1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
|
//===- SyntheticSections.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SyntheticSections.h"
#include "ConcatOutputSection.h"
#include "Config.h"
#include "ExportTrie.h"
#include "InputFiles.h"
#include "MachOStructs.h"
#include "OutputSegment.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "lld/Common/CommonLinkerContext.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/xxhash.h"
#if defined(__APPLE__)
#include <sys/mman.h>
#define COMMON_DIGEST_FOR_OPENSSL
#include <CommonCrypto/CommonDigest.h>
#else
#include "llvm/Support/SHA256.h"
#endif
using namespace llvm;
using namespace llvm::MachO;
using namespace llvm::support;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::macho;
// Reads `len` bytes at data and writes the 32-byte SHA256 checksum to `output`.
static void sha256(const uint8_t *data, size_t len, uint8_t *output) {
#if defined(__APPLE__)
// FIXME: Make LLVM's SHA256 faster and use it unconditionally. See PR56121
// for some notes on this.
CC_SHA256(data, len, output);
#else
ArrayRef<uint8_t> block(data, len);
std::array<uint8_t, 32> hash = SHA256::hash(block);
static_assert(hash.size() == CodeSignatureSection::hashSize);
memcpy(output, hash.data(), hash.size());
#endif
}
InStruct macho::in;
std::vector<SyntheticSection *> macho::syntheticSections;
SyntheticSection::SyntheticSection(const char *segname, const char *name)
: OutputSection(SyntheticKind, name) {
std::tie(this->segname, this->name) = maybeRenameSection({segname, name});
isec = makeSyntheticInputSection(segname, name);
isec->parent = this;
syntheticSections.push_back(this);
}
// dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts
// from the beginning of the file (i.e. the header).
MachHeaderSection::MachHeaderSection()
: SyntheticSection(segment_names::text, section_names::header) {
// XXX: This is a hack. (See D97007)
// Setting the index to 1 to pretend that this section is the text
// section.
index = 1;
isec->isFinal = true;
}
void MachHeaderSection::addLoadCommand(LoadCommand *lc) {
loadCommands.push_back(lc);
sizeOfCmds += lc->getSize();
}
uint64_t MachHeaderSection::getSize() const {
uint64_t size = target->headerSize + sizeOfCmds + config->headerPad;
// If we are emitting an encryptable binary, our load commands must have a
// separate (non-encrypted) page to themselves.
if (config->emitEncryptionInfo)
size = alignToPowerOf2(size, target->getPageSize());
return size;
}
static uint32_t cpuSubtype() {
uint32_t subtype = target->cpuSubtype;
if (config->outputType == MH_EXECUTE && !config->staticLink &&
target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL &&
config->platform() == PLATFORM_MACOS &&
config->platformInfo.target.MinDeployment >= VersionTuple(10, 5))
subtype |= CPU_SUBTYPE_LIB64;
return subtype;
}
static bool hasWeakBinding() {
return config->emitChainedFixups ? in.chainedFixups->hasWeakBinding()
: in.weakBinding->hasEntry();
}
static bool hasNonWeakDefinition() {
return config->emitChainedFixups ? in.chainedFixups->hasNonWeakDefinition()
: in.weakBinding->hasNonWeakDefinition();
}
void MachHeaderSection::writeTo(uint8_t *buf) const {
auto *hdr = reinterpret_cast<mach_header *>(buf);
hdr->magic = target->magic;
hdr->cputype = target->cpuType;
hdr->cpusubtype = cpuSubtype();
hdr->filetype = config->outputType;
hdr->ncmds = loadCommands.size();
hdr->sizeofcmds = sizeOfCmds;
hdr->flags = MH_DYLDLINK;
if (config->namespaceKind == NamespaceKind::twolevel)
hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL;
if (config->outputType == MH_DYLIB && !config->hasReexports)
hdr->flags |= MH_NO_REEXPORTED_DYLIBS;
if (config->markDeadStrippableDylib)
hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB;
if (config->outputType == MH_EXECUTE && config->isPic)
hdr->flags |= MH_PIE;
if (config->outputType == MH_DYLIB && config->applicationExtension)
hdr->flags |= MH_APP_EXTENSION_SAFE;
if (in.exports->hasWeakSymbol || hasNonWeakDefinition())
hdr->flags |= MH_WEAK_DEFINES;
if (in.exports->hasWeakSymbol || hasWeakBinding())
hdr->flags |= MH_BINDS_TO_WEAK;
for (const OutputSegment *seg : outputSegments) {
for (const OutputSection *osec : seg->getSections()) {
if (isThreadLocalVariables(osec->flags)) {
hdr->flags |= MH_HAS_TLV_DESCRIPTORS;
break;
}
}
}
uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize;
for (const LoadCommand *lc : loadCommands) {
lc->writeTo(p);
p += lc->getSize();
}
}
PageZeroSection::PageZeroSection()
: SyntheticSection(segment_names::pageZero, section_names::pageZero) {}
RebaseSection::RebaseSection()
: LinkEditSection(segment_names::linkEdit, section_names::rebase) {}
namespace {
struct RebaseState {
uint64_t sequenceLength;
uint64_t skipLength;
};
} // namespace
static void emitIncrement(uint64_t incr, raw_svector_ostream &os) {
assert(incr != 0);
if ((incr >> target->p2WordSize) <= REBASE_IMMEDIATE_MASK &&
(incr % target->wordSize) == 0) {
os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_IMM_SCALED |
(incr >> target->p2WordSize));
} else {
os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB);
encodeULEB128(incr, os);
}
}
static void flushRebase(const RebaseState &state, raw_svector_ostream &os) {
assert(state.sequenceLength > 0);
if (state.skipLength == target->wordSize) {
if (state.sequenceLength <= REBASE_IMMEDIATE_MASK) {
os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES |
state.sequenceLength);
} else {
os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES);
encodeULEB128(state.sequenceLength, os);
}
} else if (state.sequenceLength == 1) {
os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB);
encodeULEB128(state.skipLength - target->wordSize, os);
} else {
os << static_cast<uint8_t>(
REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB);
encodeULEB128(state.sequenceLength, os);
encodeULEB128(state.skipLength - target->wordSize, os);
}
}
// Rebases are communicated to dyld using a bytecode, whose opcodes cause the
// memory location at a specific address to be rebased and/or the address to be
// incremented.
//
// Opcode REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB is the most generic
// one, encoding a series of evenly spaced addresses. This algorithm works by
// splitting up the sorted list of addresses into such chunks. If the locations
// are consecutive or the sequence consists of a single location, flushRebase
// will use a smaller, more specialized encoding.
static void encodeRebases(const OutputSegment *seg,
MutableArrayRef<Location> locations,
raw_svector_ostream &os) {
// dyld operates on segments. Translate section offsets into segment offsets.
for (Location &loc : locations)
loc.offset =
loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset);
// The algorithm assumes that locations are unique.
Location *end =
llvm::unique(locations, [](const Location &a, const Location &b) {
return a.offset == b.offset;
});
size_t count = end - locations.begin();
os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
seg->index);
assert(!locations.empty());
uint64_t offset = locations[0].offset;
encodeULEB128(offset, os);
RebaseState state{1, target->wordSize};
for (size_t i = 1; i < count; ++i) {
offset = locations[i].offset;
uint64_t skip = offset - locations[i - 1].offset;
assert(skip != 0 && "duplicate locations should have been weeded out");
if (skip == state.skipLength) {
++state.sequenceLength;
} else if (state.sequenceLength == 1) {
++state.sequenceLength;
state.skipLength = skip;
} else if (skip < state.skipLength) {
// The address is lower than what the rebase pointer would be if the last
// location would be part of a sequence. We start a new sequence from the
// previous location.
--state.sequenceLength;
flushRebase(state, os);
state.sequenceLength = 2;
state.skipLength = skip;
} else {
// The address is at some positive offset from the rebase pointer. We
// start a new sequence which begins with the current location.
flushRebase(state, os);
emitIncrement(skip - state.skipLength, os);
state.sequenceLength = 1;
state.skipLength = target->wordSize;
}
}
flushRebase(state, os);
}
void RebaseSection::finalizeContents() {
if (locations.empty())
return;
raw_svector_ostream os{contents};
os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER);
llvm::sort(locations, [](const Location &a, const Location &b) {
return a.isec->getVA(a.offset) < b.isec->getVA(b.offset);
});
for (size_t i = 0, count = locations.size(); i < count;) {
const OutputSegment *seg = locations[i].isec->parent->parent;
size_t j = i + 1;
while (j < count && locations[j].isec->parent->parent == seg)
++j;
encodeRebases(seg, {locations.data() + i, locations.data() + j}, os);
i = j;
}
os << static_cast<uint8_t>(REBASE_OPCODE_DONE);
}
void RebaseSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname,
const char *name)
: SyntheticSection(segname, name) {
align = target->wordSize;
}
void macho::addNonLazyBindingEntries(const Symbol *sym,
const InputSection *isec, uint64_t offset,
int64_t addend) {
if (config->emitChainedFixups) {
if (needsBinding(sym))
in.chainedFixups->addBinding(sym, isec, offset, addend);
else if (isa<Defined>(sym))
in.chainedFixups->addRebase(isec, offset);
else
llvm_unreachable("cannot bind to an undefined symbol");
return;
}
if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
in.binding->addEntry(dysym, isec, offset, addend);
if (dysym->isWeakDef())
in.weakBinding->addEntry(sym, isec, offset, addend);
} else if (const auto *defined = dyn_cast<Defined>(sym)) {
in.rebase->addEntry(isec, offset);
if (defined->isExternalWeakDef())
in.weakBinding->addEntry(sym, isec, offset, addend);
else if (defined->interposable)
in.binding->addEntry(sym, isec, offset, addend);
} else {
// Undefined symbols are filtered out in scanRelocations(); we should never
// get here
llvm_unreachable("cannot bind to an undefined symbol");
}
}
void NonLazyPointerSectionBase::addEntry(Symbol *sym) {
if (entries.insert(sym)) {
assert(!sym->isInGot());
sym->gotIndex = entries.size() - 1;
addNonLazyBindingEntries(sym, isec, sym->gotIndex * target->wordSize);
}
}
void macho::writeChainedRebase(uint8_t *buf, uint64_t targetVA) {
assert(config->emitChainedFixups);
assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
auto *rebase = reinterpret_cast<dyld_chained_ptr_64_rebase *>(buf);
rebase->target = targetVA & 0xf'ffff'ffff;
rebase->high8 = (targetVA >> 56);
rebase->reserved = 0;
rebase->next = 0;
rebase->bind = 0;
// The fixup format places a 64 GiB limit on the output's size.
