ConcatInputSection *isec =
        dyn_cast_or_null<ConcatInputSection>(subsec.isec);
    if (!isec || isec->shouldOmitFromOutput())
      return false;

    section = isec;
    sectionAddr = subsec.offset + sec->addr;
    buf = outBuf + section->outSecOff + section->parent->fileOff;
    return true;
  };

  auto isValidOffset = [&](uint64_t offset) {
    if (offset < sectionAddr || offset >= sectionAddr + section->getSize()) {
      error(toString(&obj) +
            ": linker optimization hint spans multiple sections");
      return false;
    }
    return true;
  };

  bool hasAdrpAdrp = false;
  forEachHint(data, [&](uint64_t kind, ArrayRef<uint64_t> args) {
    if (kind == LOH_ARM64_ADRP_ADRP) {
      hasAdrpAdrp = true;
      return;
    }

    if (!findSection(args[0]))
      return;
    switch (kind) {
    case LOH_ARM64_ADRP_ADD:
      if (isValidOffset(args[1]))
        applyAdrpAdd(buf, section, args[0] - sectionAddr,
                     args[1] - sectionAddr);
      break;
    case LOH_ARM64_ADRP_LDR:
      if (isValidOffset(args[1]))
        applyAdrpLdr(buf, section, args[0] - sectionAddr,
                     args[1] - sectionAddr);
      break;
    case LOH_ARM64_ADRP_LDR_GOT:
      if (isValidOffset(args[1]))
        applyAdrpLdrGot(buf, section, args[0] - sectionAddr,
                        args[1] - sectionAddr);
      break;
    case LOH_ARM64_ADRP_ADD_LDR:
      if (isValidOffset(args[1]) && isValidOffset(args[2]))
        applyAdrpAddLdr(buf, section, args[0] - sectionAddr,
                        args[1] - sectionAddr, args[2] - sectionAddr);
      break;
    case LOH_ARM64_ADRP_LDR_GOT_LDR:
      if (isValidOffset(args[1]) && isValidOffset(args[2]))
        applyAdrpLdrGotLdr(buf, section, args[0] - sectionAddr,
                           args[1] - sectionAddr, args[2] - sectionAddr);
      break;
    case LOH_ARM64_ADRP_ADD_STR:
    case LOH_ARM64_ADRP_LDR_GOT_STR:
      // TODO: Implement these
      break;
    }
  });

  if (!hasAdrpAdrp)
    return;

  // AdrpAdrp optimization hints are performed in a second pass because they
  // might interfere with other transformations. For instance, consider the
  // following input:
  //
  //   adrp x0, _foo@PAGE
  //   add  x1, x0, _foo@PAGEOFF
  //   adrp x0, _bar@PAGE
  //   add  x2, x0, _bar@PAGEOFF
  //
  // If we perform the AdrpAdrp relaxation first, we get:
  //
  //   adrp x0, _foo@PAGE
  //   add  x1, x0, _foo@PAGEOFF
  //   nop
  //   add x2, x0, _bar@PAGEOFF
  //
  // If we then apply AdrpAdd to the first two instructions, the add will have a
  // garbage value in x0:
  //
  //   adr  x1, _foo
  //   nop
  //   nop
  //   add  x2, x0, _bar@PAGEOFF
  forEachHint(data, [&](uint64_t kind, ArrayRef<uint64_t> args) {
    if (kind != LOH_ARM64_ADRP_ADRP)
      return;
    if (!findSection(args[0]))
      return;
    if (isValidOffset(args[1]))
      applyAdrpAdrp(buf, section, args[0] - sectionAddr, args[1] - sectionAddr);
  });
}

TargetInfo *macho::createARM64TargetInfo() {
  static ARM64 t;
  return &t;
}