1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
|
//===- UnwindInfoSection.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "UnwindInfoSection.h"
#include "InputSection.h"
#include "Layout.h"
#include "OutputSection.h"
#include "OutputSegment.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/Support/Parallel.h"
#include "mach-o/compact_unwind_encoding.h"
#include <numeric>
using namespace llvm;
using namespace llvm::MachO;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::macho;
#define COMMON_ENCODINGS_MAX 127
#define COMPACT_ENCODINGS_MAX 256
#define SECOND_LEVEL_PAGE_BYTES 4096
#define SECOND_LEVEL_PAGE_WORDS (SECOND_LEVEL_PAGE_BYTES / sizeof(uint32_t))
#define REGULAR_SECOND_LEVEL_ENTRIES_MAX \
((SECOND_LEVEL_PAGE_BYTES - \
sizeof(unwind_info_regular_second_level_page_header)) / \
sizeof(unwind_info_regular_second_level_entry))
#define COMPRESSED_SECOND_LEVEL_ENTRIES_MAX \
((SECOND_LEVEL_PAGE_BYTES - \
sizeof(unwind_info_compressed_second_level_page_header)) / \
sizeof(uint32_t))
#define COMPRESSED_ENTRY_FUNC_OFFSET_BITS 24
#define COMPRESSED_ENTRY_FUNC_OFFSET_MASK \
UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(~0)
static_assert(static_cast<uint32_t>(UNWIND_X86_64_DWARF_SECTION_OFFSET) ==
static_cast<uint32_t>(UNWIND_ARM64_DWARF_SECTION_OFFSET) &&
static_cast<uint32_t>(UNWIND_X86_64_DWARF_SECTION_OFFSET) ==
static_cast<uint32_t>(UNWIND_X86_DWARF_SECTION_OFFSET));
constexpr uint64_t DWARF_SECTION_OFFSET = UNWIND_X86_64_DWARF_SECTION_OFFSET;
// Compact Unwind format is a Mach-O evolution of DWARF Unwind that
// optimizes space and exception-time lookup. Most DWARF unwind
// entries can be replaced with Compact Unwind entries, but the ones
// that cannot are retained in DWARF form.
//
// This comment will address macro-level organization of the pre-link
// and post-link compact unwind tables. For micro-level organization
// pertaining to the bitfield layout of the 32-bit compact unwind
// entries, see libunwind/include/mach-o/compact_unwind_encoding.h
//
// Important clarifying factoids:
//
// * __LD,__compact_unwind is the compact unwind format for compiler
// output and linker input. It is never a final output. It could be
// an intermediate output with the `-r` option which retains relocs.
//
// * __TEXT,__unwind_info is the compact unwind format for final
// linker output. It is never an input.
//
// * __TEXT,__eh_frame is the DWARF format for both linker input and output.
//
// * __TEXT,__unwind_info entries are divided into 4 KiB pages (2nd
// level) by ascending address, and the pages are referenced by an
// index (1st level) in the section header.
//
// * Following the headers in __TEXT,__unwind_info, the bulk of the
// section contains a vector of compact unwind entries
// `{functionOffset, encoding}` sorted by ascending `functionOffset`.
// Adjacent entries with the same encoding can be folded to great
// advantage, achieving a 3-order-of-magnitude reduction in the
// number of entries.
//
// Refer to the definition of unwind_info_section_header in
// compact_unwind_encoding.h for an overview of the format we are encoding
// here.
// TODO(gkm): how do we align the 2nd-level pages?
// The various fields in the on-disk representation of each compact unwind
// entry.
#define FOR_EACH_CU_FIELD(DO) \
DO(Ptr, functionAddress) \
DO(uint32_t, functionLength) \
DO(compact_unwind_encoding_t, encoding) \
DO(Ptr, personality) \
DO(Ptr, lsda)
CREATE_LAYOUT_CLASS(CompactUnwind, FOR_EACH_CU_FIELD);
#undef FOR_EACH_CU_FIELD
// LLD's internal representation of a compact unwind entry.
struct CompactUnwindEntry {
uint64_t functionAddress;
uint32_t functionLength;
compact_unwind_encoding_t encoding;
Symbol *personality;
InputSection *lsda;
};
using EncodingMap = DenseMap<compact_unwind_encoding_t, size_t>;
struct SecondLevelPage {
uint32_t kind;
size_t entryIndex;
size_t entryCount;
size_t byteCount;
std::vector<compact_unwind_encoding_t> localEncodings;
EncodingMap localEncodingIndexes;
};
// UnwindInfoSectionImpl allows us to avoid cluttering our header file with a
// lengthy definition of UnwindInfoSection.
