1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
|
//===- InputFiles.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains functions to parse Mach-O object files. In this comment,
// we describe the Mach-O file structure and how we parse it.
//
// Mach-O is not very different from ELF or COFF. The notion of symbols,
// sections and relocations exists in Mach-O as it does in ELF and COFF.
//
// Perhaps the notion that is new to those who know ELF/COFF is "subsections".
// In ELF/COFF, sections are an atomic unit of data copied from input files to
// output files. When we merge or garbage-collect sections, we treat each
// section as an atomic unit. In Mach-O, that's not the case. Sections can
// consist of multiple subsections, and subsections are a unit of merging and
// garbage-collecting. Therefore, Mach-O's subsections are more similar to
// ELF/COFF's sections than Mach-O's sections are.
//
// A section can have multiple symbols. A symbol that does not have the
// N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
// definition, a symbol is always present at the beginning of each subsection. A
// symbol with N_ALT_ENTRY attribute does not start a new subsection and can
// point to a middle of a subsection.
//
// The notion of subsections also affects how relocations are represented in
// Mach-O. All references within a section need to be explicitly represented as
// relocations if they refer to different subsections, because we obviously need
// to fix up addresses if subsections are laid out in an output file differently
// than they were in object files. To represent that, Mach-O relocations can
// refer to an unnamed location via its address. Scattered relocations (those
// with the R_SCATTERED bit set) always refer to unnamed locations.
// Non-scattered relocations refer to an unnamed location if r_extern is not set
// and r_symbolnum is zero.
//
// Without the above differences, I think you can use your knowledge about ELF
// and COFF for Mach-O.
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "Config.h"
#include "Driver.h"
#include "Dwarf.h"
#include "EhFrame.h"
#include "ExportTrie.h"
#include "InputSection.h"
#include "MachOStructs.h"
#include "ObjC.h"
#include "OutputSection.h"
#include "OutputSegment.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/CommonLinkerContext.h"
#include "lld/Common/DWARF.h"
#include "lld/Common/Reproduce.h"
#include "llvm/ADT/iterator.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/LTO/LTO.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TarWriter.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/TextAPI/Architecture.h"
#include "llvm/TextAPI/InterfaceFile.h"
#include <optional>
#include <type_traits>
using namespace llvm;
using namespace llvm::MachO;
using namespace llvm::support::endian;
using namespace llvm::sys;
using namespace lld;
using namespace lld::macho;
// Returns "<internal>", "foo.a(bar.o)", or "baz.o".
std::string lld::toString(const InputFile *f) {
if (!f)
return "<internal>";
// Multiple dylibs can be defined in one .tbd file.
if (const auto *dylibFile = dyn_cast<DylibFile>(f))
if (f->getName().ends_with(".tbd"))
return (f->getName() + "(" + dylibFile->installName + ")").str();
if (f->archiveName.empty())
return std::string(f->getName());
return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
}
std::string lld::toString(const Section &sec) {
return (toString(sec.file) + ":(" + sec.name + ")").str();
}
SetVector<InputFile *> macho::inputFiles;
std::unique_ptr<TarWriter> macho::tar;
int InputFile::idCount = 0;
static VersionTuple decodeVersion(uint32_t version) {
unsigned major = version >> 16;
unsigned minor = (version >> 8) & 0xffu;
unsigned subMinor = version & 0xffu;
return VersionTuple(major, minor, subMinor);
}
static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
return {};
const char *hdr = input->mb.getBufferStart();
// "Zippered" object files can have multiple LC_BUILD_VERSION load commands.
std::vector<PlatformInfo> platformInfos;
for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
PlatformInfo info;
info.target.Platform = static_cast<PlatformType>(cmd->platform);
info.target.MinDeployment = decodeVersion(cmd->minos);
platformInfos.emplace_back(std::move(info));
}
for (auto *cmd : findCommands<version_min_command>(
hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
PlatformInfo info;
switch (cmd->cmd) {
case LC_VERSION_MIN_MACOSX:
info.target.Platform = PLATFORM_MACOS;
break;
case LC_VERSION_MIN_IPHONEOS:
info.target.Platform = PLATFORM_IOS;
break;
case LC_VERSION_MIN_TVOS:
info.target.Platform = PLATFORM_TVOS;
break;
case LC_VERSION_MIN_WATCHOS:
info.target.Platform = PLATFORM_WATCHOS;
break;
}
info.target.MinDeployment = decodeVersion(cmd->version);
platformInfos.emplace_back(std::move(info));
}
return platformInfos;
}
static bool checkCompatibility(const InputFile *input) {
std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
if (platformInfos.empty())
return true;
auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
return removeSimulator(info.target.Platform) ==
removeSimulator(config->platform());
});
if (it == platformInfos.end()) {
std::string platformNames;
raw_string_ostream os(platformNames);
interleave(
platformInfos, os,
[&](const PlatformInfo &info) {
os << getPlatformName(info.target.Platform);
},
"/");
error(toString(input) + " has platform " + platformNames +
Twine(", which is different from target platform ") +
getPlatformName(config->platform()));
return false;
}
if (it->target.MinDeployment > config->platformInfo.target.MinDeployment)
warn(toString(input) + " has version " +
it->target.MinDeployment.getAsString() +
", which is newer than target minimum of " +
config->platformInfo.target.MinDeployment.getAsString());
return true;
}
// This cache mostly exists to store system libraries (and .tbds) as they're
// loaded, rather than the input archives, which are already cached at a higher
// level, and other files like the filelist that are only read once.
// Theoretically this caching could be more efficient by hoisting it, but that
// would require altering many callers to track the state.
DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads;
// Open a given file path and return it as a memory-mapped file.
std::optional<MemoryBufferRef> macho::readFile(StringRef path) {
CachedHashStringRef key(path);
auto entry = cachedReads.find(key);
if (entry != cachedReads.end())
return entry->second;
ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
if (std::error_code ec = mbOrErr.getError()) {
error("cannot open " + path + ": " + ec.message());
return std::nullopt;
}
std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
MemoryBufferRef mbref = mb->getMemBufferRef();
make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
// If this is a regular non-fat file, return it.
const char *buf = mbref.getBufferStart();
const auto *hdr = reinterpret_cast<const fat_header *>(buf);
if (mbref.getBufferSize() < sizeof(uint32_t) ||
read32be(&hdr->magic) != FAT_MAGIC) {
if (tar)
tar->append(relativeToRoot(path), mbref.getBuffer());
return cachedReads[key] = mbref;
}
llvm::BumpPtrAllocator &bAlloc = lld::bAlloc();
// Object files and archive files may be fat files, which contain multiple
// real files for different CPU ISAs. Here, we search for a file that matches
// with the current link target and returns it as a MemoryBufferRef.
const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
auto getArchName = [](uint32_t cpuType, uint32_t cpuSubtype) {
return getArchitectureName(getArchitectureFromCpuType(cpuType, cpuSubtype));
};
std::vector<StringRef> archs;
for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
if (reinterpret_cast<const char *>(arch + i + 1) >
buf + mbref.getBufferSize()) {
error(path + ": fat_arch struct extends beyond end of file");
return std::nullopt;
}
uint32_t cpuType = read32be(&arch[i].cputype);
uint32_t cpuSubtype =
read32be(&arch[i].cpusubtype) & ~MachO::CPU_SUBTYPE_MASK;
// FIXME: LD64 has a more complex fallback logic here.
// Consider implementing that as well?
if (cpuType != static_cast<uint32_t>(target->cpuType) ||
cpuSubtype != target->cpuSubtype) {
archs.emplace_back(getArchName(cpuType, cpuSubtype));
continue;
}
uint32_t offset = read32be(&arch[i].offset);
uint32_t size = read32be(&arch[i].size);
if (offset + size > mbref.getBufferSize())
error(path + ": slice extends beyond end of file");
if (tar)
tar->append(relativeToRoot(path), mbref.getBuffer());
return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size),
path.copy(bAlloc));
}
auto targetArchName = getArchName(target->cpuType, target->cpuSubtype);
warn(path + ": ignoring file because it is universal (" + join(archs, ",") +
") but does not contain the " + targetArchName + " architecture");
return std::nullopt;
}
InputFile::InputFile(Kind kind, const InterfaceFile &interface)
: id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {}
// Some sections comprise of fixed-size records, so instead of splitting them at
// symbol boundaries, we split them based on size. Records are distinct from
// literals in that they may contain references to other sections, instead of
// being leaf nodes in the InputSection graph.
//
// Note that "record" is a term I came up with. In contrast, "literal" is a term
// used by the Mach-O format.
static std::optional<size_t> getRecordSize(StringRef segname, StringRef name) {
if (name == section_names::compactUnwind) {
if (segname == segment_names::ld)
return target->wordSize == 8 ? 32 : 20;
}
if (!config->dedupStrings)
return {};
if (name == section_names::cfString && segname == segment_names::data)
return target->wordSize == 8 ? 32 : 16;
if (config->icfLevel == ICFLevel::none)
return {};
if (name == section_names::objcClassRefs && segname == segment_names::data)
return target->wordSize;
if (name == section_names::objcSelrefs && segname == segment_names::data)
return target->wordSize;
return {};
}
static Error parseCallGraph(ArrayRef<uint8_t> data,
std::vector<CallGraphEntry> &callGraph) {
TimeTraceScope timeScope("Parsing call graph section");
BinaryStreamReader reader(data, support::little);
while (!reader.empty()) {
uint32_t fromIndex, toIndex;
uint64_t count;
if (Error err = reader.readInteger(fromIndex))
return err;
if (Error err = reader.readInteger(toIndex))
return err;
if (Error err = reader.readInteger(count))
return err;
callGraph.emplace_back(fromIndex, toIndex, count);
}
return Error::success();
}
// Parse the sequence of sections within a single LC_SEGMENT(_64).