// Should we handle this gracefully?
uint64_t encodedVA = rebase->target | ((uint64_t)rebase->high8 << 56);
if (encodedVA != targetVA)
error("rebase target address 0x" + Twine::utohexstr(targetVA) +
" does not fit into chained fixup. Re-link with -no_fixup_chains");
}
static void writeChainedBind(uint8_t *buf, const Symbol *sym, int64_t addend) {
assert(config->emitChainedFixups);
assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
auto *bind = reinterpret_cast<dyld_chained_ptr_64_bind *>(buf);
auto [ordinal, inlineAddend] = in.chainedFixups->getBinding(sym, addend);
bind->ordinal = ordinal;
bind->addend = inlineAddend;
bind->reserved = 0;
bind->next = 0;
bind->bind = 1;
}
void macho::writeChainedFixup(uint8_t *buf, const Symbol *sym, int64_t addend) {
if (needsBinding(sym))
writeChainedBind(buf, sym, addend);
else
writeChainedRebase(buf, sym->getVA() + addend);
}
void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const {
if (config->emitChainedFixups) {
for (const auto &[i, entry] : llvm::enumerate(entries))
writeChainedFixup(&buf[i * target->wordSize], entry, 0);
} else {
for (const auto &[i, entry] : llvm::enumerate(entries))
if (auto *defined = dyn_cast<Defined>(entry))
write64le(&buf[i * target->wordSize], defined->getVA());
}
}
GotSection::GotSection()
: NonLazyPointerSectionBase(segment_names::data, section_names::got) {
flags = S_NON_LAZY_SYMBOL_POINTERS;
}
TlvPointerSection::TlvPointerSection()
: NonLazyPointerSectionBase(segment_names::data,
section_names::threadPtrs) {
flags = S_THREAD_LOCAL_VARIABLE_POINTERS;
}
BindingSection::BindingSection()
: LinkEditSection(segment_names::linkEdit, section_names::binding) {}
namespace {
struct Binding {
OutputSegment *segment = nullptr;
uint64_t offset = 0;
int64_t addend = 0;
};
struct BindIR {
// Default value of 0xF0 is not valid opcode and should make the program
// scream instead of accidentally writing "valid" values.
uint8_t opcode = 0xF0;
uint64_t data = 0;
uint64_t consecutiveCount = 0;
};
} // namespace
// Encode a sequence of opcodes that tell dyld to write the address of symbol +
// addend at osec->addr + outSecOff.
//
// The bind opcode "interpreter" remembers the values of each binding field, so
// we only need to encode the differences between bindings. Hence the use of
// lastBinding.
static void encodeBinding(const OutputSection *osec, uint64_t outSecOff,
int64_t addend, Binding &lastBinding,
std::vector<BindIR> &opcodes) {
OutputSegment *seg = osec->parent;
uint64_t offset = osec->getSegmentOffset() + outSecOff;
if (lastBinding.segment != seg) {
opcodes.push_back(
{static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
seg->index),
offset});
lastBinding.segment = seg;
lastBinding.offset = offset;
} else if (lastBinding.offset != offset) {
opcodes.push_back({BIND_OPCODE_ADD_ADDR_ULEB, offset - lastBinding.offset});
lastBinding.offset = offset;
}
if (lastBinding.addend != addend) {
opcodes.push_back(
{BIND_OPCODE_SET_ADDEND_SLEB, static_cast<uint64_t>(addend)});
lastBinding.addend = addend;
}
opcodes.push_back({BIND_OPCODE_DO_BIND, 0});
// DO_BIND causes dyld to both perform the binding and increment the offset
lastBinding.offset += target->wordSize;
}
static void optimizeOpcodes(std::vector<BindIR> &opcodes) {
// Pass 1: Combine bind/add pairs
size_t i;
int pWrite = 0;
for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) &&
(opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) {
opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB;
opcodes[pWrite].data = opcodes[i].data;
++i;
} else {
opcodes[pWrite] = opcodes[i - 1];
}
}
if (i == opcodes.size())
opcodes[pWrite] = opcodes[i - 1];
opcodes.resize(pWrite + 1);
// Pass 2: Compress two or more bind_add opcodes
pWrite = 0;
for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
(opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
(opcodes[i].data == opcodes[i - 1].data)) {
opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB;
opcodes[pWrite].consecutiveCount = 2;
opcodes[pWrite].data = opcodes[i].data;
++i;
while (i < opcodes.size() &&
(opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
(opcodes[i].data == opcodes[i - 1].data)) {
opcodes[pWrite].consecutiveCount++;
++i;
}
} else {
opcodes[pWrite] = opcodes[i - 1];
}
}
if (i == opcodes.size())
opcodes[pWrite] = opcodes[i - 1];
opcodes.resize(pWrite + 1);
// Pass 3: Use immediate encodings
// Every binding is the size of one pointer. If the next binding is a
// multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the
// opcode can be scaled by wordSize into a single byte and dyld will
// expand it to the correct address.
for (auto &p : opcodes) {
// It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK,
// but ld64 currently does this. This could be a potential bug, but
// for now, perform the same behavior to prevent mysterious bugs.
if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) &&
((p.data % target->wordSize) == 0)) {
p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED;
p.data /= target->wordSize;
}
}
}
static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) {
uint8_t opcode = op.opcode & BIND_OPCODE_MASK;
switch (opcode) {
case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB:
case BIND_OPCODE_ADD_ADDR_ULEB:
case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB:
os << op.opcode;
encodeULEB128(op.data, os);
break;
case BIND_OPCODE_SET_ADDEND_SLEB:
os << op.opcode;
encodeSLEB128(static_cast<int64_t>(op.data), os);
break;
case BIND_OPCODE_DO_BIND:
os << op.opcode;
break;
case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB:
os << op.opcode;
encodeULEB128(op.consecutiveCount, os);
encodeULEB128(op.data, os);
break;
case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED:
os << static_cast<uint8_t>(op.opcode | op.data);
break;
default:
llvm_unreachable("cannot bind to an unrecognized symbol");
}
}
// Non-weak bindings need to have their dylib ordinal encoded as well.
static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) {
if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup())
return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP);
assert(dysym.getFile()->isReferenced());
return dysym.getFile()->ordinal;
}
static int16_t ordinalForSymbol(const Symbol &sym) {
if (const auto *dysym = dyn_cast<DylibSymbol>(&sym))
return ordinalForDylibSymbol(*dysym);
assert(cast<Defined>(&sym)->interposable);
return BIND_SPECIAL_DYLIB_FLAT_LOOKUP;
}
static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) {
if (ordinal <= 0) {
os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM |
(ordinal & BIND_IMMEDIATE_MASK));
} else if (ordinal <= BIND_IMMEDIATE_MASK) {
os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal);
} else {
os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB);
encodeULEB128(ordinal, os);
}
}
static void encodeWeakOverride(const Defined *defined,
raw_svector_ostream &os) {
os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM |
BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION)
<< defined->getName() << '\0';
}
// Organize the bindings so we can encoded them with fewer opcodes.
//
// First, all bindings for a given symbol should be grouped together.
// BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it
// has an associated symbol string), so we only want to emit it once per symbol.
//
// Within each group, we sort the bindings by address. Since bindings are
// delta-encoded, sorting them allows for a more compact result. Note that
// sorting by address alone ensures that bindings for the same segment / section
// are located together, minimizing the number of times we have to emit
// BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB.