class UnwindInfoSectionImpl final : public UnwindInfoSection {
public:
UnwindInfoSectionImpl() : cuLayout(target->wordSize) {}
uint64_t getSize() const override { return unwindInfoSize; }
void prepare() override;
void finalize() override;
void writeTo(uint8_t *buf) const override;
private:
void prepareRelocations(ConcatInputSection *);
void relocateCompactUnwind(std::vector<CompactUnwindEntry> &);
void encodePersonalities();
Symbol *canonicalizePersonality(Symbol *);
uint64_t unwindInfoSize = 0;
SmallVector<decltype(symbols)::value_type, 0> symbolsVec;
CompactUnwindLayout cuLayout;
std::vector<std::pair<compact_unwind_encoding_t, size_t>> commonEncodings;
EncodingMap commonEncodingIndexes;
// The entries here will be in the same order as their originating symbols
// in symbolsVec.
std::vector<CompactUnwindEntry> cuEntries;
// Indices into the cuEntries vector.
std::vector<size_t> cuIndices;
std::vector<Symbol *> personalities;
SmallDenseMap<std::pair<InputSection *, uint64_t /* addend */>, Symbol *>
personalityTable;
// Indices into cuEntries for CUEs with a non-null LSDA.
std::vector<size_t> entriesWithLsda;
// Map of cuEntries index to an index within the LSDA array.
DenseMap<size_t, uint32_t> lsdaIndex;
std::vector<SecondLevelPage> secondLevelPages;
uint64_t level2PagesOffset = 0;
// The highest-address function plus its size. The unwinder needs this to
// determine the address range that is covered by unwind info.
uint64_t cueEndBoundary = 0;
};
UnwindInfoSection::UnwindInfoSection()
: SyntheticSection(segment_names::text, section_names::unwindInfo) {
align = 4;
}
// Record function symbols that may need entries emitted in __unwind_info, which
// stores unwind data for address ranges.
//
// Note that if several adjacent functions have the same unwind encoding and
// personality function and no LSDA, they share one unwind entry. For this to
// work, functions without unwind info need explicit "no unwind info" unwind
// entries -- else the unwinder would think they have the unwind info of the
// closest function with unwind info right before in the image. Thus, we add
// function symbols for each unique address regardless of whether they have
// associated unwind info.
void UnwindInfoSection::addSymbol(const Defined *d) {
if (d->unwindEntry)
allEntriesAreOmitted = false;
// We don't yet know the final output address of this symbol, but we know that
// they are uniquely determined by a combination of the isec and value, so
// we use that as the key here.
auto p = symbols.insert({{d->isec, d->value}, d});
// If we have multiple symbols at the same address, only one of them can have
// an associated unwind entry.
if (!p.second && d->unwindEntry) {
assert(p.first->second == d || !p.first->second->unwindEntry);
p.first->second = d;
}
}
void UnwindInfoSectionImpl::prepare() {
// This iteration needs to be deterministic, since prepareRelocations may add
// entries to the GOT. Hence the use of a MapVector for
// UnwindInfoSection::symbols.
for (const Defined *d : make_second_range(symbols))
if (d->unwindEntry) {
if (d->unwindEntry->getName() == section_names::compactUnwind) {
prepareRelocations(d->unwindEntry);
} else {
// We don't have to add entries to the GOT here because FDEs have
// explicit GOT relocations, so Writer::scanRelocations() will add those
// GOT entries. However, we still need to canonicalize the personality
// pointers (like prepareRelocations() does for CU entries) in order
// to avoid overflowing the 3-personality limit.