// Split each section into subsections.
template <class SectionHeader>
void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) {
sections.reserve(sectionHeaders.size());
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
for (const SectionHeader &sec : sectionHeaders) {
StringRef name =
StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
StringRef segname =
StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr));
if (sec.align >= 32) {
error("alignment " + std::to_string(sec.align) + " of section " + name +
" is too large");
continue;
}
Section §ion = *sections.back();
uint32_t align = 1 << sec.align;
ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
: buf + sec.offset,
static_cast<size_t>(sec.size)};
auto splitRecords = [&](size_t recordSize) -> void {
if (data.empty())
return;
Subsections &subsections = section.subsections;
subsections.reserve(data.size() / recordSize);
for (uint64_t off = 0; off < data.size(); off += recordSize) {
auto *isec = make<ConcatInputSection>(
section, data.slice(off, std::min(data.size(), recordSize)), align);
subsections.push_back({off, isec});
}
section.doneSplitting = true;
};
if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
if (sec.nreloc)
fatal(toString(this) + ": " + sec.segname + "," + sec.sectname +
" contains relocations, which is unsupported");
bool dedupLiterals =
name == section_names::objcMethname || config->dedupStrings;
InputSection *isec =
make<CStringInputSection>(section, data, align, dedupLiterals);
// FIXME: parallelize this?
cast<CStringInputSection>(isec)->splitIntoPieces();
section.subsections.push_back({0, isec});
} else if (isWordLiteralSection(sec.flags)) {
if (sec.nreloc)
fatal(toString(this) + ": " + sec.segname + "," + sec.sectname +
" contains relocations, which is unsupported");
InputSection *isec = make<WordLiteralInputSection>(section, data, align);
section.subsections.push_back({0, isec});
} else if (auto recordSize = getRecordSize(segname, name)) {
splitRecords(*recordSize);
} else if (name == section_names::ehFrame &&
segname == segment_names::text) {
splitEhFrames(data, *sections.back());
} else if (segname == segment_names::llvm) {
if (config->callGraphProfileSort && name == section_names::cgProfile)
checkError(parseCallGraph(data, callGraph));
// ld64 does not appear to emit contents from sections within the __LLVM
// segment. Symbols within those sections point to bitcode metadata
// instead of actual symbols. Global symbols within those sections could
// have the same name without causing duplicate symbol errors. To avoid
// spurious duplicate symbol errors, we do not parse these sections.
// TODO: Evaluate whether the bitcode metadata is needed.
} else if (name == section_names::objCImageInfo &&
segname == segment_names::data) {
objCImageInfo = data;
} else {
if (name == section_names::addrSig)
addrSigSection = sections.back();
auto *isec = make<ConcatInputSection>(section, data, align);
if (isDebugSection(isec->getFlags()) &&
isec->getSegName() == segment_names::dwarf) {
// Instead of emitting DWARF sections, we emit STABS symbols to the
// object files that contain them. We filter them out early to avoid
// parsing their relocations unnecessarily.
debugSections.push_back(isec);
} else {
section.subsections.push_back({0, isec});
}
}
}
}
void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) {
EhReader reader(this, data, /*dataOff=*/0);
size_t off = 0;
while (off < reader.size()) {
uint64_t frameOff = off;
uint64_t length = reader.readLength(&off);
if (length == 0)
break;
uint64_t fullLength = length + (off - frameOff);
off += length;
// We hard-code an alignment of 1 here because we don't actually want our
// EH frames to be aligned to the section alignment. EH frame decoders don't
// expect this alignment. Moreover, each EH frame must start where the
// previous one ends, and where it ends is indicated by the length field.
// Unless we update the length field (troublesome), we should keep the
// alignment to 1.
// Note that we still want to preserve the alignment of the overall section,
// just not of the individual EH frames.
ehFrameSection.subsections.push_back(
{frameOff, make<ConcatInputSection>(ehFrameSection,
data.slice(frameOff, fullLength),
/*align=*/1)});
}
ehFrameSection.doneSplitting = true;
}
template <class T>
static Section *findContainingSection(const std::vector<Section *> §ions,
T *offset) {
static_assert(std::is_same<uint64_t, T>::value ||
std::is_same<uint32_t, T>::value,
"unexpected type for offset");
auto it = std::prev(llvm::upper_bound(
sections, *offset,
[](uint64_t value, const Section *sec) { return value < sec->addr; }));
*offset -= (*it)->addr;
return *it;
}
// Find the subsection corresponding to the greatest section offset that is <=
// that of the given offset.
//
// offset: an offset relative to the start of the original InputSection (before
// any subsection splitting has occurred). It will be updated to represent the
// same location as an offset relative to the start of the containing
// subsection.
template <class T>
static InputSection *findContainingSubsection(const Section §ion,
T *offset) {
static_assert(std::is_same<uint64_t, T>::value ||
std::is_same<uint32_t, T>::value,
"unexpected type for offset");
auto it = std::prev(llvm::upper_bound(
section.subsections, *offset,
[](uint64_t value, Subsection subsec) { return value < subsec.offset; }));
*offset -= it->offset;
return it->isec;
}
// Find a symbol at offset `off` within `isec`.
static Defined *findSymbolAtOffset(const ConcatInputSection *isec,
uint64_t off) {
auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) {
return d->value < off;
});
// The offset should point at the exact address of a symbol (with no addend.)
if (it == isec->symbols.end() || (*it)->value != off) {
assert(isec->wasCoalesced);
return nullptr;
}
return *it;
}
template <class SectionHeader>
static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec,
relocation_info rel) {
const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
bool valid = true;
auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
valid = false;
return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
std::to_string(rel.r_address) + " of " + sec.segname + "," +
sec.sectname + " in " + toString(file))
.str();
};
if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
error(message("must be extern"));
if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
"be PC-relative"));
if (isThreadLocalVariables(sec.flags) &&
!relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
error(message("not allowed in thread-local section, must be UNSIGNED"));
if (rel.r_length < 2 || rel.r_length > 3 ||
!relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
error(message("has width " + std::to_string(1 << rel.r_length) +
" bytes, but must be " +
widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
" bytes"));
}
return valid;
}
template <class SectionHeader>
void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders,
const SectionHeader &sec, Section §ion) {
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
ArrayRef<relocation_info> relInfos(
reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
Subsections &subsections = section.subsections;
auto subsecIt = subsections.rbegin();
for (size_t i = 0; i < relInfos.size(); i++) {
// Paired relocations serve as Mach-O's method for attaching a
// supplemental datum to a primary relocation record. ELF does not
// need them because the *_RELOC_RELA records contain the extra
// addend field, vs. *_RELOC_REL which omit the addend.
//
// The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
// and the paired *_RELOC_UNSIGNED record holds the minuend. The
// datum for each is a symbolic address. The result is the offset
// between two addresses.
//
// The ARM64_RELOC_ADDEND record holds the addend, and the paired
// ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
// base symbolic address.
//
// Note: X86 does not use *_RELOC_ADDEND because it can embed an addend into
// the instruction stream. On X86, a relocatable address field always
// occupies an entire contiguous sequence of byte(s), so there is no need to
// merge opcode bits with address bits. Therefore, it's easy and convenient
// to store addends in the instruction-stream bytes that would otherwise
// contain zeroes. By contrast, RISC ISAs such as ARM64 mix opcode bits with
// address bits so that bitwise arithmetic is necessary to extract and
// insert them. Storing addends in the instruction stream is possible, but
// inconvenient and more costly at link time.
relocation_info relInfo = relInfos[i];
bool isSubtrahend =
target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
int64_t pairedAddend = 0;
if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
relInfo = relInfos[++i];
}
assert(i < relInfos.size());
if (!validateRelocationInfo(this, sec, relInfo))
continue;
if (relInfo.r_address & R_SCATTERED)
fatal("TODO: Scattered relocations not supported");
int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
assert(!(embeddedAddend && pairedAddend));
int64_t totalAddend = pairedAddend + embeddedAddend;
Reloc r;
r.type = relInfo.r_type;
r.pcrel = relInfo.r_pcrel;
r.length = relInfo.r_length;
r.offset = relInfo.r_address;
if (relInfo.r_extern) {
r.referent = symbols[relInfo.r_symbolnum];
r.addend = isSubtrahend ? 0 : totalAddend;
} else {
assert(!isSubtrahend);
const SectionHeader &referentSecHead =
sectionHeaders[relInfo.r_symbolnum - 1];
uint64_t referentOffset;
if (relInfo.r_pcrel) {
// The implicit addend for pcrel section relocations is the pcrel offset
// in terms of the addresses in the input file. Here we adjust it so
// that it describes the offset from the start of the referent section.
// FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
// have pcrel section relocations. We may want to factor this out into
// the arch-specific .cpp file.
assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend -
referentSecHead.addr;
} else {
// The addend for a non-pcrel relocation is its absolute address.
referentOffset = totalAddend - referentSecHead.addr;
}
r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1],
&referentOffset);
r.addend = referentOffset;
}
// Find the subsection that this relocation belongs to.
// Though not required by the Mach-O format, clang and gcc seem to emit
// relocations in order, so let's take advantage of it. However, ld64 emits
// unsorted relocations (in `-r` mode), so we have a fallback for that
// uncommon case.
InputSection *subsec;
while (subsecIt != subsections.rend() && subsecIt->offset > r.offset)
++subsecIt;
if (subsecIt == subsections.rend() ||
subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
subsec = findContainingSubsection(section, &r.offset);
// Now that we know the relocs are unsorted, avoid trying the 'fast path'
// for the other relocations.
subsecIt = subsections.rend();
} else {
subsec = subsecIt->isec;
r.offset -= subsecIt->offset;
}
subsec->relocs.push_back(r);
if (isSubtrahend) {
relocation_info minuendInfo = relInfos[++i];
// SUBTRACTOR relocations should always be followed by an UNSIGNED one
// attached to the same address.
assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
relInfo.r_address == minuendInfo.r_address);
Reloc p;
p.type = minuendInfo.r_type;
if (minuendInfo.r_extern) {
p.referent = symbols[minuendInfo.r_symbolnum];
p.addend = totalAddend;
} else {
uint64_t referentOffset =
totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
p.referent = findContainingSubsection(
*sections[minuendInfo.r_symbolnum - 1], &referentOffset);
p.addend = referentOffset;
}
subsec->relocs.push_back(p);
}
}
}
template <class NList>
static macho::Symbol *createDefined(const NList &sym, StringRef name,
InputSection *isec, uint64_t value,
uint64_t size, bool forceHidden) {
// Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
// N_EXT: Global symbols. These go in the symbol table during the link,
// and also in the export table of the output so that the dynamic
// linker sees them.
// N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
// symbol table during the link so that duplicates are
// either reported (for non-weak symbols) or merged
// (for weak symbols), but they do not go in the export
// table of the output.
// N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
// object files) may produce them. LLD does not yet support -r.
// These are translation-unit scoped, identical to the `0` case.
// 0: Translation-unit scoped. These are not in the symbol table during
// link, and not in the export table of the output either.
bool isWeakDefCanBeHidden =
(sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
assert(!(sym.n_desc & N_ARM_THUMB_DEF) && "ARM32 arch is not supported");
if (sym.n_type & N_EXT) {
// -load_hidden makes us treat global symbols as linkage unit scoped.
// Duplicates are reported but the symbol does not go in the export trie.
bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
// lld's behavior for merging symbols is slightly different from ld64:
// ld64 picks the winning symbol based on several criteria (see
// pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
// just merges metadata and keeps the contents of the first symbol
// with that name (see SymbolTable::addDefined). For:
// * inline function F in a TU built with -fvisibility-inlines-hidden
// * and inline function F in another TU built without that flag
// ld64 will pick the one from the file built without
// -fvisibility-inlines-hidden.
// lld will instead pick the one listed first on the link command line and
// give it visibility as if the function was built without
// -fvisibility-inlines-hidden.
// If both functions have the same contents, this will have the same
// behavior. If not, it won't, but the input had an ODR violation in
// that case.
//
// Similarly, merging a symbol
// that's isPrivateExtern and not isWeakDefCanBeHidden with one
// that's not isPrivateExtern but isWeakDefCanBeHidden technically
// should produce one
// that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
// with ld64's semantics, because it means the non-private-extern
// definition will continue to take priority if more private extern
// definitions are encountered. With lld's semantics there's no observable
// difference between a symbol that's isWeakDefCanBeHidden(autohide) or one
// that's privateExtern -- neither makes it into the dynamic symbol table,
// unless the autohide symbol is explicitly exported.
// But if a symbol is both privateExtern and autohide then it can't
// be exported.
// So we nullify the autohide flag when privateExtern is present
// and promote the symbol to privateExtern when it is not already.
if (isWeakDefCanBeHidden && isPrivateExtern)
isWeakDefCanBeHidden = false;
else if (isWeakDefCanBeHidden)
isPrivateExtern = true;
return symtab->addDefined(
name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
isPrivateExtern, sym.n_desc & REFERENCED_DYNAMICALLY,
sym.n_desc & N_NO_DEAD_STRIP, isWeakDefCanBeHidden);
}
bool includeInSymtab = !isPrivateLabel(name) && !isEhFrameSection(isec);
return make<Defined>(
name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
/*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab,
sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP);
}
// Absolute symbols are defined symbols that do not have an associated
// InputSection. They cannot be weak.
template <class NList>
static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
StringRef name, bool forceHidden) {
assert(!(sym.n_desc & N_ARM_THUMB_DEF) && "ARM32 arch is not supported");
if (sym.n_type & N_EXT) {
bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0,
/*isWeakDef=*/false, isPrivateExtern,
/*isReferencedDynamically=*/false,
sym.n_desc & N_NO_DEAD_STRIP,
/*isWeakDefCanBeHidden=*/false);
}
return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
/*isWeakDef=*/false,
/*isExternal=*/false, /*isPrivateExtern=*/false,
/*includeInSymtab=*/true,
/*isReferencedDynamically=*/false,
sym.n_desc & N_NO_DEAD_STRIP);
}
template <class NList>
macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
const char *strtab) {
StringRef name = StringRef(strtab + sym.n_strx);
uint8_t type = sym.n_type & N_TYPE;
bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
switch (type) {
case N_UNDF:
return sym.n_value == 0
? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
: symtab->addCommon(name, this, sym.n_value,
1 << GET_COMM_ALIGN(sym.n_desc),
isPrivateExtern);
case N_ABS:
return createAbsolute(sym, this, name, forceHidden);
case N_INDR: {
// Not much point in making local aliases -- relocs in the current file can
// just refer to the actual symbol itself. ld64 ignores these symbols too.
if (!(sym.n_type & N_EXT))
return nullptr;
StringRef aliasedName = StringRef(strtab + sym.n_value);
// isPrivateExtern is the only symbol flag that has an impact on the final
// aliased symbol.
auto *alias = make<AliasSymbol>(this, name, aliasedName, isPrivateExtern);
aliases.push_back(alias);
return alias;
}
case N_PBUD:
error("TODO: support symbols of type N_PBUD");
return nullptr;
case N_SECT:
llvm_unreachable(
"N_SECT symbols should not be passed to parseNonSectionSymbol");
default:
llvm_unreachable("invalid symbol type");
}
}
template <class NList> static bool isUndef(const NList &sym) {
return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
}
template <class LP>
void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
ArrayRef<typename LP::nlist> nList,
const char *strtab, bool subsectionsViaSymbols) {
using NList = typename LP::nlist;
// Groups indices of the symbols by the sections that contain them.
std::vector<std::vector<uint32_t>> symbolsBySection(sections.size());
symbols.resize(nList.size());
SmallVector<unsigned, 32> undefineds;
for (uint32_t i = 0; i < nList.size(); ++i) {
const NList &sym = nList[i];
// Ignore debug symbols for now.
// FIXME: may need special handling.
if (sym.n_type & N_STAB)
continue;
if ((sym.n_type & N_TYPE) == N_SECT) {
Subsections &subsections = sections[sym.n_sect - 1]->subsections;
// parseSections() may have chosen not to parse this section.
if (subsections.empty())
continue;
symbolsBySection[sym.n_sect - 1].push_back(i);
} else if (isUndef(sym)) {
undefineds.push_back(i);
} else {
symbols[i] = parseNonSectionSymbol(sym, strtab);
}
}
for (size_t i = 0; i < sections.size(); ++i) {
Subsections &subsections = sections[i]->subsections;
if (subsections.empty())
continue;
std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
uint64_t sectionAddr = sectionHeaders[i].addr;
uint32_t sectionAlign = 1u << sectionHeaders[i].align;
// Some sections have already been split into subsections during
// parseSections(), so we simply need to match Symbols to the corresponding
// subsection here.
if (sections[i]->doneSplitting) {
for (size_t j = 0; j < symbolIndices.size(); ++j) {
const uint32_t symIndex = symbolIndices[j];
const NList &sym = nList[symIndex];
StringRef name = strtab + sym.n_strx;
uint64_t symbolOffset = sym.n_value - sectionAddr;
InputSection *isec =
findContainingSubsection(*sections[i], &symbolOffset);
if (symbolOffset != 0) {
error(toString(*sections[i]) + ": symbol " + name +
" at misaligned offset");
continue;
}
symbols[symIndex] =
createDefined(sym, name, isec, 0, isec->getSize(), forceHidden);
}
continue;
}
sections[i]->doneSplitting = true;
auto getSymName = [strtab](const NList& sym) -> StringRef {
return StringRef(strtab + sym.n_strx);
};
// Calculate symbol sizes and create subsections by splitting the sections
// along symbol boundaries.
