1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
//===- X86_64.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "mach-o/compact_unwind_encoding.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/Support/Endian.h"
using namespace llvm::MachO;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::macho;
namespace {
struct X86_64 : TargetInfo {
X86_64();
int64_t getEmbeddedAddend(MemoryBufferRef, uint64_t offset,
const relocation_info) const override;
void relocateOne(uint8_t *loc, const Reloc &, uint64_t va,
uint64_t relocVA) const override;
void writeStub(uint8_t *buf, const Symbol &,
uint64_t pointerVA) const override;
void writeStubHelperHeader(uint8_t *buf) const override;
void writeStubHelperEntry(uint8_t *buf, const Symbol &,
uint64_t entryAddr) const override;
void writeObjCMsgSendStub(uint8_t *buf, Symbol *sym, uint64_t stubsAddr,
uint64_t stubOffset, uint64_t selrefsVA,
uint64_t selectorIndex, uint64_t gotAddr,
uint64_t msgSendIndex) const override;
void relaxGotLoad(uint8_t *loc, uint8_t type) const override;
uint64_t getPageSize() const override { return 4 * 1024; }
void handleDtraceReloc(const Symbol *sym, const Reloc &r,
uint8_t *loc) const override;
};
} // namespace
static constexpr std::array<RelocAttrs, 10> relocAttrsArray{{
#define B(x) RelocAttrBits::x
{"UNSIGNED",
B(UNSIGNED) | B(ABSOLUTE) | B(EXTERN) | B(LOCAL) | B(BYTE4) | B(BYTE8)},
{"SIGNED", B(PCREL) | B(EXTERN) | B(LOCAL) | B(BYTE4)},
{"BRANCH", B(PCREL) | B(EXTERN) | B(BRANCH) | B(BYTE4)},
{"GOT_LOAD", B(PCREL) | B(EXTERN) | B(GOT) | B(LOAD) | B(BYTE4)},
{"GOT", B(PCREL) | B(EXTERN) | B(GOT) | B(POINTER) | B(BYTE4)},
{"SUBTRACTOR", B(SUBTRAHEND) | B(EXTERN) | B(BYTE4) | B(BYTE8)},
{"SIGNED_1", B(PCREL) | B(EXTERN) | B(LOCAL) | B(BYTE4)},
{"SIGNED_2", B(PCREL) | B(EXTERN) | B(LOCAL) | B(BYTE4)},
{"SIGNED_4", B(PCREL) | B(EXTERN) | B(LOCAL) | B(BYTE4)},
{"TLV", B(PCREL) | B(EXTERN) | B(TLV) | B(LOAD) | B(BYTE4)},
#undef B
}};
static int pcrelOffset(uint8_t type) {
switch (type) {
case X86_64_RELOC_SIGNED_1:
return 1;
case X86_64_RELOC_SIGNED_2:
return 2;
case X86_64_RELOC_SIGNED_4:
return 4;
default:
return 0;
}
}
int64_t X86_64::getEmbeddedAddend(MemoryBufferRef mb, uint64_t offset,
relocation_info rel) const {
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
const uint8_t *loc = buf + offset + rel.r_address;
switch (rel.r_length) {
case 2:
return static_cast<int32_t>(read32le(loc)) + pcrelOffset(rel.r_type);
case 3:
return read64le(loc) + pcrelOffset(rel.r_type);
default:
llvm_unreachable("invalid r_length");
}
}
void X86_64::relocateOne(uint8_t *loc, const Reloc &r, uint64_t value,
uint64_t relocVA) const {
if (r.pcrel) {
uint64_t pc = relocVA + 4 + pcrelOffset(r.type);
value -= pc;
}
switch (r.length) {
case 2:
if (r.type == X86_64_RELOC_UNSIGNED)
checkUInt(loc, r, value, 32);
else
checkInt(loc, r, value, 32);
write32le(loc, value);
break;
case 3:
write64le(loc, value);
break;
default:
llvm_unreachable("invalid r_length");
}
}
// The following methods emit a number of assembly sequences with RIP-relative
// addressing. Note that RIP-relative addressing on X86-64 has the RIP pointing
// to the next instruction, not the current instruction, so we always have to
// account for the current instruction's size when calculating offsets.
// writeRipRelative helps with that.
//
// bufAddr: The virtual address corresponding to buf[0].
// bufOff: The offset within buf of the next instruction.