FDE &fde = cast<ObjFile>(d->getFile())->fdes[d->unwindEntry];
fde.personality = canonicalizePersonality(fde.personality);
}
}
}
// Compact unwind relocations have different semantics, so we handle them in a
// separate code path from regular relocations. First, we do not wish to add
// rebase opcodes for __LD,__compact_unwind, because that section doesn't
// actually end up in the final binary. Second, personality pointers always
// reside in the GOT and must be treated specially.
void UnwindInfoSectionImpl::prepareRelocations(ConcatInputSection *isec) {
assert(!isec->shouldOmitFromOutput() &&
"__compact_unwind section should not be omitted");
// FIXME: Make this skip relocations for CompactUnwindEntries that
// point to dead-stripped functions. That might save some amount of
// work. But since there are usually just few personality functions
// that are referenced from many places, at least some of them likely
// live, it wouldn't reduce number of got entries.
for (size_t i = 0; i < isec->relocs.size(); ++i) {
Reloc &r = isec->relocs[i];
assert(target->hasAttr(r.type, RelocAttrBits::UNSIGNED));
// Since compact unwind sections aren't part of the inputSections vector,
// they don't get canonicalized by scanRelocations(), so we have to do the
// canonicalization here.
if (auto *referentIsec = r.referent.dyn_cast<InputSection *>())
r.referent = referentIsec->canonical();
// Functions and LSDA entries always reside in the same object file as the
// compact unwind entries that references them, and thus appear as section
// relocs. There is no need to prepare them. We only prepare relocs for
// personality functions.
if (r.offset != cuLayout.personalityOffset)
continue;
if (auto *s = r.referent.dyn_cast<Symbol *>()) {
// Personality functions are nearly always system-defined (e.g.,
// ___gxx_personality_v0 for C++) and relocated as dylib symbols. When an
// application provides its own personality function, it might be
// referenced by an extern Defined symbol reloc, or a local section reloc.
if (auto *defined = dyn_cast<Defined>(s)) {
// XXX(vyng) This is a special case for handling duplicate personality
// symbols. Note that LD64's behavior is a bit different and it is
// inconsistent with how symbol resolution usually work
//
// So we've decided not to follow it. Instead, simply pick the symbol
// with the same name from the symbol table to replace the local one.
//
// (See discussions/alternatives already considered on D107533)
if (!defined->isExternal())
if (Symbol *sym = symtab->find(defined->getName()))
if (!sym->isLazy())
r.referent = s = sym;
}
if (auto *undefined = dyn_cast<Undefined>(s)) {
treatUndefinedSymbol(*undefined, isec, r.offset);
// treatUndefinedSymbol() can replace s with a DylibSymbol; re-check.
if (isa<Undefined>(s))
continue;
}
// Similar to canonicalizePersonality(), but we also register a GOT entry.
if (auto *defined = dyn_cast<Defined>(s)) {
// Check if we have created a synthetic symbol at the same address.
Symbol *&personality =
personalityTable[{defined->isec, defined->value}];
if (personality == nullptr) {
personality = defined;
in.got->addEntry(defined);
} else if (personality != defined) {
r.referent = personality;
}
continue;
}
assert(isa<DylibSymbol>(s));
in.got->addEntry(s);
continue;
}
if (auto *referentIsec = r.referent.dyn_cast<InputSection *>()) {
assert(!isCoalescedWeak(referentIsec));
// Personality functions can be referenced via section relocations
// if they live in the same object file. Create placeholder synthetic
// symbols for them in the GOT.
Symbol *&s = personalityTable[{referentIsec, r.addend}];
if (s == nullptr) {
// This runs after dead stripping, so the noDeadStrip argument does not
// matter.
s = make<Defined>("<internal>", /*file=*/nullptr, referentIsec,
r.addend, /*size=*/0, /*isWeakDef=*/false,
/*isExternal=*/false, /*isPrivateExtern=*/false,
/*includeInSymtab=*/true,
/*isReferencedDynamically=*/false,
/*noDeadStrip=*/false);
s->used = true;
in.got->addEntry(s);
}
r.referent = s;
r.addend = 0;
}
}
}
Symbol *UnwindInfoSectionImpl::canonicalizePersonality(Symbol *personality) {
if (auto *defined = dyn_cast_or_null<Defined>(personality)) {
// Check if we have created a synthetic symbol at the same address.
Symbol *&synth = personalityTable[{defined->isec, defined->value}];
if (synth == nullptr)
synth = defined;
else if (synth != defined)
return synth;
}
return personality;
}
// We need to apply the relocations to the pre-link compact unwind section
// before converting it to post-link form. There should only be absolute
// relocations here: since we are not emitting the pre-link CU section, there
// is no source address to make a relative location meaningful.
void UnwindInfoSectionImpl::relocateCompactUnwind(
std::vector<CompactUnwindEntry> &cuEntries) {
parallelFor(0, symbolsVec.size(), [&](size_t i) {
CompactUnwindEntry &cu = cuEntries[i];
const Defined *d = symbolsVec[i].second;
cu.functionAddress = d->getVA();
if (!d->unwindEntry)
return;
// If we have DWARF unwind info, create a slimmed-down CU entry that points
// to it.
if (d->unwindEntry->getName() == section_names::ehFrame) {
// The unwinder will look for the DWARF entry starting at the hint,
// assuming the hint points to a valid CFI record start. If it
// fails to find the record, it proceeds in a linear search through the
// contiguous CFI records from the hint until the end of the section.