// We populate subsections by repeatedly splitting the last (highest
// address) subsection.
llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
// Put extern weak symbols after other symbols at the same address so
// that weak symbol coalescing works correctly. See
// SymbolTable::addDefined() for details.
if (nList[lhs].n_value == nList[rhs].n_value &&
nList[lhs].n_type & N_EXT && nList[rhs].n_type & N_EXT)
return !(nList[lhs].n_desc & N_WEAK_DEF) && (nList[rhs].n_desc & N_WEAK_DEF);
return nList[lhs].n_value < nList[rhs].n_value;
});
for (size_t j = 0; j < symbolIndices.size(); ++j) {
const uint32_t symIndex = symbolIndices[j];
const NList &sym = nList[symIndex];
StringRef name = getSymName(sym);
Subsection &subsec = subsections.back();
InputSection *isec = subsec.isec;
uint64_t subsecAddr = sectionAddr + subsec.offset;
size_t symbolOffset = sym.n_value - subsecAddr;
uint64_t symbolSize =
j + 1 < symbolIndices.size()
? nList[symbolIndices[j + 1]].n_value - sym.n_value
: isec->data.size() - symbolOffset;
// There are 4 cases where we do not need to create a new subsection:
// 1. If the input file does not use subsections-via-symbols.
// 2. Multiple symbols at the same address only induce one subsection.
// (The symbolOffset == 0 check covers both this case as well as
// the first loop iteration.)
// 3. Alternative entry points do not induce new subsections.
// 4. If we have a literal section (e.g. __cstring and __literal4).
if (!subsectionsViaSymbols || symbolOffset == 0 ||
sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
isec->hasAltEntry = symbolOffset != 0;
symbols[symIndex] = createDefined(sym, name, isec, symbolOffset,
symbolSize, forceHidden);
continue;
}
auto *concatIsec = cast<ConcatInputSection>(isec);
auto *nextIsec = make<ConcatInputSection>(*concatIsec);
nextIsec->wasCoalesced = false;
if (isZeroFill(isec->getFlags())) {
// Zero-fill sections have NULL data.data() non-zero data.size()
nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
isec->data = {nullptr, symbolOffset};
} else {
nextIsec->data = isec->data.slice(symbolOffset);
isec->data = isec->data.slice(0, symbolOffset);
}
// By construction, the symbol will be at offset zero in the new
// subsection.
symbols[symIndex] = createDefined(sym, name, nextIsec, /*value=*/0,
symbolSize, forceHidden);
// TODO: ld64 appears to preserve the original alignment as well as each
// subsection's offset from the last aligned address. We should consider
// emulating that behavior.
nextIsec->align = MinAlign(sectionAlign, sym.n_value);
subsections.push_back({sym.n_value - sectionAddr, nextIsec});
}
}
// Undefined symbols can trigger recursive fetch from Archives due to
// LazySymbols. Process defined symbols first so that the relative order
// between a defined symbol and an undefined symbol does not change the
// symbol resolution behavior. In addition, a set of interconnected symbols
// will all be resolved to the same file, instead of being resolved to
// different files.
for (unsigned i : undefineds)
symbols[i] = parseNonSectionSymbol(nList[i], strtab);
}
OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
StringRef sectName)
: InputFile(OpaqueKind, mb) {
const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
sections.push_back(make<Section>(/*file=*/this, segName.take_front(16),
sectName.take_front(16),
/*flags=*/0, /*addr=*/0));
Section §ion = *sections.back();
ConcatInputSection *isec = make<ConcatInputSection>(section, data);
isec->live = true;
section.subsections.push_back({0, isec});
}
ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
bool lazy, bool forceHidden)
: InputFile(ObjKind, mb, lazy), modTime(modTime), forceHidden(forceHidden) {
this->archiveName = std::string(archiveName);
if (lazy) {
if (target->wordSize == 8)
parseLazy<LP64>();
else
parseLazy<ILP32>();
} else {
if (target->wordSize == 8)
parse<LP64>();
else
parse<ILP32>();
}
}
template <class LP> void ObjFile::parse() {
using Header = typename LP::mach_header;
using SegmentCommand = typename LP::segment_command;
using SectionHeader = typename LP::section;
using NList = typename LP::nlist;
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
uint32_t cpuType;
std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(config->arch());
if (hdr->cputype != cpuType) {
Architecture arch =
getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
auto msg = config->errorForArchMismatch
? static_cast<void (*)(const Twine &)>(error)
: warn;
msg(toString(this) + " has architecture " + getArchitectureName(arch) +
" which is incompatible with target architecture " +
getArchitectureName(config->arch()));
return;
}
if (!checkCompatibility(this))
return;
for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
StringRef data{reinterpret_cast<const char *>(cmd + 1),
cmd->cmdsize - sizeof(linker_option_command)};
parseLCLinkerOption(this, cmd->count, data);
}
ArrayRef<SectionHeader> sectionHeaders;
if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
sectionHeaders = ArrayRef<SectionHeader>{
reinterpret_cast<const SectionHeader *>(c + 1), c->nsects};
parseSections(sectionHeaders);
}
// TODO: Error on missing LC_SYMTAB?
if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
auto *c = reinterpret_cast<const symtab_command *>(cmd);
ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
c->nsyms);
const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
}
// The relocations may refer to the symbols, so we parse them after we have
// parsed all the symbols.
for (size_t i = 0, n = sections.size(); i < n; ++i)
if (!sections[i]->subsections.empty())
parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]);
parseDebugInfo();
Section *ehFrameSection = nullptr;
Section *compactUnwindSection = nullptr;
for (Section *sec : sections) {
Section **s = StringSwitch<Section **>(sec->name)
.Case(section_names::compactUnwind, &compactUnwindSection)
.Case(section_names::ehFrame, &ehFrameSection)
.Default(nullptr);
if (s)
*s = sec;
}
if (compactUnwindSection)
registerCompactUnwind(*compactUnwindSection);
if (ehFrameSection)
registerEhFrames(*ehFrameSection);
}
template <class LP> void ObjFile::parseLazy() {
using Header = typename LP::mach_header;
using NList = typename LP::nlist;
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
const load_command *cmd = findCommand(hdr, LC_SYMTAB);
if (!cmd)
return;
auto *c = reinterpret_cast<const symtab_command *>(cmd);
ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
c->nsyms);
const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
symbols.resize(nList.size());
for (const auto &[i, sym] : llvm::enumerate(nList)) {
if ((sym.n_type & N_EXT) && !isUndef(sym)) {
// TODO: Bound checking
StringRef name = strtab + sym.n_strx;
symbols[i] = symtab->addLazyObject(name, *this);
if (!lazy)
break;
}
}
}
void ObjFile::parseDebugInfo() {
std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
if (!dObj)
return;
// We do not re-use the context from getDwarf() here as that function
// constructs an expensive DWARFCache object.
auto *ctx = make<DWARFContext>(
std::move(dObj), "",
[&](Error err) {
warn(toString(this) + ": " + toString(std::move(err)));
},
[&](Error warning) {
warn(toString(this) + ": " + toString(std::move(warning)));
});
// TODO: Since object files can contain a lot of DWARF info, we should verify
// that we are parsing just the info we need
const DWARFContext::compile_unit_range &units = ctx->compile_units();
// FIXME: There can be more than one compile unit per object file. See
// PR48637.
auto it = units.begin();
compileUnit = it != units.end() ? it->get() : nullptr;
}
ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const {
const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
if (!cmd)
return {};
const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
c->datasize / sizeof(data_in_code_entry)};
}
ArrayRef<uint8_t> ObjFile::getOptimizationHints() const {
const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
if (auto *cmd =
findCommand<linkedit_data_command>(buf, LC_LINKER_OPTIMIZATION_HINT))
return {buf + cmd->dataoff, cmd->datasize};
return {};
}
// Create pointers from symbols to their associated compact unwind entries.
void ObjFile::registerCompactUnwind(Section &compactUnwindSection) {
for (const Subsection &subsection : compactUnwindSection.subsections) {
ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec);
// Hack!! Each compact unwind entry (CUE) has its UNSIGNED relocations embed
// their addends in its data. Thus if ICF operated naively and compared the
// entire contents of each CUE, entries with identical unwind info but e.g.
// belonging to different functions would never be considered equivalent. To
// work around this problem, we remove some parts of the data containing the
// embedded addends. In particular, we remove the function address and LSDA
// pointers. Since these locations are at the start and end of the entry,
// we can do this using a simple, efficient slice rather than performing a
// copy. We are not losing any information here because the embedded
// addends have already been parsed in the corresponding Reloc structs.
//
// Removing these pointers would not be safe if they were pointers to
// absolute symbols. In that case, there would be no corresponding
// relocation. However, (AFAIK) MC cannot emit references to absolute
// symbols for either the function address or the LSDA. However, it *can* do
// so for the personality pointer, so we are not slicing that field away.
//
// Note that we do not adjust the offsets of the corresponding relocations;
// instead, we rely on `relocateCompactUnwind()` to correctly handle these
// truncated input sections.
isec->data = isec->data.slice(target->wordSize, 8 + target->wordSize);
uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t));
// llvm-mc omits CU entries for functions that need DWARF encoding, but
// `ld -r` doesn't. We can ignore them because we will re-synthesize these
// CU entries from the DWARF info during the output phase.
if ((encoding & static_cast<uint32_t>(UNWIND_MODE_MASK)) ==
target->modeDwarfEncoding)
continue;
ConcatInputSection *referentIsec;
for (auto it = isec->relocs.begin(); it != isec->relocs.end();) {
Reloc &r = *it;
// CUE::functionAddress is at offset 0. Skip personality & LSDA relocs.
if (r.offset != 0) {
++it;
continue;
}
uint64_t add = r.addend;
if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) {
// Check whether the symbol defined in this file is the prevailing one.