//
// Finally, we sort the symbols by the address of their first binding, again
// to facilitate the delta-encoding process.
template <class Sym>
std::vector<std::pair<const Sym *, std::vector<BindingEntry>>>
sortBindings(const BindingsMap<const Sym *> &bindingsMap) {
std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec(
bindingsMap.begin(), bindingsMap.end());
for (auto &p : bindingsVec) {
std::vector<BindingEntry> &bindings = p.second;
llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) {
return a.target.getVA() < b.target.getVA();
});
}
llvm::sort(bindingsVec, [](const auto &a, const auto &b) {
return a.second[0].target.getVA() < b.second[0].target.getVA();
});
return bindingsVec;
}
// Emit bind opcodes, which are a stream of byte-sized opcodes that dyld
// interprets to update a record with the following fields:
// * segment index (of the segment to write the symbol addresses to, typically
// the __DATA_CONST segment which contains the GOT)
// * offset within the segment, indicating the next location to write a binding
// * symbol type
// * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command)
// * symbol name
// * addend
// When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind
// a symbol in the GOT, and increments the segment offset to point to the next
// entry. It does *not* clear the record state after doing the bind, so
// subsequent opcodes only need to encode the differences between bindings.
void BindingSection::finalizeContents() {
raw_svector_ostream os{contents};
Binding lastBinding;
int16_t lastOrdinal = 0;
for (auto &p : sortBindings(bindingsMap)) {
const Symbol *sym = p.first;
std::vector<BindingEntry> &bindings = p.second;
uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
if (sym->isWeakRef())
flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
os << flags << sym->getName() << '\0'
<< static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
int16_t ordinal = ordinalForSymbol(*sym);
if (ordinal != lastOrdinal) {
encodeDylibOrdinal(ordinal, os);
lastOrdinal = ordinal;
}
std::vector<BindIR> opcodes;
for (const BindingEntry &b : bindings)
encodeBinding(b.target.isec->parent,
b.target.isec->getOffset(b.target.offset), b.addend,
lastBinding, opcodes);
if (config->optimize > 1)
optimizeOpcodes(opcodes);
for (const auto &op : opcodes)
flushOpcodes(op, os);
}
if (!bindingsMap.empty())
os << static_cast<uint8_t>(BIND_OPCODE_DONE);
}
void BindingSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
WeakBindingSection::WeakBindingSection()
: LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {}
void WeakBindingSection::finalizeContents() {
raw_svector_ostream os{contents};
Binding lastBinding;
for (const Defined *defined : definitions)
encodeWeakOverride(defined, os);
for (auto &p : sortBindings(bindingsMap)) {
const Symbol *sym = p.first;
std::vector<BindingEntry> &bindings = p.second;
os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM)
<< sym->getName() << '\0'
<< static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
std::vector<BindIR> opcodes;
for (const BindingEntry &b : bindings)
encodeBinding(b.target.isec->parent,
b.target.isec->getOffset(b.target.offset), b.addend,
lastBinding, opcodes);
if (config->optimize > 1)
optimizeOpcodes(opcodes);
for (const auto &op : opcodes)
flushOpcodes(op, os);
}
if (!bindingsMap.empty() || !definitions.empty())
os << static_cast<uint8_t>(BIND_OPCODE_DONE);
}
void WeakBindingSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
StubsSection::StubsSection()
: SyntheticSection(segment_names::text, section_names::stubs) {
flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
// The stubs section comprises machine instructions, which are aligned to
// 4 bytes on the archs we care about.
align = 4;
reserved2 = target->stubSize;
}
uint64_t StubsSection::getSize() const {
return entries.size() * target->stubSize;
}
void StubsSection::writeTo(uint8_t *buf) const {
size_t off = 0;
for (const Symbol *sym : entries) {
uint64_t pointerVA =
config->emitChainedFixups ? sym->getGotVA() : sym->getLazyPtrVA();
target->writeStub(buf + off, *sym, pointerVA);
off += target->stubSize;
}
}
void StubsSection::finalize() { isFinal = true; }
static void addBindingsForStub(Symbol *sym) {
assert(!config->emitChainedFixups);
if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
if (sym->isWeakDef()) {
in.binding->addEntry(dysym, in.lazyPointers->isec,
sym->stubsIndex * target->wordSize);
in.weakBinding->addEntry(sym, in.lazyPointers->isec,
sym->stubsIndex * target->wordSize);
} else {
in.lazyBinding->addEntry(dysym);
}
} else if (auto *defined = dyn_cast<Defined>(sym)) {
if (defined->isExternalWeakDef()) {
in.rebase->addEntry(in.lazyPointers->isec,
sym->stubsIndex * target->wordSize);
in.weakBinding->addEntry(sym, in.lazyPointers->isec,
sym->stubsIndex * target->wordSize);
} else if (defined->interposable) {
in.lazyBinding->addEntry(sym);
} else {
llvm_unreachable("invalid stub target");
}
} else {
llvm_unreachable("invalid stub target symbol type");
}
}
void StubsSection::addEntry(Symbol *sym) {
bool inserted = entries.insert(sym);
if (inserted) {
sym->stubsIndex = entries.size() - 1;
if (config->emitChainedFixups)
in.got->addEntry(sym);
else
addBindingsForStub(sym);
}
}
StubHelperSection::StubHelperSection()
: SyntheticSection(segment_names::text, section_names::stubHelper) {
flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
align = 4; // This section comprises machine instructions
}
uint64_t StubHelperSection::getSize() const {
return target->stubHelperHeaderSize +
in.lazyBinding->getEntries().size() * target->stubHelperEntrySize;
}
bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); }
void StubHelperSection::writeTo(uint8_t *buf) const {
target->writeStubHelperHeader(buf);
size_t off = target->stubHelperHeaderSize;
for (const Symbol *sym : in.lazyBinding->getEntries()) {
target->writeStubHelperEntry(buf + off, *sym, addr + off);
off += target->stubHelperEntrySize;
}
}
void StubHelperSection::setUp() {
Symbol *binder = symtab->addUndefined("dyld_stub_binder", /*file=*/nullptr,
/*isWeakRef=*/false);
if (auto *undefined = dyn_cast<Undefined>(binder))
treatUndefinedSymbol(*undefined,
"lazy binding (normally in libSystem.dylib)");
// treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check.
stubBinder = dyn_cast_or_null<DylibSymbol>(binder);
if (stubBinder == nullptr)
return;
in.got->addEntry(stubBinder);
in.imageLoaderCache->parent =
ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache);
inputSections.push_back(in.imageLoaderCache);
// Since this isn't in the symbol table or in any input file, the noDeadStrip
// argument doesn't matter.
dyldPrivate =
make<Defined>("__dyld_private", nullptr, in.imageLoaderCache, 0, 0,
/*isWeakDef=*/false,
/*isExternal=*/false, /*isPrivateExtern=*/false,
/*includeInSymtab=*/true,
/*isReferencedDynamically=*/false,
/*noDeadStrip=*/false);
dyldPrivate->used = true;
}
ObjCStubsSection::ObjCStubsSection()
: SyntheticSection(segment_names::text, section_names::objcStubs) {
flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
align = target->objcStubsAlignment;
}
void ObjCStubsSection::addEntry(Symbol *sym) {
assert(sym->getName().starts_with(symbolPrefix) && "not an objc stub");
StringRef methname = sym->getName().drop_front(symbolPrefix.size());
offsets.push_back(
in.objcMethnameSection->getStringOffset(methname).outSecOff);
Defined *newSym = replaceSymbol<Defined>(
sym, sym->getName(), nullptr, isec,
/*value=*/symbols.size() * target->objcStubsFastSize,
/*size=*/target->objcStubsFastSize,
/*isWeakDef=*/false, /*isExternal=*/true, /*isPrivateExtern=*/true,
/*includeInSymtab=*/true, /*isReferencedDynamically=*/false,
/*noDeadStrip=*/false);
symbols.push_back(newSym);
}
void ObjCStubsSection::setUp() {
Symbol *objcMsgSend = symtab->addUndefined("_objc_msgSend", /*file=*/nullptr,
/*isWeakRef=*/false);
objcMsgSend->used = true;
in.got->addEntry(objcMsgSend);
assert(objcMsgSend->isInGot());
objcMsgSendGotIndex = objcMsgSend->gotIndex;
size_t size = offsets.size() * target->wordSize;
uint8_t *selrefsData = bAlloc().Allocate<uint8_t>(size);
for (size_t i = 0, n = offsets.size(); i < n; ++i)
write64le(&selrefsData[i * target->wordSize], offsets[i]);
in.objcSelrefs =
makeSyntheticInputSection(segment_names::data, section_names::objcSelrefs,
S_LITERAL_POINTERS | S_ATTR_NO_DEAD_STRIP,
ArrayRef<uint8_t>{selrefsData, size},
/*align=*/target->wordSize);
in.objcSelrefs->live = true;
for (size_t i = 0, n = offsets.size(); i < n; ++i) {
in.objcSelrefs->relocs.push_back(
{/*type=*/target->unsignedRelocType,
/*pcrel=*/false, /*length=*/3,
/*offset=*/static_cast<uint32_t>(i * target->wordSize),
/*addend=*/offsets[i] * in.objcMethnameSection->align,
/*referent=*/in.objcMethnameSection->isec});
}
in.objcSelrefs->parent =
ConcatOutputSection::getOrCreateForInput(in.objcSelrefs);
inputSections.push_back(in.objcSelrefs);
in.objcSelrefs->isFinal = true;
}
uint64_t ObjCStubsSection::getSize() const {
return target->objcStubsFastSize * symbols.size();
}
void ObjCStubsSection::writeTo(uint8_t *buf) const {
assert(in.objcSelrefs->live);
assert(in.objcSelrefs->isFinal);
uint64_t stubOffset = 0;
for (size_t i = 0, n = symbols.size(); i < n; ++i) {
Defined *sym = symbols[i];
target->writeObjCMsgSendStub(buf + stubOffset, sym, in.objcStubs->addr,
stubOffset, in.objcSelrefs->getVA(), i,
in.got->addr, objcMsgSendGotIndex);
stubOffset += target->objcStubsFastSize;
}
}
LazyPointerSection::LazyPointerSection()
: SyntheticSection(segment_names::data, section_names::lazySymbolPtr) {
align = target->wordSize;
flags = S_LAZY_SYMBOL_POINTERS;
}
uint64_t LazyPointerSection::getSize() const {
return in.stubs->getEntries().size() * target->wordSize;
}
bool LazyPointerSection::isNeeded() const {
return !in.stubs->getEntries().empty();
}
void LazyPointerSection::writeTo(uint8_t *buf) const {
size_t off = 0;
for (const Symbol *sym : in.stubs->getEntries()) {
if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
if (dysym->hasStubsHelper()) {
uint64_t stubHelperOffset =
target->stubHelperHeaderSize +
dysym->stubsHelperIndex * target->stubHelperEntrySize;
write64le(buf + off, in.stubHelper->addr + stubHelperOffset);
}
} else {
write64le(buf + off, sym->getVA());
}
off += target->wordSize;
}
}
LazyBindingSection::LazyBindingSection()
: LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {}
void LazyBindingSection::finalizeContents() {
// TODO: Just precompute output size here instead of writing to a temporary
// buffer
for (Symbol *sym : entries)
sym->lazyBindOffset = encode(*sym);
}
void LazyBindingSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
void LazyBindingSection::addEntry(Symbol *sym) {
assert(!config->emitChainedFixups && "Chained fixups always bind eagerly");
if (entries.insert(sym)) {
sym->stubsHelperIndex = entries.size() - 1;
in.rebase->addEntry(in.lazyPointers->isec,
sym->stubsIndex * target->wordSize);
}
}
// Unlike the non-lazy binding section, the bind opcodes in this section aren't
// interpreted all at once. Rather, dyld will start interpreting opcodes at a
// given offset, typically only binding a single symbol before it finds a
// BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case,
// we cannot encode just the differences between symbols; we have to emit the
// complete bind information for each symbol.