// Ideally, in the case where the offset is too large to be encoded, we
// would instead encode the largest possible offset to a valid CFI record,
// but since we don't keep track of that, just encode zero -- the start of
// the section is always the start of a CFI record.
uint64_t dwarfOffsetHint =
d->unwindEntry->outSecOff <= DWARF_SECTION_OFFSET
? d->unwindEntry->outSecOff
: 0;
cu.encoding = target->modeDwarfEncoding | dwarfOffsetHint;
const FDE &fde = cast<ObjFile>(d->getFile())->fdes[d->unwindEntry];
cu.functionLength = fde.funcLength;
// Omit the DWARF personality from compact-unwind entry so that we
// don't need to encode it.
cu.personality = nullptr;
cu.lsda = fde.lsda;
return;
}
assert(d->unwindEntry->getName() == section_names::compactUnwind);
auto buf = reinterpret_cast<const uint8_t *>(d->unwindEntry->data.data()) -
target->wordSize;
cu.functionLength =
support::endian::read32le(buf + cuLayout.functionLengthOffset);
cu.encoding = support::endian::read32le(buf + cuLayout.encodingOffset);
for (const Reloc &r : d->unwindEntry->relocs) {
if (r.offset == cuLayout.personalityOffset)
cu.personality = r.referent.get<Symbol *>();
else if (r.offset == cuLayout.lsdaOffset)
cu.lsda = r.getReferentInputSection();
}
});
}
// There should only be a handful of unique personality pointers, so we can
// encode them as 2-bit indices into a small array.
void UnwindInfoSectionImpl::encodePersonalities() {
for (size_t idx : cuIndices) {
CompactUnwindEntry &cu = cuEntries[idx];
if (cu.personality == nullptr)
continue;
// Linear search is fast enough for a small array.
auto it = find(personalities, cu.personality);
uint32_t personalityIndex; // 1-based index
if (it != personalities.end()) {
personalityIndex = std::distance(personalities.begin(), it) + 1;
} else {
personalities.push_back(cu.personality);
personalityIndex = personalities.size();
}
cu.encoding |=
personalityIndex << llvm::countr_zero(
static_cast<compact_unwind_encoding_t>(UNWIND_PERSONALITY_MASK));
}
if (personalities.size() > 3)
error("too many personalities (" + Twine(personalities.size()) +
") for compact unwind to encode");
}
static bool canFoldEncoding(compact_unwind_encoding_t encoding) {
// From compact_unwind_encoding.h:
// UNWIND_X86_64_MODE_STACK_IND:
// A "frameless" (RBP not used as frame pointer) function large constant
// stack size. This case is like the previous, except the stack size is too
// large to encode in the compact unwind encoding. Instead it requires that
// the function contains "subq $nnnnnnnn,RSP" in its prolog. The compact
// encoding contains the offset to the nnnnnnnn value in the function in
// UNWIND_X86_64_FRAMELESS_STACK_SIZE.
// Since this means the unwinder has to look at the `subq` in the function
// of the unwind info's unwind address, two functions that have identical
// unwind info can't be folded if it's using this encoding since both
// entries need unique addresses.
static_assert(static_cast<uint32_t>(UNWIND_X86_64_MODE_STACK_IND) ==
static_cast<uint32_t>(UNWIND_X86_MODE_STACK_IND));
if ((target->cpuType == CPU_TYPE_X86_64 || target->cpuType == CPU_TYPE_X86) &&
(encoding & UNWIND_MODE_MASK) == UNWIND_X86_64_MODE_STACK_IND) {
// FIXME: Consider passing in the two function addresses and getting
// their two stack sizes off the `subq` and only returning false if they're
// actually different.
return false;
}
return true;
}
// Scan the __LD,__compact_unwind entries and compute the space needs of
// __TEXT,__unwind_info and __TEXT,__eh_frame.