// Skip if it is e.g. a weak def that didn't prevail.
if (sym->getFile() != this) {
++it;
continue;
}
add += sym->value;
referentIsec = cast<ConcatInputSection>(sym->isec);
} else {
referentIsec =
cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>());
}
// Unwind info lives in __DATA, and finalization of __TEXT will occur
// before finalization of __DATA. Moreover, the finalization of unwind
// info depends on the exact addresses that it references. So it is safe
// for compact unwind to reference addresses in __TEXT, but not addresses
// in any other segment.
if (referentIsec->getSegName() != segment_names::text)
error(isec->getLocation(r.offset) + " references section " +
referentIsec->getName() + " which is not in segment __TEXT");
// The functionAddress relocations are typically section relocations.
// However, unwind info operates on a per-symbol basis, so we search for
// the function symbol here.
Defined *d = findSymbolAtOffset(referentIsec, add);
if (!d) {
++it;
continue;
}
d->unwindEntry = isec;
// Now that the symbol points to the unwind entry, we can remove the reloc
// that points from the unwind entry back to the symbol.
//
// First, the symbol keeps the unwind entry alive (and not vice versa), so
// this keeps dead-stripping simple.
//
// Moreover, it reduces the work that ICF needs to do to figure out if
// functions with unwind info are foldable.
//
// However, this does make it possible for ICF to fold CUEs that point to
// distinct functions (if the CUEs are otherwise identical).
// UnwindInfoSection takes care of this by re-duplicating the CUEs so that
// each one can hold a distinct functionAddress value.
//
// Given that clang emits relocations in reverse order of address, this
// relocation should be at the end of the vector for most of our input
// object files, so this erase() is typically an O(1) operation.
it = isec->relocs.erase(it);
}
}
}
struct CIE {
macho::Symbol *personalitySymbol = nullptr;
bool fdesHaveAug = false;
uint8_t lsdaPtrSize = 0; // 0 => no LSDA
uint8_t funcPtrSize = 0;
};
static uint8_t pointerEncodingToSize(uint8_t enc) {
switch (enc & 0xf) {
case dwarf::DW_EH_PE_absptr:
return target->wordSize;
case dwarf::DW_EH_PE_sdata4:
return 4;
case dwarf::DW_EH_PE_sdata8:
// ld64 doesn't actually support sdata8, but this seems simple enough...
return 8;
default:
return 0;
};
}
static CIE parseCIE(const InputSection *isec, const EhReader &reader,
size_t off) {
// Handling the full generality of possible DWARF encodings would be a major
// pain. We instead take advantage of our knowledge of how llvm-mc encodes
// DWARF and handle just that.
constexpr uint8_t expectedPersonalityEnc =
dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4;
CIE cie;
uint8_t version = reader.readByte(&off);
if (version != 1 && version != 3)
fatal("Expected CIE version of 1 or 3, got " + Twine(version));
StringRef aug = reader.readString(&off);
reader.skipLeb128(&off); // skip code alignment
reader.skipLeb128(&off); // skip data alignment
reader.skipLeb128(&off); // skip return address register
reader.skipLeb128(&off); // skip aug data length
uint64_t personalityAddrOff = 0;
for (char c : aug) {
switch (c) {
case 'z':
cie.fdesHaveAug = true;
break;
case 'P': {
uint8_t personalityEnc = reader.readByte(&off);
if (personalityEnc != expectedPersonalityEnc)
reader.failOn(off, "unexpected personality encoding 0x" +
Twine::utohexstr(personalityEnc));
personalityAddrOff = off;
off += 4;
break;
}
case 'L': {
uint8_t lsdaEnc = reader.readByte(&off);
cie.lsdaPtrSize = pointerEncodingToSize(lsdaEnc);
if (cie.lsdaPtrSize == 0)
reader.failOn(off, "unexpected LSDA encoding 0x" +
Twine::utohexstr(lsdaEnc));
break;
}
case 'R': {
uint8_t pointerEnc = reader.readByte(&off);
cie.funcPtrSize = pointerEncodingToSize(pointerEnc);
if (cie.funcPtrSize == 0 || !(pointerEnc & dwarf::DW_EH_PE_pcrel))
reader.failOn(off, "unexpected pointer encoding 0x" +
Twine::utohexstr(pointerEnc));
break;
}
default:
break;
}
}
if (personalityAddrOff != 0) {
const auto *personalityReloc = isec->getRelocAt(personalityAddrOff);
if (!personalityReloc)
reader.failOn(off, "Failed to locate relocation for personality symbol");
cie.personalitySymbol = personalityReloc->referent.get<macho::Symbol *>();
}
return cie;
}
// EH frame target addresses may be encoded as pcrel offsets. However, instead
// of using an actual pcrel reloc, ld64 emits subtractor relocations instead.
// This function recovers the target address from the subtractors, essentially
// performing the inverse operation of EhRelocator.
//
// Concretely, we expect our relocations to write the value of `PC -
// target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that
// points to a symbol plus an addend.
//
// It is important that the minuend relocation point to a symbol within the
// same section as the fixup value, since sections may get moved around.
//
// For example, for arm64, llvm-mc emits relocations for the target function
// address like so:
//
// ltmp:
// <CIE start>
// ...
// <CIE end>
// ... multiple FDEs ...
// <FDE start>
// <target function address - (ltmp + pcrel offset)>
// ...
//
// If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start`
// will move to an earlier address, and `ltmp + pcrel offset` will no longer
// reflect an accurate pcrel value. To avoid this problem, we "canonicalize"
// our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating
// the reloc to be `target function address - (EH_Frame + new pcrel offset)`.
//
// If `Invert` is set, then we instead expect `target_addr - PC` to be written
// to `PC`.
template <bool Invert = false>
Defined *
targetSymFromCanonicalSubtractor(const InputSection *isec,
std::vector<macho::Reloc>::iterator relocIt) {
macho::Reloc &subtrahend = *relocIt;
macho::Reloc &minuend = *std::next(relocIt);
assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND));
assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED));
// Note: pcSym may *not* be exactly at the PC; there's usually a non-zero
// addend.
auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>());
Defined *target =
cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>());
if (!pcSym) {
auto *targetIsec =
cast<ConcatInputSection>(minuend.referent.get<InputSection *>());
target = findSymbolAtOffset(targetIsec, minuend.addend);
}
if (Invert)
std::swap(pcSym, target);
if (pcSym->isec == isec) {
if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset)
fatal("invalid FDE relocation in __eh_frame");
} else {
// Ensure the pcReloc points to a symbol within the current EH frame.
// HACK: we should really verify that the original relocation's semantics
// are preserved. In particular, we should have
// `oldSym->value + oldOffset == newSym + newOffset`. However, we don't
// have an easy way to access the offsets from this point in the code; some
// refactoring is needed for that.
macho::Reloc &pcReloc = Invert ? minuend : subtrahend;
pcReloc.referent = isec->symbols[0];
assert(isec->symbols[0]->value == 0);
minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL);
}
return target;
}
Defined *findSymbolAtAddress(const std::vector<Section *> §ions,
uint64_t addr) {
Section *sec = findContainingSection(sections, &addr);
auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr));
return findSymbolAtOffset(isec, addr);
}
// For symbols that don't have compact unwind info, associate them with the more
// general-purpose (and verbose) DWARF unwind info found in __eh_frame.
//
// This requires us to parse the contents of __eh_frame. See EhFrame.h for a
// description of its format.
//
// While parsing, we also look for what MC calls "abs-ified" relocations -- they
// are relocations which are implicitly encoded as offsets in the section data.
// We convert them into explicit Reloc structs so that the EH frames can be
// handled just like a regular ConcatInputSection later in our output phase.
//
// We also need to handle the case where our input object file has explicit
// relocations. This is the case when e.g. it's the output of `ld -r`. We only
// look for the "abs-ified" relocation if an explicit relocation is absent.
void ObjFile::registerEhFrames(Section &ehFrameSection) {
DenseMap<const InputSection *, CIE> cieMap;
for (const Subsection &subsec : ehFrameSection.subsections) {
auto *isec = cast<ConcatInputSection>(subsec.isec);
uint64_t isecOff = subsec.offset;
// Subtractor relocs require the subtrahend to be a symbol reloc. Ensure
// that all EH frames have an associated symbol so that we can generate
// subtractor relocs that reference them.
if (isec->symbols.size() == 0)
make<Defined>("EH_Frame", isec->getFile(), isec, /*value=*/0,
isec->getSize(), /*isWeakDef=*/false, /*isExternal=*/false,
/*isPrivateExtern=*/false, /*includeInSymtab=*/false,
/*isReferencedDynamically=*/false,
/*noDeadStrip=*/false);
else if (isec->symbols[0]->value != 0)
fatal("found symbol at unexpected offset in __eh_frame");
EhReader reader(this, isec->data, subsec.offset);
size_t dataOff = 0; // Offset from the start of the EH frame.
reader.skipValidLength(&dataOff); // readLength() already validated this.