uint32_t LazyBindingSection::encode(const Symbol &sym) {
uint32_t opstreamOffset = contents.size();
OutputSegment *dataSeg = in.lazyPointers->parent;
os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
dataSeg->index);
uint64_t offset =
in.lazyPointers->addr - dataSeg->addr + sym.stubsIndex * target->wordSize;
encodeULEB128(offset, os);
encodeDylibOrdinal(ordinalForSymbol(sym), os);
uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
if (sym.isWeakRef())
flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
os << flags << sym.getName() << '\0'
<< static_cast<uint8_t>(BIND_OPCODE_DO_BIND)
<< static_cast<uint8_t>(BIND_OPCODE_DONE);
return opstreamOffset;
}
ExportSection::ExportSection()
: LinkEditSection(segment_names::linkEdit, section_names::export_) {}
void ExportSection::finalizeContents() {
trieBuilder.setImageBase(in.header->addr);
for (const Symbol *sym : symtab->getSymbols()) {
if (const auto *defined = dyn_cast<Defined>(sym)) {
if (defined->privateExtern || !defined->isLive())
continue;
trieBuilder.addSymbol(*defined);
hasWeakSymbol = hasWeakSymbol || sym->isWeakDef();
} else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
if (dysym->shouldReexport)
trieBuilder.addSymbol(*dysym);
}
}
size = trieBuilder.build();
}
void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); }
DataInCodeSection::DataInCodeSection()
: LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {}
template <class LP>
static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() {
std::vector<MachO::data_in_code_entry> dataInCodeEntries;
for (const InputFile *inputFile : inputFiles) {
if (!isa<ObjFile>(inputFile))
continue;
const ObjFile *objFile = cast<ObjFile>(inputFile);
ArrayRef<MachO::data_in_code_entry> entries = objFile->getDataInCode();
if (entries.empty())
continue;
assert(is_sorted(entries, [](const data_in_code_entry &lhs,
const data_in_code_entry &rhs) {
return lhs.offset < rhs.offset;
}));
// For each code subsection find 'data in code' entries residing in it.
// Compute the new offset values as
// <offset within subsection> + <subsection address> - <__TEXT address>.
for (const Section *section : objFile->sections) {
for (const Subsection &subsec : section->subsections) {
const InputSection *isec = subsec.isec;
if (!isCodeSection(isec))
continue;
if (cast<ConcatInputSection>(isec)->shouldOmitFromOutput())
continue;
const uint64_t beginAddr = section->addr + subsec.offset;
auto it = llvm::lower_bound(
entries, beginAddr,
[](const MachO::data_in_code_entry &entry, uint64_t addr) {
return entry.offset < addr;
});
const uint64_t endAddr = beginAddr + isec->getSize();
for (const auto end = entries.end();
it != end && it->offset + it->length <= endAddr; ++it)
dataInCodeEntries.push_back(
{static_cast<uint32_t>(isec->getVA(it->offset - beginAddr) -
in.header->addr),
it->length, it->kind});
}
}
}
// ld64 emits the table in sorted order too.
llvm::sort(dataInCodeEntries,
[](const data_in_code_entry &lhs, const data_in_code_entry &rhs) {
return lhs.offset < rhs.offset;
});
return dataInCodeEntries;
}
void DataInCodeSection::finalizeContents() {
entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>()
: collectDataInCodeEntries<ILP32>();
}
void DataInCodeSection::writeTo(uint8_t *buf) const {
if (!entries.empty())
memcpy(buf, entries.data(), getRawSize());
}
FunctionStartsSection::FunctionStartsSection()
: LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {}
void FunctionStartsSection::finalizeContents() {
raw_svector_ostream os{contents};
std::vector<uint64_t> addrs;
for (const InputFile *file : inputFiles) {
if (auto *objFile = dyn_cast<ObjFile>(file)) {
for (const Symbol *sym : objFile->symbols) {
if (const auto *defined = dyn_cast_or_null<Defined>(sym)) {
if (!defined->isec || !isCodeSection(defined->isec) ||
!defined->isLive())
continue;
addrs.push_back(defined->getVA());
}
}
}
}
llvm::sort(addrs);
uint64_t addr = in.header->addr;
for (uint64_t nextAddr : addrs) {
uint64_t delta = nextAddr - addr;
if (delta == 0)
continue;
encodeULEB128(delta, os);
addr = nextAddr;
}
os << '\0';
}
void FunctionStartsSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
SymtabSection::SymtabSection(StringTableSection &stringTableSection)
: LinkEditSection(segment_names::linkEdit, section_names::symbolTable),
stringTableSection(stringTableSection) {}
void SymtabSection::emitBeginSourceStab(StringRef sourceFile) {
StabsEntry stab(N_SO);
stab.strx = stringTableSection.addString(saver().save(sourceFile));
stabs.emplace_back(std::move(stab));
}
void SymtabSection::emitEndSourceStab() {
StabsEntry stab(N_SO);
stab.sect = 1;
stabs.emplace_back(std::move(stab));
}
void SymtabSection::emitObjectFileStab(ObjFile *file) {
StabsEntry stab(N_OSO);
stab.sect = target->cpuSubtype;
SmallString<261> path(!file->archiveName.empty() ? file->archiveName
: file->getName());
std::error_code ec = sys::fs::make_absolute(path);
if (ec)
fatal("failed to get absolute path for " + path);
if (!file->archiveName.empty())
path.append({"(", file->getName(), ")"});
StringRef adjustedPath = saver().save(path.str());
adjustedPath.consume_front(config->osoPrefix);
stab.strx = stringTableSection.addString(adjustedPath);
stab.desc = 1;
stab.value = file->modTime;
stabs.emplace_back(std::move(stab));
}
void SymtabSection::emitEndFunStab(Defined *defined) {
StabsEntry stab(N_FUN);
stab.value = defined->size;
stabs.emplace_back(std::move(stab));
}
void SymtabSection::emitStabs() {
if (config->omitDebugInfo)
return;
for (const std::string &s : config->astPaths) {
StabsEntry astStab(N_AST);
astStab.strx = stringTableSection.addString(s);
stabs.emplace_back(std::move(astStab));
}
// Cache the file ID for each symbol in an std::pair for faster sorting.
using SortingPair = std::pair<Defined *, int>;
std::vector<SortingPair> symbolsNeedingStabs;
for (const SymtabEntry &entry :
concat<SymtabEntry>(localSymbols, externalSymbols)) {
Symbol *sym = entry.sym;
assert(sym->isLive() &&
"dead symbols should not be in localSymbols, externalSymbols");
if (auto *defined = dyn_cast<Defined>(sym)) {
// Excluded symbols should have been filtered out in finalizeContents().
assert(defined->includeInSymtab);
if (defined->isAbsolute())
continue;
// Constant-folded symbols go in the executable's symbol table, but don't
// get a stabs entry.
if (defined->wasIdenticalCodeFolded)
continue;
ObjFile *file = defined->getObjectFile();
if (!file || !file->compileUnit)
continue;
symbolsNeedingStabs.emplace_back(defined, defined->isec->getFile()->id);
}
}
llvm::stable_sort(symbolsNeedingStabs,
[&](const SortingPair &a, const SortingPair &b) {
return a.second < b.second;
});
// Emit STABS symbols so that dsymutil and/or the debugger can map address
// regions in the final binary to the source and object files from which they
// originated.