// destAddr: The destination address that the current instruction references.
static void writeRipRelative(SymbolDiagnostic d, uint8_t *buf, uint64_t bufAddr,
uint64_t bufOff, uint64_t destAddr) {
uint64_t rip = bufAddr + bufOff;
checkInt(buf, d, destAddr - rip, 32);
// For the instructions we care about, the RIP-relative address is always
// stored in the last 4 bytes of the instruction.
write32le(buf + bufOff - 4, destAddr - rip);
}
static constexpr uint8_t stub[] = {
0xff, 0x25, 0, 0, 0, 0, // jmpq *__la_symbol_ptr(%rip)
};
void X86_64::writeStub(uint8_t *buf, const Symbol &sym,
uint64_t pointerVA) const {
memcpy(buf, stub, 2); // just copy the two nonzero bytes
uint64_t stubAddr = in.stubs->addr + sym.stubsIndex * sizeof(stub);
writeRipRelative({&sym, "stub"}, buf, stubAddr, sizeof(stub), pointerVA);
}
static constexpr uint8_t stubHelperHeader[] = {
0x4c, 0x8d, 0x1d, 0, 0, 0, 0, // 0x0: leaq ImageLoaderCache(%rip), %r11
0x41, 0x53, // 0x7: pushq %r11
0xff, 0x25, 0, 0, 0, 0, // 0x9: jmpq *dyld_stub_binder@GOT(%rip)
0x90, // 0xf: nop
};
void X86_64::writeStubHelperHeader(uint8_t *buf) const {
memcpy(buf, stubHelperHeader, sizeof(stubHelperHeader));
SymbolDiagnostic d = {nullptr, "stub helper header"};
writeRipRelative(d, buf, in.stubHelper->addr, 7,
in.imageLoaderCache->getVA());
writeRipRelative(d, buf, in.stubHelper->addr, 0xf,
in.got->addr +
in.stubHelper->stubBinder->gotIndex * LP64::wordSize);
}
static constexpr uint8_t stubHelperEntry[] = {
0x68, 0, 0, 0, 0, // 0x0: pushq <bind offset>
0xe9, 0, 0, 0, 0, // 0x5: jmp <__stub_helper>
};
void X86_64::writeStubHelperEntry(uint8_t *buf, const Symbol &sym,
uint64_t entryAddr) const {
memcpy(buf, stubHelperEntry, sizeof(stubHelperEntry));
write32le(buf + 1, sym.lazyBindOffset);
writeRipRelative({&sym, "stub helper"}, buf, entryAddr,
sizeof(stubHelperEntry), in.stubHelper->addr);
}
static constexpr uint8_t objcStubsFastCode[] = {
0x48, 0x8b, 0x35, 0, 0, 0, 0, // 0x0: movq selrefs@selector(%rip), %rsi
0xff, 0x25, 0, 0, 0, 0, // 0x7: jmpq *_objc_msgSend@GOT(%rip)
};
void X86_64::writeObjCMsgSendStub(uint8_t *buf, Symbol *sym, uint64_t stubsAddr,
uint64_t stubOffset, uint64_t selrefsVA,
uint64_t selectorIndex, uint64_t gotAddr,
uint64_t msgSendIndex) const {
memcpy(buf, objcStubsFastCode, sizeof(objcStubsFastCode));
SymbolDiagnostic d = {sym, sym->getName()};
uint64_t stubAddr = stubsAddr + stubOffset;
writeRipRelative(d, buf, stubAddr, 7,
selrefsVA + selectorIndex * LP64::wordSize);
writeRipRelative(d, buf, stubAddr, 0xd,
gotAddr + msgSendIndex * LP64::wordSize);
}
void X86_64::relaxGotLoad(uint8_t *loc, uint8_t type) const {
// Convert MOVQ to LEAQ
if (loc[-2] != 0x8b)
error(getRelocAttrs(type).name + " reloc requires MOVQ instruction");
loc[-2] = 0x8d;
}
X86_64::X86_64() : TargetInfo(LP64()) {
cpuType = CPU_TYPE_X86_64;
cpuSubtype = CPU_SUBTYPE_X86_64_ALL;
modeDwarfEncoding = UNWIND_X86_MODE_DWARF;
subtractorRelocType = X86_64_RELOC_SUBTRACTOR;
unsignedRelocType = X86_64_RELOC_UNSIGNED;
stubSize = sizeof(stub);
stubHelperHeaderSize = sizeof(stubHelperHeader);
stubHelperEntrySize = sizeof(stubHelperEntry);
objcStubsFastSize = sizeof(objcStubsFastCode);
objcStubsAlignment = 1;
relocAttrs = {relocAttrsArray.data(), relocAttrsArray.size()};
}
TargetInfo *macho::createX86_64TargetInfo() {
static X86_64 t;
return &t;
}
void X86_64::handleDtraceReloc(const Symbol *sym, const Reloc &r,
uint8_t *loc) const {
assert(r.type == X86_64_RELOC_BRANCH);
if (config->outputType == MH_OBJECT)
return;
if (sym->getName().starts_with("___dtrace_probe")) {
// change call site to a NOP
loc[-1] = 0x90;
write32le(loc, 0x00401F0F);
} else if (sym->getName().starts_with("___dtrace_isenabled")) {
// change call site to a clear eax
loc[-1] = 0x33;
write32le(loc, 0x909090C0);
} else {
error("Unrecognized dtrace symbol prefix: " + toString(*sym));
}
}
|