// cieOffOff is the offset from the start of the EH frame to the cieOff
// value, which is itself an offset from the current PC to a CIE.
const size_t cieOffOff = dataOff;
EhRelocator ehRelocator(isec);
auto cieOffRelocIt = llvm::find_if(
isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; });
InputSection *cieIsec = nullptr;
if (cieOffRelocIt != isec->relocs.end()) {
// We already have an explicit relocation for the CIE offset.
cieIsec =
targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt)
->isec;
dataOff += sizeof(uint32_t);
} else {
// If we haven't found a relocation, then the CIE offset is most likely
// embedded in the section data (AKA an "abs-ified" reloc.). Parse that
// and generate a Reloc struct.
uint32_t cieMinuend = reader.readU32(&dataOff);
if (cieMinuend == 0) {
cieIsec = isec;
} else {
uint32_t cieOff = isecOff + dataOff - cieMinuend;
cieIsec = findContainingSubsection(ehFrameSection, &cieOff);
if (cieIsec == nullptr)
fatal("failed to find CIE");
}
if (cieIsec != isec)
ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0],
/*length=*/2);
}
if (cieIsec == isec) {
cieMap[cieIsec] = parseCIE(isec, reader, dataOff);
continue;
}
assert(cieMap.count(cieIsec));
const CIE &cie = cieMap[cieIsec];
// Offset of the function address within the EH frame.
const size_t funcAddrOff = dataOff;
uint64_t funcAddr = reader.readPointer(&dataOff, cie.funcPtrSize) +
ehFrameSection.addr + isecOff + funcAddrOff;
uint32_t funcLength = reader.readPointer(&dataOff, cie.funcPtrSize);
size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame.
std::optional<uint64_t> lsdaAddrOpt;
if (cie.fdesHaveAug) {
reader.skipLeb128(&dataOff);
lsdaAddrOff = dataOff;
if (cie.lsdaPtrSize != 0) {
uint64_t lsdaOff = reader.readPointer(&dataOff, cie.lsdaPtrSize);
if (lsdaOff != 0) // FIXME possible to test this?
lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff;
}
}
auto funcAddrRelocIt = isec->relocs.end();
auto lsdaAddrRelocIt = isec->relocs.end();
for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) {
if (it->offset == funcAddrOff)
funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
else if (lsdaAddrOpt && it->offset == lsdaAddrOff)
lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
}
Defined *funcSym;
if (funcAddrRelocIt != isec->relocs.end()) {
funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt);
// Canonicalize the symbol. If there are multiple symbols at the same
// address, we want both `registerEhFrame` and `registerCompactUnwind`
// to register the unwind entry under same symbol.
// This is not particularly efficient, but we should run into this case
// infrequently (only when handling the output of `ld -r`).
if (funcSym->isec)
funcSym = findSymbolAtOffset(cast<ConcatInputSection>(funcSym->isec),
funcSym->value);
} else {
funcSym = findSymbolAtAddress(sections, funcAddr);
ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize);
}
// The symbol has been coalesced, or already has a compact unwind entry.
if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry) {
// We must prune unused FDEs for correctness, so we cannot rely on
// -dead_strip being enabled.
isec->live = false;
continue;
}
InputSection *lsdaIsec = nullptr;
if (lsdaAddrRelocIt != isec->relocs.end()) {
lsdaIsec = targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec;
} else if (lsdaAddrOpt) {
uint64_t lsdaAddr = *lsdaAddrOpt;
Section *sec = findContainingSection(sections, &lsdaAddr);
lsdaIsec =
cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr));
ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize);
}
fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec};
funcSym->unwindEntry = isec;
ehRelocator.commit();
}
// __eh_frame is marked as S_ATTR_LIVE_SUPPORT in input files, because FDEs
// are normally required to be kept alive if they reference a live symbol.
// However, we've explicitly created a dependency from a symbol to its FDE, so
// dead-stripping will just work as usual, and S_ATTR_LIVE_SUPPORT will only
// serve to incorrectly prevent us from dead-stripping duplicate FDEs for a
// live symbol (e.g. if there were multiple weak copies). Remove this flag to
// let dead-stripping proceed correctly.
ehFrameSection.flags &= ~S_ATTR_LIVE_SUPPORT;
}
std::string ObjFile::sourceFile() const {
SmallString<261> dir(compileUnit->getCompilationDir());
StringRef sep = sys::path::get_separator();
// We don't use `path::append` here because we want an empty `dir` to result
// in an absolute path. `append` would give us a relative path for that case.
if (!dir.endswith(sep))
dir += sep;
return (dir + compileUnit->getUnitDIE().getShortName()).str();
}
lld::DWARFCache *ObjFile::getDwarf() {
llvm::call_once(initDwarf, [this]() {
auto dwObj = DwarfObject::create(this);
if (!dwObj)
return;
dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
std::move(dwObj), "",
[&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
[&](Error warning) {
warn(getName() + ": " + toString(std::move(warning)));
}));
});
return dwarfCache.get();
}
// The path can point to either a dylib or a .tbd file.
static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
std::optional<MemoryBufferRef> mbref = readFile(path);
if (!mbref) {
error("could not read dylib file at " + path);
return nullptr;
}
return loadDylib(*mbref, umbrella);
}
// TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
// the first document storing child pointers to the rest of them. When we are
// processing a given TBD file, we store that top-level document in
// currentTopLevelTapi. When processing re-exports, we search its children for
// potentially matching documents in the same TBD file. Note that the children
// themselves don't point to further documents, i.e. this is a two-level tree.
//
// Re-exports can either refer to on-disk files, or to documents within .tbd
// files.
static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
const InterfaceFile *currentTopLevelTapi) {
// Search order:
// 1. Install name basename in -F / -L directories.
{
StringRef stem = path::stem(path);
SmallString<128> frameworkName;
path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
bool isFramework = path.ends_with(frameworkName);
if (isFramework) {
for (StringRef dir : config->frameworkSearchPaths) {
SmallString<128> candidate = dir;
path::append(candidate, frameworkName);
if (std::optional<StringRef> dylibPath =
resolveDylibPath(candidate.str()))
return loadDylib(*dylibPath, umbrella);
}
} else if (std::optional<StringRef> dylibPath = findPathCombination(
stem, config->librarySearchPaths, {".tbd", ".dylib", ".so"}))
return loadDylib(*dylibPath, umbrella);
}
// 2. As absolute path.
if (path::is_absolute(path, path::Style::posix))
for (StringRef root : config->systemLibraryRoots)
if (std::optional<StringRef> dylibPath =
resolveDylibPath((root + path).str()))
return loadDylib(*dylibPath, umbrella);
// 3. As relative path.
// TODO: Handle -dylib_file
// Replace @executable_path, @loader_path, @rpath prefixes in install name.
SmallString<128> newPath;
if (config->outputType == MH_EXECUTE &&
path.consume_front("@executable_path/")) {
// ld64 allows overriding this with the undocumented flag -executable_path.
// lld doesn't currently implement that flag.
// FIXME: Consider using finalOutput instead of outputFile.
path::append(newPath, path::parent_path(config->outputFile), path);
path = newPath;
} else if (path.consume_front("@loader_path/")) {
fs::real_path(umbrella->getName(), newPath);
path::remove_filename(newPath);
path::append(newPath, path);
path = newPath;
} else if (path.starts_with("@rpath/")) {
for (StringRef rpath : umbrella->rpaths) {
newPath.clear();
if (rpath.consume_front("@loader_path/")) {
fs::real_path(umbrella->getName(), newPath);
path::remove_filename(newPath);
}
path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
if (std::optional<StringRef> dylibPath = resolveDylibPath(newPath.str()))
return loadDylib(*dylibPath, umbrella);
}
}
// FIXME: Should this be further up?
if (currentTopLevelTapi) {
for (InterfaceFile &child :
make_pointee_range(currentTopLevelTapi->documents())) {
assert(child.documents().empty());
if (path == child.getInstallName()) {
auto *file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false,
/*explicitlyLinked=*/false);
file->parseReexports(child);
return file;
}
}
}
if (std::optional<StringRef> dylibPath = resolveDylibPath(path))
return loadDylib(*dylibPath, umbrella);
return nullptr;
}
// If a re-exported dylib is public (lives in /usr/lib or
// /System/Library/Frameworks), then it is considered implicitly linked: we
// should bind to its symbols directly instead of via the re-exporting umbrella
// library.
static bool isImplicitlyLinked(StringRef path) {
if (!config->implicitDylibs)
return false;
if (path::parent_path(path) == "/usr/lib")
return true;
// Match /System/Library/Frameworks/$FOO.framework/**/$FOO
if (path.consume_front("/System/Library/Frameworks/")) {
StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
return path::filename(path) == frameworkName;
}
return false;
}
void DylibFile::loadReexport(StringRef path, DylibFile *umbrella,
const InterfaceFile *currentTopLevelTapi) {
DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
if (!reexport)
error(toString(this) + ": unable to locate re-export with install name " +
path);
}
DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
bool isBundleLoader, bool explicitlyLinked)
: InputFile(DylibKind, mb), refState(RefState::Unreferenced),
explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
assert(!isBundleLoader || !umbrella);
if (umbrella == nullptr)
umbrella = this;
this->umbrella = umbrella;
auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
// Initialize installName.