InputFile *lastFile = nullptr;
for (SortingPair &pair : symbolsNeedingStabs) {
Defined *defined = pair.first;
InputSection *isec = defined->isec;
ObjFile *file = cast<ObjFile>(isec->getFile());
if (lastFile == nullptr || lastFile != file) {
if (lastFile != nullptr)
emitEndSourceStab();
lastFile = file;
emitBeginSourceStab(file->sourceFile());
emitObjectFileStab(file);
}
StabsEntry symStab;
symStab.sect = defined->isec->parent->index;
symStab.strx = stringTableSection.addString(defined->getName());
symStab.value = defined->getVA();
if (isCodeSection(isec)) {
symStab.type = N_FUN;
stabs.emplace_back(std::move(symStab));
emitEndFunStab(defined);
} else {
symStab.type = defined->isExternal() ? N_GSYM : N_STSYM;
stabs.emplace_back(std::move(symStab));
}
}
if (!stabs.empty())
emitEndSourceStab();
}
void SymtabSection::finalizeContents() {
auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) {
uint32_t strx = stringTableSection.addString(sym->getName());
symbols.push_back({sym, strx});
};
std::function<void(Symbol *)> localSymbolsHandler;
switch (config->localSymbolsPresence) {
case SymtabPresence::All:
localSymbolsHandler = [&](Symbol *sym) { addSymbol(localSymbols, sym); };
break;
case SymtabPresence::None:
localSymbolsHandler = [&](Symbol *) { /* Do nothing*/ };
break;
case SymtabPresence::SelectivelyIncluded:
localSymbolsHandler = [&](Symbol *sym) {
if (config->localSymbolPatterns.match(sym->getName()))
addSymbol(localSymbols, sym);
};
break;
case SymtabPresence::SelectivelyExcluded:
localSymbolsHandler = [&](Symbol *sym) {
if (!config->localSymbolPatterns.match(sym->getName()))
addSymbol(localSymbols, sym);
};
break;
}
// Local symbols aren't in the SymbolTable, so we walk the list of object
// files to gather them.
// But if `-x` is set, then we don't need to. localSymbolsHandler() will do
// the right thing regardless, but this check is a perf optimization because
// iterating through all the input files and their symbols is expensive.
if (config->localSymbolsPresence != SymtabPresence::None) {
for (const InputFile *file : inputFiles) {
if (auto *objFile = dyn_cast<ObjFile>(file)) {
for (Symbol *sym : objFile->symbols) {
if (auto *defined = dyn_cast_or_null<Defined>(sym)) {
if (defined->isExternal() || !defined->isLive() ||
!defined->includeInSymtab)
continue;
localSymbolsHandler(sym);
}
}
}
}
}
// __dyld_private is a local symbol too. It's linker-created and doesn't
// exist in any object file.
if (in.stubHelper && in.stubHelper->dyldPrivate)
localSymbolsHandler(in.stubHelper->dyldPrivate);
for (Symbol *sym : symtab->getSymbols()) {
if (!sym->isLive())
continue;
if (auto *defined = dyn_cast<Defined>(sym)) {
if (!defined->includeInSymtab)
continue;
assert(defined->isExternal());
if (defined->privateExtern)
localSymbolsHandler(defined);
else
addSymbol(externalSymbols, defined);
} else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
if (dysym->isReferenced())
addSymbol(undefinedSymbols, sym);
}
}
emitStabs();
uint32_t symtabIndex = stabs.size();
for (const SymtabEntry &entry :
concat<SymtabEntry>(localSymbols, externalSymbols, undefinedSymbols)) {
entry.sym->symtabIndex = symtabIndex++;
}
}
uint32_t SymtabSection::getNumSymbols() const {
return stabs.size() + localSymbols.size() + externalSymbols.size() +
undefinedSymbols.size();
}
// This serves to hide (type-erase) the template parameter from SymtabSection.
template <class LP> class SymtabSectionImpl final : public SymtabSection {
public:
SymtabSectionImpl(StringTableSection &stringTableSection)
: SymtabSection(stringTableSection) {}
uint64_t getRawSize() const override;
void writeTo(uint8_t *buf) const override;
};
template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const {
return getNumSymbols() * sizeof(typename LP::nlist);
}
template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const {
auto *nList = reinterpret_cast<typename LP::nlist *>(buf);
// Emit the stabs entries before the "real" symbols. We cannot emit them
// after as that would render Symbol::symtabIndex inaccurate.
for (const StabsEntry &entry : stabs) {
nList->n_strx = entry.strx;
nList->n_type = entry.type;
nList->n_sect = entry.sect;
nList->n_desc = entry.desc;
nList->n_value = entry.value;
++nList;
}
for (const SymtabEntry &entry : concat<const SymtabEntry>(
localSymbols, externalSymbols, undefinedSymbols)) {
nList->n_strx = entry.strx;
// TODO populate n_desc with more flags
if (auto *defined = dyn_cast<Defined>(entry.sym)) {
uint8_t scope = 0;
if (defined->privateExtern) {
// Private external -- dylib scoped symbol.
// Promote to non-external at link time.
scope = N_PEXT;
} else if (defined->isExternal()) {
// Normal global symbol.
scope = N_EXT;
} else {
// TU-local symbol from localSymbols.
scope = 0;
}
if (defined->isAbsolute()) {
nList->n_type = scope | N_ABS;
nList->n_sect = NO_SECT;
nList->n_value = defined->value;
} else {
nList->n_type = scope | N_SECT;
nList->n_sect = defined->isec->parent->index;
// For the N_SECT symbol type, n_value is the address of the symbol
nList->n_value = defined->getVA();
}
nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0;
nList->n_desc |=
defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0;
} else if (auto *dysym = dyn_cast<DylibSymbol>(entry.sym)) {
uint16_t n_desc = nList->n_desc;
int16_t ordinal = ordinalForDylibSymbol(*dysym);
if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP)
SET_LIBRARY_ORDINAL(n_desc, DYNAMIC_LOOKUP_ORDINAL);
else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE)
SET_LIBRARY_ORDINAL(n_desc, EXECUTABLE_ORDINAL);
else {
assert(ordinal > 0);
SET_LIBRARY_ORDINAL(n_desc, static_cast<uint8_t>(ordinal));
}
nList->n_type = N_EXT;
n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0;
n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0;
nList->n_desc = n_desc;
}
++nList;
}
}
template <class LP>
SymtabSection *
macho::makeSymtabSection(StringTableSection &stringTableSection) {
return make<SymtabSectionImpl<LP>>(stringTableSection);
}
IndirectSymtabSection::IndirectSymtabSection()
: LinkEditSection(segment_names::linkEdit,
section_names::indirectSymbolTable) {}
uint32_t IndirectSymtabSection::getNumSymbols() const {
uint32_t size = in.got->getEntries().size() +
in.tlvPointers->getEntries().size() +
in.stubs->getEntries().size();
if (!config->emitChainedFixups)
size += in.stubs->getEntries().size();
return size;
}
bool IndirectSymtabSection::isNeeded() const {
return in.got->isNeeded() || in.tlvPointers->isNeeded() ||
in.stubs->isNeeded();
}
void IndirectSymtabSection::finalizeContents() {
uint32_t off = 0;
in.got->reserved1 = off;
off += in.got->getEntries().size();
in.tlvPointers->reserved1 = off;
off += in.tlvPointers->getEntries().size();
in.stubs->reserved1 = off;
if (in.lazyPointers) {
off += in.stubs->getEntries().size();
in.lazyPointers->reserved1 = off;
}
}
static uint32_t indirectValue(const Symbol *sym) {
if (sym->symtabIndex == UINT32_MAX)
return INDIRECT_SYMBOL_LOCAL;
if (auto *defined = dyn_cast<Defined>(sym))
if (defined->privateExtern)
return INDIRECT_SYMBOL_LOCAL;
return sym->symtabIndex;
}
void IndirectSymtabSection::writeTo(uint8_t *buf) const {
uint32_t off = 0;
for (const Symbol *sym : in.got->getEntries()) {
write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
++off;
}
for (const Symbol *sym : in.tlvPointers->getEntries()) {
write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
++off;
}
for (const Symbol *sym : in.stubs->getEntries()) {
write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
++off;
}
if (in.lazyPointers) {
// There is a 1:1 correspondence between stubs and LazyPointerSection
// entries. But giving __stubs and __la_symbol_ptr the same reserved1
// (the offset into the indirect symbol table) so that they both refer
// to the same range of offsets confuses `strip`, so write the stubs
// symbol table offsets a second time.
for (const Symbol *sym : in.stubs->getEntries()) {
write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
++off;
}
}
}
StringTableSection::StringTableSection()
: LinkEditSection(segment_names::linkEdit, section_names::stringTable) {}
uint32_t StringTableSection::addString(StringRef str) {
uint32_t strx = size;
strings.push_back(str); // TODO: consider deduplicating strings
size += str.size() + 1; // account for null terminator
return strx;
}
void StringTableSection::writeTo(uint8_t *buf) const {
uint32_t off = 0;
for (StringRef str : strings) {
memcpy(buf + off, str.data(), str.size());
off += str.size() + 1; // account for null terminator
}
}
static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0);
static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0);
CodeSignatureSection::CodeSignatureSection()
: LinkEditSection(segment_names::linkEdit, section_names::codeSignature) {
align = 16; // required by libstuff
// XXX: This mimics LD64, where it uses the install-name as codesign
// identifier, if available.