void UnwindInfoSectionImpl::finalize() {
if (symbols.empty())
return;
// At this point, the address space for __TEXT,__text has been
// assigned, so we can relocate the __LD,__compact_unwind entries
// into a temporary buffer. Relocation is necessary in order to sort
// the CU entries by function address. Sorting is necessary so that
// we can fold adjacent CU entries with identical encoding+personality
// and without any LSDA. Folding is necessary because it reduces the
// number of CU entries by as much as 3 orders of magnitude!
cuEntries.resize(symbols.size());
// The "map" part of the symbols MapVector was only needed for deduplication
// in addSymbol(). Now that we are done adding, move the contents to a plain
// std::vector for indexed access.
symbolsVec = symbols.takeVector();
relocateCompactUnwind(cuEntries);
// Rather than sort & fold the 32-byte entries directly, we create a
// vector of indices to entries and sort & fold that instead.
cuIndices.resize(cuEntries.size());
std::iota(cuIndices.begin(), cuIndices.end(), 0);
llvm::sort(cuIndices, [&](size_t a, size_t b) {
return cuEntries[a].functionAddress < cuEntries[b].functionAddress;
});
// Record the ending boundary before we fold the entries.
cueEndBoundary = cuEntries[cuIndices.back()].functionAddress +
cuEntries[cuIndices.back()].functionLength;
// Fold adjacent entries with matching encoding+personality and without LSDA
// We use three iterators on the same cuIndices to fold in-situ:
// (1) `foldBegin` is the first of a potential sequence of matching entries
// (2) `foldEnd` is the first non-matching entry after `foldBegin`.
// The semi-open interval [ foldBegin .. foldEnd ) contains a range
// entries that can be folded into a single entry and written to ...
// (3) `foldWrite`
auto foldWrite = cuIndices.begin();
for (auto foldBegin = cuIndices.begin(); foldBegin < cuIndices.end();) {
auto foldEnd = foldBegin;
// Common LSDA encodings (e.g. for C++ and Objective-C) contain offsets from
// a base address. The base address is normally not contained directly in
// the LSDA, and in that case, the personality function treats the starting
// address of the function (which is computed by the unwinder) as the base
// address and interprets the LSDA accordingly. The unwinder computes the
// starting address of a function as the address associated with its CU
// entry. For this reason, we cannot fold adjacent entries if they have an
// LSDA, because folding would make the unwinder compute the wrong starting
// address for the functions with the folded entries, which in turn would
// cause the personality function to misinterpret the LSDA for those
// functions. In the very rare case where the base address is encoded
// directly in the LSDA, two functions at different addresses would
// necessarily have different LSDAs, so their CU entries would not have been
// folded anyway.
while (++foldEnd < cuIndices.end() &&
cuEntries[*foldBegin].encoding == cuEntries[*foldEnd].encoding &&
!cuEntries[*foldBegin].lsda && !cuEntries[*foldEnd].lsda &&
// If we've gotten to this point, we don't have an LSDA, which should
// also imply that we don't have a personality function, since in all
// likelihood a personality function needs the LSDA to do anything
// useful. It can be technically valid to have a personality function
// and no LSDA though (e.g. the C++ personality __gxx_personality_v0
// is just a no-op without LSDA), so we still check for personality
// function equivalence to handle that case.
cuEntries[*foldBegin].personality ==
cuEntries[*foldEnd].personality &&
canFoldEncoding(cuEntries[*foldEnd].encoding))
;
*foldWrite++ = *foldBegin;
foldBegin = foldEnd;
}
cuIndices.erase(foldWrite, cuIndices.end());
encodePersonalities();
// Count frequencies of the folded encodings
EncodingMap encodingFrequencies;
for (size_t idx : cuIndices)
encodingFrequencies[cuEntries[idx].encoding]++;
// Make a vector of encodings, sorted by descending frequency
for (const auto &frequency : encodingFrequencies)
commonEncodings.emplace_back(frequency);
llvm::sort(commonEncodings,
[](const std::pair<compact_unwind_encoding_t, size_t> &a,
const std::pair<compact_unwind_encoding_t, size_t> &b) {
if (a.second == b.second)
// When frequencies match, secondarily sort on encoding
// to maintain parity with validate-unwind-info.py
return a.first > b.first;
return a.second > b.second;
});
// Truncate the vector to 127 elements.