if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
auto *c = reinterpret_cast<const dylib_command *>(cmd);
currentVersion = read32le(&c->dylib.current_version);
compatibilityVersion = read32le(&c->dylib.compatibility_version);
installName =
reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
} else if (!isBundleLoader) {
// macho_executable and macho_bundle don't have LC_ID_DYLIB,
// so it's OK.
error(toString(this) + ": dylib missing LC_ID_DYLIB load command");
return;
}
if (config->printEachFile)
message(toString(this));
inputFiles.insert(this);
deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
if (!checkCompatibility(this))
return;
checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
rpaths.push_back(rpath);
}
// Initialize symbols.
exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
const auto *dyldInfo = findCommand<dyld_info_command>(hdr, LC_DYLD_INFO_ONLY);
const auto *exportsTrie =
findCommand<linkedit_data_command>(hdr, LC_DYLD_EXPORTS_TRIE);
if (dyldInfo && exportsTrie) {
// It's unclear what should happen in this case. Maybe we should only error
// out if the two load commands refer to different data?
error(toString(this) +
": dylib has both LC_DYLD_INFO_ONLY and LC_DYLD_EXPORTS_TRIE");
return;
}
if (dyldInfo) {
parseExportedSymbols(dyldInfo->export_off, dyldInfo->export_size);
} else if (exportsTrie) {
parseExportedSymbols(exportsTrie->dataoff, exportsTrie->datasize);
} else {
error("No LC_DYLD_INFO_ONLY or LC_DYLD_EXPORTS_TRIE found in " +
toString(this));
}
}
void DylibFile::parseExportedSymbols(uint32_t offset, uint32_t size) {
struct TrieEntry {
StringRef name;
uint64_t flags;
};
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
std::vector<TrieEntry> entries;
// Find all the $ld$* symbols to process first.
parseTrie(buf + offset, size, [&](const Twine &name, uint64_t flags) {
StringRef savedName = saver().save(name);
if (handleLDSymbol(savedName))
return;
entries.push_back({savedName, flags});
});
// Process the "normal" symbols.
for (TrieEntry &entry : entries) {
if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(entry.name)))
continue;
bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
symbols.push_back(
symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv));
}
}
void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
target->headerSize;
for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
auto *cmd = reinterpret_cast<const load_command *>(p);
p += cmd->cmdsize;
if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
cmd->cmd == LC_REEXPORT_DYLIB) {
const auto *c = reinterpret_cast<const dylib_command *>(cmd);
StringRef reexportPath =
reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
loadReexport(reexportPath, exportingFile, nullptr);
}
// FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
// LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
// MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
if (config->namespaceKind == NamespaceKind::flat &&
cmd->cmd == LC_LOAD_DYLIB) {
const auto *c = reinterpret_cast<const dylib_command *>(cmd);
StringRef dylibPath =
reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
if (!dylib)
error(Twine("unable to locate library '") + dylibPath +
"' loaded from '" + toString(this) + "' for -flat_namespace");
}
}
}
// Some versions of Xcode ship with .tbd files that don't have the right
// platform settings.
constexpr std::array<StringRef, 3> skipPlatformChecks{
"/usr/lib/system/libsystem_kernel.dylib",
"/usr/lib/system/libsystem_platform.dylib",
"/usr/lib/system/libsystem_pthread.dylib"};
static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface,
bool explicitlyLinked) {
// Catalyst outputs can link against implicitly linked macOS-only libraries.
if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked)
return false;
return is_contained(interface.targets(),
MachO::Target(config->arch(), PLATFORM_MACOS));
}
static bool isArchABICompatible(ArchitectureSet archSet,
Architecture targetArch) {
uint32_t cpuType;
uint32_t targetCpuType;
std::tie(targetCpuType, std::ignore) = getCPUTypeFromArchitecture(targetArch);
return llvm::any_of(archSet, [&](const auto &p) {
std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(p);
return cpuType == targetCpuType;
});
}
static bool isTargetPlatformArchCompatible(
InterfaceFile::const_target_range interfaceTargets, Target target) {
if (is_contained(interfaceTargets, target))
return true;
if (config->forceExactCpuSubtypeMatch)
return false;
ArchitectureSet archSet;
for (const auto &p : interfaceTargets)
if (p.Platform == target.Platform)
archSet.set(p.Arch);
if (archSet.empty())
return false;
return isArchABICompatible(archSet, target.Arch);
}
DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
bool isBundleLoader, bool explicitlyLinked)
: InputFile(DylibKind, interface), refState(RefState::Unreferenced),
explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
// FIXME: Add test for the missing TBD code path.
if (umbrella == nullptr)
umbrella = this;
this->umbrella = umbrella;
installName = saver().save(interface.getInstallName());
compatibilityVersion = interface.getCompatibilityVersion().rawValue();
currentVersion = interface.getCurrentVersion().rawValue();
if (config->printEachFile)
message(toString(this));
inputFiles.insert(this);
if (!is_contained(skipPlatformChecks, installName) &&
!isTargetPlatformArchCompatible(interface.targets(),
config->platformInfo.target) &&
!skipPlatformCheckForCatalyst(interface, explicitlyLinked)) {
error(toString(this) + " is incompatible with " +
std::string(config->platformInfo.target));
return;
}
checkAppExtensionSafety(interface.isApplicationExtensionSafe());
exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
auto addSymbol = [&](const llvm::MachO::Symbol &symbol,
const Twine &name) -> void {
StringRef savedName = saver().save(name);
if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName)))
return;
symbols.push_back(symtab->addDylib(savedName, exportingFile,
symbol.isWeakDefined(),
symbol.isThreadLocalValue()));
};
std::vector<const llvm::MachO::Symbol *> normalSymbols;
normalSymbols.reserve(interface.symbolsCount());
for (const auto *symbol : interface.symbols()) {
if (!isArchABICompatible(symbol->getArchitectures(), config->arch()))
continue;
if (handleLDSymbol(symbol->getName()))
continue;
switch (symbol->getKind()) {
case EncodeKind::GlobalSymbol:
case EncodeKind::ObjectiveCClass:
case EncodeKind::ObjectiveCClassEHType:
case EncodeKind::ObjectiveCInstanceVariable:
normalSymbols.push_back(symbol);
}
}
// TODO(compnerd) filter out symbols based on the target platform
for (const auto *symbol : normalSymbols) {
switch (symbol->getKind()) {
case EncodeKind::GlobalSymbol:
addSymbol(*symbol, symbol->getName());
break;
case EncodeKind::ObjectiveCClass:
// XXX ld64 only creates these symbols when -ObjC is passed in. We may
// want to emulate that.
addSymbol(*symbol, objc::klass + symbol->getName());
addSymbol(*symbol, objc::metaclass + symbol->getName());
break;
case EncodeKind::ObjectiveCClassEHType:
addSymbol(*symbol, objc::ehtype + symbol->getName());
break;
case EncodeKind::ObjectiveCInstanceVariable:
addSymbol(*symbol, objc::ivar + symbol->getName());
break;
}
}
}
DylibFile::DylibFile(DylibFile *umbrella)
: InputFile(DylibKind, MemoryBufferRef{}), refState(RefState::Unreferenced),
explicitlyLinked(false), isBundleLoader(false) {
if (umbrella == nullptr)
umbrella = this;
this->umbrella = umbrella;
}
void DylibFile::parseReexports(const InterfaceFile &interface) {
const InterfaceFile *topLevel =
interface.getParent() == nullptr ? &interface : interface.getParent();
for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) {
InterfaceFile::const_target_range targets = intfRef.targets();
if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
isTargetPlatformArchCompatible(targets, config->platformInfo.target))
loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
}
}
bool DylibFile::isExplicitlyLinked() const {
if (!explicitlyLinked)
return false;
// If this dylib was explicitly linked, but at least one of the symbols
// of the synthetic dylibs it created via $ld$previous symbols is
// referenced, then that synthetic dylib fulfils the explicit linkedness
// and we can deadstrip this dylib if it's unreferenced.
for (const auto *dylib : extraDylibs)
if (dylib->isReferenced())
return false;
return true;
}
DylibFile *DylibFile::getSyntheticDylib(StringRef installName,
uint32_t currentVersion,
uint32_t compatVersion) {
for (DylibFile *dylib : extraDylibs)
if (dylib->installName == installName) {
// FIXME: Check what to do if different $ld$previous symbols
// request the same dylib, but with different versions.
return dylib;
}
auto *dylib = make<DylibFile>(umbrella == this ? nullptr : umbrella);
dylib->installName = saver().save(installName);
dylib->currentVersion = currentVersion;
dylib->compatibilityVersion = compatVersion;
extraDylibs.push_back(dylib);
return dylib;
}
// $ld$ symbols modify the properties/behavior of the library (e.g. its install
// name, compatibility version or hide/add symbols) for specific target
// versions.