if (!config->installName.empty())
fileName = config->installName;
else
// FIXME: Consider using finalOutput instead of outputFile.
fileName = config->outputFile;
size_t slashIndex = fileName.rfind("/");
if (slashIndex != std::string::npos)
fileName = fileName.drop_front(slashIndex + 1);
// NOTE: Any changes to these calculations should be repeated
// in llvm-objcopy's MachOLayoutBuilder::layoutTail.
allHeadersSize = alignTo<16>(fixedHeadersSize + fileName.size() + 1);
fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size();
}
uint32_t CodeSignatureSection::getBlockCount() const {
return (fileOff + blockSize - 1) / blockSize;
}
uint64_t CodeSignatureSection::getRawSize() const {
return allHeadersSize + getBlockCount() * hashSize;
}
void CodeSignatureSection::writeHashes(uint8_t *buf) const {
// NOTE: Changes to this functionality should be repeated in llvm-objcopy's
// MachOWriter::writeSignatureData.
uint8_t *hashes = buf + fileOff + allHeadersSize;
parallelFor(0, getBlockCount(), [&](size_t i) {
sha256(buf + i * blockSize,
std::min(static_cast<size_t>(fileOff - i * blockSize), blockSize),
hashes + i * hashSize);
});
#if defined(__APPLE__)
// This is macOS-specific work-around and makes no sense for any
// other host OS. See https://openradar.appspot.com/FB8914231
//
// The macOS kernel maintains a signature-verification cache to
// quickly validate applications at time of execve(2). The trouble
// is that for the kernel creates the cache entry at the time of the
// mmap(2) call, before we have a chance to write either the code to
// sign or the signature header+hashes. The fix is to invalidate
// all cached data associated with the output file, thus discarding
// the bogus prematurely-cached signature.
msync(buf, fileOff + getSize(), MS_INVALIDATE);
#endif
}
void CodeSignatureSection::writeTo(uint8_t *buf) const {
// NOTE: Changes to this functionality should be repeated in llvm-objcopy's
// MachOWriter::writeSignatureData.
uint32_t signatureSize = static_cast<uint32_t>(getSize());
auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf);
write32be(&superBlob->magic, CSMAGIC_EMBEDDED_SIGNATURE);
write32be(&superBlob->length, signatureSize);
write32be(&superBlob->count, 1);
auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]);
write32be(&blobIndex->type, CSSLOT_CODEDIRECTORY);
write32be(&blobIndex->offset, blobHeadersSize);
auto *codeDirectory =
reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize);
write32be(&codeDirectory->magic, CSMAGIC_CODEDIRECTORY);
write32be(&codeDirectory->length, signatureSize - blobHeadersSize);
write32be(&codeDirectory->version, CS_SUPPORTSEXECSEG);
write32be(&codeDirectory->flags, CS_ADHOC | CS_LINKER_SIGNED);
write32be(&codeDirectory->hashOffset,
sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad);
write32be(&codeDirectory->identOffset, sizeof(CS_CodeDirectory));
codeDirectory->nSpecialSlots = 0;
write32be(&codeDirectory->nCodeSlots, getBlockCount());
write32be(&codeDirectory->codeLimit, fileOff);
codeDirectory->hashSize = static_cast<uint8_t>(hashSize);
codeDirectory->hashType = kSecCodeSignatureHashSHA256;
codeDirectory->platform = 0;
codeDirectory->pageSize = blockSizeShift;
codeDirectory->spare2 = 0;
codeDirectory->scatterOffset = 0;
codeDirectory->teamOffset = 0;
codeDirectory->spare3 = 0;
codeDirectory->codeLimit64 = 0;
OutputSegment *textSeg = getOrCreateOutputSegment(segment_names::text);
write64be(&codeDirectory->execSegBase, textSeg->fileOff);
write64be(&codeDirectory->execSegLimit, textSeg->fileSize);
write64be(&codeDirectory->execSegFlags,
config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0);
auto *id = reinterpret_cast<char *>(&codeDirectory[1]);
memcpy(id, fileName.begin(), fileName.size());
memset(id + fileName.size(), 0, fileNamePad);
}
CStringSection::CStringSection(const char *name)
: SyntheticSection(segment_names::text, name) {
flags = S_CSTRING_LITERALS;
}
void CStringSection::addInput(CStringInputSection *isec) {
isec->parent = this;
inputs.push_back(isec);
if (isec->align > align)
align = isec->align;
}
void CStringSection::writeTo(uint8_t *buf) const {
for (const CStringInputSection *isec : inputs) {
for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
if (!piece.live)
continue;
StringRef string = isec->getStringRef(i);
memcpy(buf + piece.outSecOff, string.data(), string.size());
}
}
}
void CStringSection::finalizeContents() {
uint64_t offset = 0;
for (CStringInputSection *isec : inputs) {
for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
if (!piece.live)
continue;
// See comment above DeduplicatedCStringSection for how alignment is
// handled.
uint32_t pieceAlign = 1
<< llvm::countr_zero(isec->align | piece.inSecOff);
offset = alignToPowerOf2(offset, pieceAlign);
piece.outSecOff = offset;
isec->isFinal = true;
StringRef string = isec->getStringRef(i);
offset += string.size() + 1; // account for null terminator
}
}
size = offset;
}
// Mergeable cstring literals are found under the __TEXT,__cstring section. In
// contrast to ELF, which puts strings that need different alignments into
// different sections, clang's Mach-O backend puts them all in one section.
// Strings that need to be aligned have the .p2align directive emitted before
// them, which simply translates into zero padding in the object file. In other
// words, we have to infer the desired alignment of these cstrings from their
// addresses.
//
// We differ slightly from ld64 in how we've chosen to align these cstrings.
// Both LLD and ld64 preserve the number of trailing zeros in each cstring's
// address in the input object files. When deduplicating identical cstrings,
// both linkers pick the cstring whose address has more trailing zeros, and
// preserve the alignment of that address in the final binary. However, ld64
// goes a step further and also preserves the offset of the cstring from the
// last section-aligned address. I.e. if a cstring is at offset 18 in the
// input, with a section alignment of 16, then both LLD and ld64 will ensure the
// final address is 2-byte aligned (since 18 == 16 + 2). But ld64 will also
// ensure that the final address is of the form 16 * k + 2 for some k.
//
// Note that ld64's heuristic means that a dedup'ed cstring's final address is
// dependent on the order of the input object files. E.g. if in addition to the
// cstring at offset 18 above, we have a duplicate one in another file with a
// `.cstring` section alignment of 2 and an offset of zero, then ld64 will pick
// the cstring from the object file earlier on the command line (since both have
// the same number of trailing zeros in their address). So the final cstring may
// either be at some address `16 * k + 2` or at some address `2 * k`.
//
// I've opted not to follow this behavior primarily for implementation
// simplicity, and secondarily to save a few more bytes. It's not clear to me
// that preserving the section alignment + offset is ever necessary, and there
// are many cases that are clearly redundant. In particular, if an x86_64 object
// file contains some strings that are accessed via SIMD instructions, then the
// .cstring section in the object file will be 16-byte-aligned (since SIMD
// requires its operand addresses to be 16-byte aligned). However, there will
// typically also be other cstrings in the same file that aren't used via SIMD
// and don't need this alignment. They will be emitted at some arbitrary address
// `A`, but ld64 will treat them as being 16-byte aligned with an offset of `16
// % A`.
void DeduplicatedCStringSection::finalizeContents() {
// Find the largest alignment required for each string.
for (const CStringInputSection *isec : inputs) {
for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
if (!piece.live)
continue;
auto s = isec->getCachedHashStringRef(i);
assert(isec->align != 0);
uint8_t trailingZeros = llvm::countr_zero(isec->align | piece.inSecOff);
auto it = stringOffsetMap.insert(
std::make_pair(s, StringOffset(trailingZeros)));
if (!it.second && it.first->second.trailingZeros < trailingZeros)
it.first->second.trailingZeros = trailingZeros;
}
}
// Assign an offset for each string and save it to the corresponding
// StringPieces for easy access.
for (CStringInputSection *isec : inputs) {
for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
if (!piece.live)
continue;
auto s = isec->getCachedHashStringRef(i);
auto it = stringOffsetMap.find(s);
assert(it != stringOffsetMap.end());
StringOffset &offsetInfo = it->second;
if (offsetInfo.outSecOff == UINT64_MAX) {
offsetInfo.outSecOff =
alignToPowerOf2(size, 1ULL << offsetInfo.trailingZeros);
size =
offsetInfo.outSecOff + s.size() + 1; // account for null terminator
}
piece.outSecOff = offsetInfo.outSecOff;
}
isec->isFinal = true;
}
}
void DeduplicatedCStringSection::writeTo(uint8_t *buf) const {
for (const auto &p : stringOffsetMap) {
StringRef data = p.first.val();
uint64_t off = p.second.outSecOff;
if (!data.empty())
memcpy(buf + off, data.data(), data.size());
}
}
DeduplicatedCStringSection::StringOffset
DeduplicatedCStringSection::getStringOffset(StringRef str) const {
// StringPiece uses 31 bits to store the hashes, so we replicate that
uint32_t hash = xxh3_64bits(str) & 0x7fffffff;
auto offset = stringOffsetMap.find(CachedHashStringRef(str, hash));
assert(offset != stringOffsetMap.end() &&
"Looked-up strings should always exist in section");
return offset->second;
}
// This section is actually emitted as __TEXT,__const by ld64, but clang may
// emit input sections of that name, and LLD doesn't currently support mixing
// synthetic and concat-type OutputSections. To work around this, I've given
// our merged-literals section a different name.