// Common encoding indexes are limited to 0..126, while encoding
// indexes 127..255 are local to each second-level page
if (commonEncodings.size() > COMMON_ENCODINGS_MAX)
commonEncodings.resize(COMMON_ENCODINGS_MAX);
// Create a map from encoding to common-encoding-table index
for (size_t i = 0; i < commonEncodings.size(); i++)
commonEncodingIndexes[commonEncodings[i].first] = i;
// Split folded encodings into pages, where each page is limited by ...
// (a) 4 KiB capacity
// (b) 24-bit difference between first & final function address
// (c) 8-bit compact-encoding-table index,
// for which 0..126 references the global common-encodings table,
// and 127..255 references a local per-second-level-page table.
// First we try the compact format and determine how many entries fit.
// If more entries fit in the regular format, we use that.
for (size_t i = 0; i < cuIndices.size();) {
size_t idx = cuIndices[i];
secondLevelPages.emplace_back();
SecondLevelPage &page = secondLevelPages.back();
page.entryIndex = i;
uint64_t functionAddressMax =
cuEntries[idx].functionAddress + COMPRESSED_ENTRY_FUNC_OFFSET_MASK;
size_t n = commonEncodings.size();
size_t wordsRemaining =
SECOND_LEVEL_PAGE_WORDS -
sizeof(unwind_info_compressed_second_level_page_header) /
sizeof(uint32_t);
while (wordsRemaining >= 1 && i < cuIndices.size()) {
idx = cuIndices[i];
const CompactUnwindEntry *cuPtr = &cuEntries[idx];
if (cuPtr->functionAddress >= functionAddressMax)
break;
if (commonEncodingIndexes.count(cuPtr->encoding) ||
page.localEncodingIndexes.count(cuPtr->encoding)) {
i++;
wordsRemaining--;
} else if (wordsRemaining >= 2 && n < COMPACT_ENCODINGS_MAX) {
page.localEncodings.emplace_back(cuPtr->encoding);
page.localEncodingIndexes[cuPtr->encoding] = n++;
i++;
wordsRemaining -= 2;
} else {
break;
}
}
page.entryCount = i - page.entryIndex;
// If this is not the final page, see if it's possible to fit more entries
// by using the regular format. This can happen when there are many unique
// encodings, and we saturated the local encoding table early.
if (i < cuIndices.size() &&
page.entryCount < REGULAR_SECOND_LEVEL_ENTRIES_MAX) {
page.kind = UNWIND_SECOND_LEVEL_REGULAR;
page.entryCount = std::min(REGULAR_SECOND_LEVEL_ENTRIES_MAX,
cuIndices.size() - page.entryIndex);
i = page.entryIndex + page.entryCount;
} else {
page.kind = UNWIND_SECOND_LEVEL_COMPRESSED;
}
}
for (size_t idx : cuIndices) {
lsdaIndex[idx] = entriesWithLsda.size();
if (cuEntries[idx].lsda)
entriesWithLsda.push_back(idx);
}
// compute size of __TEXT,__unwind_info section
level2PagesOffset = sizeof(unwind_info_section_header) +
commonEncodings.size() * sizeof(uint32_t) +
personalities.size() * sizeof(uint32_t) +
// The extra second-level-page entry is for the sentinel
(secondLevelPages.size() + 1) *
sizeof(unwind_info_section_header_index_entry) +
entriesWithLsda.size() *
sizeof(unwind_info_section_header_lsda_index_entry);
unwindInfoSize =
level2PagesOffset + secondLevelPages.size() * SECOND_LEVEL_PAGE_BYTES;
}
// All inputs are relocated and output addresses are known, so write!