bool DylibFile::handleLDSymbol(StringRef originalName) {
if (!originalName.starts_with("$ld$"))
return false;
StringRef action;
StringRef name;
std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
if (action == "previous")
handleLDPreviousSymbol(name, originalName);
else if (action == "install_name")
handleLDInstallNameSymbol(name, originalName);
else if (action == "hide")
handleLDHideSymbol(name, originalName);
return true;
}
void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
// originalName: $ld$ previous $ <installname> $ <compatversion> $
// <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
StringRef installName;
StringRef compatVersion;
StringRef platformStr;
StringRef startVersion;
StringRef endVersion;
StringRef symbolName;
StringRef rest;
std::tie(installName, name) = name.split('$');
std::tie(compatVersion, name) = name.split('$');
std::tie(platformStr, name) = name.split('$');
std::tie(startVersion, name) = name.split('$');
std::tie(endVersion, name) = name.split('$');
std::tie(symbolName, rest) = name.rsplit('$');
// FIXME: Does this do the right thing for zippered files?
unsigned platform;
if (platformStr.getAsInteger(10, platform) ||
platform != static_cast<unsigned>(config->platform()))
return;
VersionTuple start;
if (start.tryParse(startVersion)) {
warn(toString(this) + ": failed to parse start version, symbol '" +
originalName + "' ignored");
return;
}
VersionTuple end;
if (end.tryParse(endVersion)) {
warn(toString(this) + ": failed to parse end version, symbol '" +
originalName + "' ignored");
return;
}
if (config->platformInfo.target.MinDeployment < start ||
config->platformInfo.target.MinDeployment >= end)
return;
// Initialized to compatibilityVersion for the symbolName branch below.
uint32_t newCompatibilityVersion = compatibilityVersion;
uint32_t newCurrentVersionForSymbol = currentVersion;
if (!compatVersion.empty()) {
VersionTuple cVersion;
if (cVersion.tryParse(compatVersion)) {
warn(toString(this) +
": failed to parse compatibility version, symbol '" + originalName +
"' ignored");
return;
}
newCompatibilityVersion = encodeVersion(cVersion);
newCurrentVersionForSymbol = newCompatibilityVersion;
}
if (!symbolName.empty()) {
// A $ld$previous$ symbol with symbol name adds a symbol with that name to
// a dylib with given name and version.
auto *dylib = getSyntheticDylib(installName, newCurrentVersionForSymbol,
newCompatibilityVersion);
// The tbd file usually contains the $ld$previous symbol for an old version,
// and then the symbol itself later, for newer deployment targets, like so:
// symbols: [
// '$ld$previous$/Another$$1$3.0$14.0$_zzz$',
// _zzz,
// ]
// Since the symbols are sorted, adding them to the symtab in the given
// order means the $ld$previous version of _zzz will prevail, as desired.
dylib->symbols.push_back(symtab->addDylib(
saver().save(symbolName), dylib, /*isWeakDef=*/false, /*isTlv=*/false));
return;
}
// A $ld$previous$ symbol without symbol name modifies the dylib it's in.
this->installName = saver().save(installName);
this->compatibilityVersion = newCompatibilityVersion;
}
void DylibFile::handleLDInstallNameSymbol(StringRef name,
StringRef originalName) {
// originalName: $ld$ install_name $ os<version> $ install_name
StringRef condition, installName;
std::tie(condition, installName) = name.split('$');
VersionTuple version;
if (!condition.consume_front("os") || version.tryParse(condition))
warn(toString(this) + ": failed to parse os version, symbol '" +
originalName + "' ignored");
else if (version == config->platformInfo.target.MinDeployment)
this->installName = saver().save(installName);
}
void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) {
StringRef symbolName;
bool shouldHide = true;
if (name.starts_with("os")) {
// If it's hidden based on versions.
name = name.drop_front(2);
StringRef minVersion;
std::tie(minVersion, symbolName) = name.split('$');
VersionTuple versionTup;
if (versionTup.tryParse(minVersion)) {
warn(toString(this) + ": failed to parse hidden version, symbol `" + originalName +
"` ignored.");
return;
}
shouldHide = versionTup == config->platformInfo.target.MinDeployment;
} else {
symbolName = name;
}
if (shouldHide)
exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName));
}
void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
if (config->applicationExtension && !dylibIsAppExtensionSafe)
warn("using '-application_extension' with unsafe dylib: " + toString(this));
}
ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f, bool forceHidden)
: InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)),
forceHidden(forceHidden) {}
void ArchiveFile::addLazySymbols() {
for (const object::Archive::Symbol &sym : file->symbols())
symtab->addLazyArchive(sym.getName(), this, sym);
}
static Expected<InputFile *>
loadArchiveMember(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
uint64_t offsetInArchive, bool forceHidden) {
if (config->zeroModTime)
modTime = 0;
switch (identify_magic(mb.getBuffer())) {
case file_magic::macho_object:
return make<ObjFile>(mb, modTime, archiveName, /*lazy=*/false, forceHidden);
case file_magic::bitcode:
return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false,
forceHidden);
default:
return createStringError(inconvertibleErrorCode(),
mb.getBufferIdentifier() +
" has unhandled file type");
}
}
Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) {
if (!seen.insert(c.getChildOffset()).second)
return Error::success();
Expected<MemoryBufferRef> mb = c.getMemoryBufferRef();
if (!mb)
return mb.takeError();
// Thin archives refer to .o files, so --reproduce needs the .o files too.
if (tar && c.getParent()->isThin())
tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer());
Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified();
if (!modTime)
return modTime.takeError();
Expected<InputFile *> file = loadArchiveMember(
*mb, toTimeT(*modTime), getName(), c.getChildOffset(), forceHidden);
if (!file)
return file.takeError();
inputFiles.insert(*file);
printArchiveMemberLoad(reason, *file);
return Error::success();
}
void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
object::Archive::Child c =
CHECK(sym.getMember(), toString(this) +
": could not get the member defining symbol " +
toMachOString(sym));
// `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
// and become invalid after that call. Copy it to the stack so we can refer
// to it later.
const object::Archive::Symbol symCopy = sym;
// ld64 doesn't demangle sym here even with -demangle.
// Match that: intentionally don't call toMachOString().
if (Error e = fetch(c, symCopy.getName()))
error(toString(this) + ": could not get the member defining symbol " +
toMachOString(symCopy) + ": " + toString(std::move(e)));
}
static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
BitcodeFile &file) {
StringRef name = saver().save(objSym.getName());
if (objSym.isUndefined())
return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak());
// TODO: Write a test demonstrating why computing isPrivateExtern before
// LTO compilation is important.
bool isPrivateExtern = false;
switch (objSym.getVisibility()) {
case GlobalValue::HiddenVisibility:
isPrivateExtern = true;
break;
case GlobalValue::ProtectedVisibility:
error(name + " has protected visibility, which is not supported by Mach-O");
break;
case GlobalValue::DefaultVisibility:
break;
}
isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable() ||
file.forceHidden;
if (objSym.isCommon())
return symtab->addCommon(name, &file, objSym.getCommonSize(),
objSym.getCommonAlignment(), isPrivateExtern);
return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
/*size=*/0, objSym.isWeak(), isPrivateExtern,
/*isReferencedDynamically=*/false,
/*noDeadStrip=*/false,
/*isWeakDefCanBeHidden=*/false);
}
BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
uint64_t offsetInArchive, bool lazy, bool forceHidden)
: InputFile(BitcodeKind, mb, lazy), forceHidden(forceHidden) {
this->archiveName = std::string(archiveName);
std::string path = mb.getBufferIdentifier().str();
if (config->thinLTOIndexOnly)
path = replaceThinLTOSuffix(mb.getBufferIdentifier());
// ThinLTO assumes that all MemoryBufferRefs given to it have a unique
// name. If two members with the same name are provided, this causes a
// collision and ThinLTO can't proceed.
// So, we append the archive name to disambiguate two members with the same
// name from multiple different archives, and offset within the archive to
// disambiguate two members of the same name from a single archive.
MemoryBufferRef mbref(mb.getBuffer(),
saver().save(archiveName.empty()
? path
: archiveName + "(" +
sys::path::filename(path) + ")" +
utostr(offsetInArchive)));
obj = check(lto::InputFile::create(mbref));
if (lazy)
parseLazy();
else
parse();
}
void BitcodeFile::parse() {
// Convert LTO Symbols to LLD Symbols in order to perform resolution. The
// "winning" symbol will then be marked as Prevailing at LTO compilation
// time.
symbols.clear();
for (const lto::InputFile::Symbol &objSym : obj->symbols())
symbols.push_back(createBitcodeSymbol(objSym, *this));
}
void BitcodeFile::parseLazy() {
symbols.resize(obj->symbols().size());
for (const auto &[i, objSym] : llvm::enumerate(obj->symbols())) {
if (!objSym.isUndefined()) {
symbols[i] = symtab->addLazyObject(saver().save(objSym.getName()), *this);
if (!lazy)
break;
}
}
}
std::string macho::replaceThinLTOSuffix(StringRef path) {
auto [suffix, repl] = config->thinLTOObjectSuffixReplace;
if (path.consume_back(suffix))
return (path + repl).str();
return std::string(path);
}
void macho::extract(InputFile &file, StringRef reason) {
if (!file.lazy)
return;
file.lazy = false;
printArchiveMemberLoad(reason, &file);
if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) {
bitcode->parse();
} else {
auto &f = cast<ObjFile>(file);
if (target->wordSize == 8)
f.parse<LP64>();
else
f.parse<ILP32>();
}
}
template void ObjFile::parse<LP64>();
|