WordLiteralSection::WordLiteralSection()
: SyntheticSection(segment_names::text, section_names::literals) {
align = 16;
}
void WordLiteralSection::addInput(WordLiteralInputSection *isec) {
isec->parent = this;
inputs.push_back(isec);
}
void WordLiteralSection::finalizeContents() {
for (WordLiteralInputSection *isec : inputs) {
// We do all processing of the InputSection here, so it will be effectively
// finalized.
isec->isFinal = true;
const uint8_t *buf = isec->data.data();
switch (sectionType(isec->getFlags())) {
case S_4BYTE_LITERALS: {
for (size_t off = 0, e = isec->data.size(); off < e; off += 4) {
if (!isec->isLive(off))
continue;
uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off);
literal4Map.emplace(value, literal4Map.size());
}
break;
}
case S_8BYTE_LITERALS: {
for (size_t off = 0, e = isec->data.size(); off < e; off += 8) {
if (!isec->isLive(off))
continue;
uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off);
literal8Map.emplace(value, literal8Map.size());
}
break;
}
case S_16BYTE_LITERALS: {
for (size_t off = 0, e = isec->data.size(); off < e; off += 16) {
if (!isec->isLive(off))
continue;
UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off);
literal16Map.emplace(value, literal16Map.size());
}
break;
}
default:
llvm_unreachable("invalid literal section type");
}
}
}
void WordLiteralSection::writeTo(uint8_t *buf) const {
// Note that we don't attempt to do any endianness conversion in addInput(),
// so we don't do it here either -- just write out the original value,
// byte-for-byte.
for (const auto &p : literal16Map)
memcpy(buf + p.second * 16, &p.first, 16);
buf += literal16Map.size() * 16;
for (const auto &p : literal8Map)
memcpy(buf + p.second * 8, &p.first, 8);
buf += literal8Map.size() * 8;
for (const auto &p : literal4Map)
memcpy(buf + p.second * 4, &p.first, 4);
}
ObjCImageInfoSection::ObjCImageInfoSection()
: SyntheticSection(segment_names::data, section_names::objCImageInfo) {}
ObjCImageInfoSection::ImageInfo
ObjCImageInfoSection::parseImageInfo(const InputFile *file) {
ImageInfo info;
ArrayRef<uint8_t> data = file->objCImageInfo;
// The image info struct has the following layout:
// struct {
// uint32_t version;
// uint32_t flags;
// };
if (data.size() < 8) {
warn(toString(file) + ": invalid __objc_imageinfo size");
return info;
}
auto *buf = reinterpret_cast<const uint32_t *>(data.data());
if (read32le(buf) != 0) {
warn(toString(file) + ": invalid __objc_imageinfo version");
return info;
}
uint32_t flags = read32le(buf + 1);
info.swiftVersion = (flags >> 8) & 0xff;
info.hasCategoryClassProperties = flags & 0x40;
return info;
}
static std::string swiftVersionString(uint8_t version) {
switch (version) {
case 1:
return "1.0";
case 2:
return "1.1";
case 3:
return "2.0";
case 4:
return "3.0";
case 5:
return "4.0";
default:
return ("0x" + Twine::utohexstr(version)).str();
}
}
// Validate each object file's __objc_imageinfo and use them to generate the
// image info for the output binary. Only two pieces of info are relevant:
// 1. The Swift version (should be identical across inputs)
// 2. `bool hasCategoryClassProperties` (true only if true for all inputs)
void ObjCImageInfoSection::finalizeContents() {
assert(files.size() != 0); // should have already been checked via isNeeded()
info.hasCategoryClassProperties = true;
const InputFile *firstFile;
for (const InputFile *file : files) {
ImageInfo inputInfo = parseImageInfo(file);
info.hasCategoryClassProperties &= inputInfo.hasCategoryClassProperties;
// swiftVersion 0 means no Swift is present, so no version checking required
if (inputInfo.swiftVersion == 0)
continue;
if (info.swiftVersion != 0 && info.swiftVersion != inputInfo.swiftVersion) {
error("Swift version mismatch: " + toString(firstFile) + " has version " +
swiftVersionString(info.swiftVersion) + " but " + toString(file) +
" has version " + swiftVersionString(inputInfo.swiftVersion));
} else {
info.swiftVersion = inputInfo.swiftVersion;
firstFile = file;
}
}
}
void ObjCImageInfoSection::writeTo(uint8_t *buf) const {
uint32_t flags = info.hasCategoryClassProperties ? 0x40 : 0x0;
flags |= info.swiftVersion << 8;
write32le(buf + 4, flags);
}
InitOffsetsSection::InitOffsetsSection()
: SyntheticSection(segment_names::text, section_names::initOffsets) {
flags = S_INIT_FUNC_OFFSETS;
align = 4; // This section contains 32-bit integers.
}
uint64_t InitOffsetsSection::getSize() const {
size_t count = 0;
for (const ConcatInputSection *isec : sections)
count += isec->relocs.size();
return count * sizeof(uint32_t);
}
void InitOffsetsSection::writeTo(uint8_t *buf) const {
// FIXME: Add function specified by -init when that argument is implemented.
for (ConcatInputSection *isec : sections) {
for (const Reloc &rel : isec->relocs) {
const Symbol *referent = rel.referent.dyn_cast<Symbol *>();
assert(referent && "section relocation should have been rejected");
uint64_t offset = referent->getVA() - in.header->addr;
// FIXME: Can we handle this gracefully?
if (offset > UINT32_MAX)
fatal(isec->getLocation(rel.offset) + ": offset to initializer " +
referent->getName() + " (" + utohexstr(offset) +
") does not fit in 32 bits");
// Entries need to be added in the order they appear in the section, but
// relocations aren't guaranteed to be sorted.
size_t index = rel.offset >> target->p2WordSize;
write32le(&buf[index * sizeof(uint32_t)], offset);
}
buf += isec->relocs.size() * sizeof(uint32_t);
}
}
// The inputs are __mod_init_func sections, which contain pointers to
// initializer functions, therefore all relocations should be of the UNSIGNED
// type. InitOffsetsSection stores offsets, so if the initializer's address is
// not known at link time, stub-indirection has to be used.
void InitOffsetsSection::setUp() {
for (const ConcatInputSection *isec : sections) {
for (const Reloc &rel : isec->relocs) {
RelocAttrs attrs = target->getRelocAttrs(rel.type);
if (!attrs.hasAttr(RelocAttrBits::UNSIGNED))
error(isec->getLocation(rel.offset) +
": unsupported relocation type: " + attrs.name);
if (rel.addend != 0)
error(isec->getLocation(rel.offset) +
": relocation addend is not representable in __init_offsets");
if (rel.referent.is<InputSection *>())
error(isec->getLocation(rel.offset) +
": unexpected section relocation");
Symbol *sym = rel.referent.dyn_cast<Symbol *>();
if (auto *undefined = dyn_cast<Undefined>(sym))
treatUndefinedSymbol(*undefined, isec, rel.offset);
if (needsBinding(sym))
in.stubs->addEntry(sym);
}
}
}
void macho::createSyntheticSymbols() {
auto addHeaderSymbol = [](const char *name) {
symtab->addSynthetic(name, in.header->isec, /*value=*/0,
/*isPrivateExtern=*/true, /*includeInSymtab=*/false,
/*referencedDynamically=*/false);
};
switch (config->outputType) {
// FIXME: Assign the right address value for these symbols
// (rather than 0). But we need to do that after assignAddresses().
case MH_EXECUTE:
// If linking PIE, __mh_execute_header is a defined symbol in
// __TEXT, __text)
// Otherwise, it's an absolute symbol.
if (config->isPic)
symtab->addSynthetic("__mh_execute_header", in.header->isec, /*value=*/0,
/*isPrivateExtern=*/false, /*includeInSymtab=*/true,
/*referencedDynamically=*/true);
else
symtab->addSynthetic("__mh_execute_header", /*isec=*/nullptr, /*value=*/0,
/*isPrivateExtern=*/false, /*includeInSymtab=*/true,
/*referencedDynamically=*/true);
break;
// The following symbols are N_SECT symbols, even though the header is not
// part of any section and that they are private to the bundle/dylib/object
// they are part of.
case MH_BUNDLE:
addHeaderSymbol("__mh_bundle_header");
break;
case MH_DYLIB:
addHeaderSymbol("__mh_dylib_header");
break;
case MH_DYLINKER:
addHeaderSymbol("__mh_dylinker_header");
break;
case MH_OBJECT:
addHeaderSymbol("__mh_object_header");
break;
default:
llvm_unreachable("unexpected outputType");
break;
}
// The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit
// which does e.g. cleanup of static global variables. The ABI document
// says that the pointer can point to any address in one of the dylib's
// segments, but in practice ld64 seems to set it to point to the header,
// so that's what's implemented here.