void UnwindInfoSectionImpl::writeTo(uint8_t *buf) const {
assert(!cuIndices.empty() && "call only if there is unwind info");
// section header
auto *uip = reinterpret_cast<unwind_info_section_header *>(buf);
uip->version = 1;
uip->commonEncodingsArraySectionOffset = sizeof(unwind_info_section_header);
uip->commonEncodingsArrayCount = commonEncodings.size();
uip->personalityArraySectionOffset =
uip->commonEncodingsArraySectionOffset +
(uip->commonEncodingsArrayCount * sizeof(uint32_t));
uip->personalityArrayCount = personalities.size();
uip->indexSectionOffset = uip->personalityArraySectionOffset +
(uip->personalityArrayCount * sizeof(uint32_t));
uip->indexCount = secondLevelPages.size() + 1;
// Common encodings
auto *i32p = reinterpret_cast<uint32_t *>(&uip[1]);
for (const auto &encoding : commonEncodings)
*i32p++ = encoding.first;
// Personalities
for (const Symbol *personality : personalities)
*i32p++ = personality->getGotVA() - in.header->addr;
// FIXME: LD64 checks and warns aboutgaps or overlapse in cuEntries address
// ranges. We should do the same too
// Level-1 index
uint32_t lsdaOffset =
uip->indexSectionOffset +
uip->indexCount * sizeof(unwind_info_section_header_index_entry);
uint64_t l2PagesOffset = level2PagesOffset;
auto *iep = reinterpret_cast<unwind_info_section_header_index_entry *>(i32p);
for (const SecondLevelPage &page : secondLevelPages) {
size_t idx = cuIndices[page.entryIndex];
iep->functionOffset = cuEntries[idx].functionAddress - in.header->addr;
iep->secondLevelPagesSectionOffset = l2PagesOffset;
iep->lsdaIndexArraySectionOffset =
lsdaOffset + lsdaIndex.lookup(idx) *
sizeof(unwind_info_section_header_lsda_index_entry);
iep++;
l2PagesOffset += SECOND_LEVEL_PAGE_BYTES;
}
// Level-1 sentinel
// XXX(vyng): Note that LD64 adds +1 here.
// Unsure whether it's a bug or it's their workaround for something else.
// See comments from https://reviews.llvm.org/D138320.
iep->functionOffset = cueEndBoundary - in.header->addr;
iep->secondLevelPagesSectionOffset = 0;
iep->lsdaIndexArraySectionOffset =
lsdaOffset + entriesWithLsda.size() *
sizeof(unwind_info_section_header_lsda_index_entry);
iep++;
// LSDAs
auto *lep =
reinterpret_cast<unwind_info_section_header_lsda_index_entry *>(iep);
for (size_t idx : entriesWithLsda) {
const CompactUnwindEntry &cu = cuEntries[idx];
lep->lsdaOffset = cu.lsda->getVA(/*off=*/0) - in.header->addr;
lep->functionOffset = cu.functionAddress - in.header->addr;
lep++;
}
// Level-2 pages
auto *pp = reinterpret_cast<uint32_t *>(lep);
for (const SecondLevelPage &page : secondLevelPages) {
if (page.kind == UNWIND_SECOND_LEVEL_COMPRESSED) {
uintptr_t functionAddressBase =
cuEntries[cuIndices[page.entryIndex]].functionAddress;
auto *p2p =
reinterpret_cast<unwind_info_compressed_second_level_page_header *>(
pp);
p2p->kind = page.kind;
p2p->entryPageOffset =
sizeof(unwind_info_compressed_second_level_page_header);
p2p->entryCount = page.entryCount;
p2p->encodingsPageOffset =
p2p->entryPageOffset + p2p->entryCount * sizeof(uint32_t);
p2p->encodingsCount = page.localEncodings.size();
auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
for (size_t i = 0; i < page.entryCount; i++) {
const CompactUnwindEntry &cue =
cuEntries[cuIndices[page.entryIndex + i]];
auto it = commonEncodingIndexes.find(cue.encoding);
if (it == commonEncodingIndexes.end())
it = page.localEncodingIndexes.find(cue.encoding);
*ep++ = (it->second << COMPRESSED_ENTRY_FUNC_OFFSET_BITS) |
(cue.functionAddress - functionAddressBase);
}
if (!page.localEncodings.empty())
memcpy(ep, page.localEncodings.data(),
page.localEncodings.size() * sizeof(uint32_t));
} else {
auto *p2p =
reinterpret_cast<unwind_info_regular_second_level_page_header *>(pp);
p2p->kind = page.kind;
p2p->entryPageOffset =
sizeof(unwind_info_regular_second_level_page_header);
p2p->entryCount = page.entryCount;
auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
for (size_t i = 0; i < page.entryCount; i++) {
const CompactUnwindEntry &cue =
cuEntries[cuIndices[page.entryIndex + i]];
*ep++ = cue.functionAddress;
*ep++ = cue.encoding;
}
}
pp += SECOND_LEVEL_PAGE_WORDS;
}
}
UnwindInfoSection *macho::makeUnwindInfoSection() {
return make<UnwindInfoSectionImpl>();
}
|