addHeaderSymbol("___dso_handle");
}
ChainedFixupsSection::ChainedFixupsSection()
: LinkEditSection(segment_names::linkEdit, section_names::chainFixups) {}
bool ChainedFixupsSection::isNeeded() const {
assert(config->emitChainedFixups);
// dyld always expects LC_DYLD_CHAINED_FIXUPS to point to a valid
// dyld_chained_fixups_header, so we create this section even if there aren't
// any fixups.
return true;
}
static bool needsWeakBind(const Symbol &sym) {
if (auto *dysym = dyn_cast<DylibSymbol>(&sym))
return dysym->isWeakDef();
if (auto *defined = dyn_cast<Defined>(&sym))
return defined->isExternalWeakDef();
return false;
}
void ChainedFixupsSection::addBinding(const Symbol *sym,
const InputSection *isec, uint64_t offset,
int64_t addend) {
locations.emplace_back(isec, offset);
int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0;
auto [it, inserted] = bindings.insert(
{{sym, outlineAddend}, static_cast<uint32_t>(bindings.size())});
if (inserted) {
symtabSize += sym->getName().size() + 1;
hasWeakBind = hasWeakBind || needsWeakBind(*sym);
if (!isInt<23>(outlineAddend))
needsLargeAddend = true;
else if (outlineAddend != 0)
needsAddend = true;
}
}
std::pair<uint32_t, uint8_t>
ChainedFixupsSection::getBinding(const Symbol *sym, int64_t addend) const {
int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0;
auto it = bindings.find({sym, outlineAddend});
assert(it != bindings.end() && "binding not found in the imports table");
if (outlineAddend == 0)
return {it->second, addend};
return {it->second, 0};
}
static size_t writeImport(uint8_t *buf, int format, uint32_t libOrdinal,
bool weakRef, uint32_t nameOffset, int64_t addend) {
switch (format) {
case DYLD_CHAINED_IMPORT: {
auto *import = reinterpret_cast<dyld_chained_import *>(buf);
import->lib_ordinal = libOrdinal;
import->weak_import = weakRef;
import->name_offset = nameOffset;
return sizeof(dyld_chained_import);
}
case DYLD_CHAINED_IMPORT_ADDEND: {
auto *import = reinterpret_cast<dyld_chained_import_addend *>(buf);
import->lib_ordinal = libOrdinal;
import->weak_import = weakRef;
import->name_offset = nameOffset;
import->addend = addend;
return sizeof(dyld_chained_import_addend);
}
case DYLD_CHAINED_IMPORT_ADDEND64: {
auto *import = reinterpret_cast<dyld_chained_import_addend64 *>(buf);
import->lib_ordinal = libOrdinal;
import->weak_import = weakRef;
import->name_offset = nameOffset;
import->addend = addend;
return sizeof(dyld_chained_import_addend64);
}
default:
llvm_unreachable("Unknown import format");
}
}
size_t ChainedFixupsSection::SegmentInfo::getSize() const {
assert(pageStarts.size() > 0 && "SegmentInfo for segment with no fixups?");
return alignTo<8>(sizeof(dyld_chained_starts_in_segment) +
pageStarts.back().first * sizeof(uint16_t));
}
size_t ChainedFixupsSection::SegmentInfo::writeTo(uint8_t *buf) const {
auto *segInfo = reinterpret_cast<dyld_chained_starts_in_segment *>(buf);
segInfo->size = getSize();
segInfo->page_size = target->getPageSize();
// FIXME: Use DYLD_CHAINED_PTR_64_OFFSET on newer OS versions.
segInfo->pointer_format = DYLD_CHAINED_PTR_64;
segInfo->segment_offset = oseg->addr - in.header->addr;
segInfo->max_valid_pointer = 0; // not used on 64-bit
segInfo->page_count = pageStarts.back().first + 1;
uint16_t *starts = segInfo->page_start;
for (size_t i = 0; i < segInfo->page_count; ++i)
starts[i] = DYLD_CHAINED_PTR_START_NONE;
for (auto [pageIdx, startAddr] : pageStarts)
starts[pageIdx] = startAddr;
return segInfo->size;
}
static size_t importEntrySize(int format) {
switch (format) {
case DYLD_CHAINED_IMPORT:
return sizeof(dyld_chained_import);
case DYLD_CHAINED_IMPORT_ADDEND:
return sizeof(dyld_chained_import_addend);
case DYLD_CHAINED_IMPORT_ADDEND64:
return sizeof(dyld_chained_import_addend64);
default:
llvm_unreachable("Unknown import format");
}
}
// This is step 3 of the algorithm described in the class comment of
// ChainedFixupsSection.
//
// LC_DYLD_CHAINED_FIXUPS data consists of (in this order):
// * A dyld_chained_fixups_header
// * A dyld_chained_starts_in_image
// * One dyld_chained_starts_in_segment per segment
// * List of all imports (dyld_chained_import, dyld_chained_import_addend, or
// dyld_chained_import_addend64)
// * Names of imported symbols
void ChainedFixupsSection::writeTo(uint8_t *buf) const {
auto *header = reinterpret_cast<dyld_chained_fixups_header *>(buf);
header->fixups_version = 0;
header->imports_count = bindings.size();
header->imports_format = importFormat;
header->symbols_format = 0;
buf += alignTo<8>(sizeof(*header));
auto curOffset = [&buf, &header]() -> uint32_t {
return buf - reinterpret_cast<uint8_t *>(header);
};
header->starts_offset = curOffset();
auto *imageInfo = reinterpret_cast<dyld_chained_starts_in_image *>(buf);
imageInfo->seg_count = outputSegments.size();
uint32_t *segStarts = imageInfo->seg_info_offset;
// dyld_chained_starts_in_image ends in a flexible array member containing an
// uint32_t for each segment. Leave room for it, and fill it via segStarts.
buf += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) +
outputSegments.size() * sizeof(uint32_t));
// Initialize all offsets to 0, which indicates that the segment does not have
// fixups. Those that do have them will be filled in below.
for (size_t i = 0; i < outputSegments.size(); ++i)
segStarts[i] = 0;
for (const SegmentInfo &seg : fixupSegments) {
segStarts[seg.oseg->index] = curOffset() - header->starts_offset;
buf += seg.writeTo(buf);
}
// Write imports table.
header->imports_offset = curOffset();
uint64_t nameOffset = 0;
for (auto [import, idx] : bindings) {
const Symbol &sym = *import.first;
int16_t libOrdinal = needsWeakBind(sym)
? (int64_t)BIND_SPECIAL_DYLIB_WEAK_LOOKUP
: ordinalForSymbol(sym);
buf += writeImport(buf, importFormat, libOrdinal, sym.isWeakRef(),
nameOffset, import.second);
nameOffset += sym.getName().size() + 1;
}
// Write imported symbol names.
header->symbols_offset = curOffset();
for (auto [import, idx] : bindings) {
StringRef name = import.first->getName();
memcpy(buf, name.data(), name.size());
buf += name.size() + 1; // account for null terminator
}
assert(curOffset() == getRawSize());
}
// This is step 2 of the algorithm described in the class comment of
// ChainedFixupsSection.
void ChainedFixupsSection::finalizeContents() {
assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
assert(config->emitChainedFixups);
if (!isUInt<32>(symtabSize))
error("cannot encode chained fixups: imported symbols table size " +
Twine(symtabSize) + " exceeds 4 GiB");
if (needsLargeAddend || !isUInt<23>(symtabSize))
importFormat = DYLD_CHAINED_IMPORT_ADDEND64;
else if (needsAddend)
importFormat = DYLD_CHAINED_IMPORT_ADDEND;
else
importFormat = DYLD_CHAINED_IMPORT;
for (Location &loc : locations)
loc.offset =
loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset);
llvm::sort(locations, [](const Location &a, const Location &b) {
const OutputSegment *segA = a.isec->parent->parent;
const OutputSegment *segB = b.isec->parent->parent;
if (segA == segB)
return a.offset < b.offset;
return segA->addr < segB->addr;
});
auto sameSegment = [](const Location &a, const Location &b) {
return a.isec->parent->parent == b.isec->parent->parent;
};
const uint64_t pageSize = target->getPageSize();
for (size_t i = 0, count = locations.size(); i < count;) {
const Location &firstLoc = locations[i];
fixupSegments.emplace_back(firstLoc.isec->parent->parent);
while (i < count && sameSegment(locations[i], firstLoc)) {
uint32_t pageIdx = locations[i].offset / pageSize;
fixupSegments.back().pageStarts.emplace_back(
pageIdx, locations[i].offset % pageSize);
++i;
while (i < count && sameSegment(locations[i], firstLoc) &&
locations[i].offset / pageSize == pageIdx)
++i;
}
}
// Compute expected encoded size.
size = alignTo<8>(sizeof(dyld_chained_fixups_header));
size += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) +
outputSegments.size() * sizeof(uint32_t));
for (const SegmentInfo &seg : fixupSegments)
size += seg.getSize();
size += importEntrySize(importFormat) * bindings.size();
size += symtabSize;
}
template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &);
template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &);
|