1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
//===-- Alarm.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Host/Alarm.h"
#include "lldb/Host/ThreadLauncher.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/Log.h"
using namespace lldb;
using namespace lldb_private;
Alarm::Alarm(Duration timeout, bool run_callback_on_exit)
: m_timeout(timeout), m_run_callbacks_on_exit(run_callback_on_exit) {
StartAlarmThread();
}
Alarm::~Alarm() { StopAlarmThread(); }
Alarm::Handle Alarm::Create(std::function<void()> callback) {
// Gracefully deal with the unlikely event that the alarm thread failed to
// launch.
if (!AlarmThreadRunning())
return INVALID_HANDLE;
// Compute the next expiration before we take the lock. This ensures that
// waiting on the lock doesn't eat into the timeout.
const TimePoint expiration = GetNextExpiration();
Handle handle = INVALID_HANDLE;
{
std::lock_guard<std::mutex> alarm_guard(m_alarm_mutex);
// Create a new unique entry and remember its handle.
m_entries.emplace_back(callback, expiration);
handle = m_entries.back().handle;
// Tell the alarm thread we need to recompute the next alarm.
m_recompute_next_alarm = true;
}
m_alarm_cv.notify_one();
return handle;
}
bool Alarm::Restart(Handle handle) {
// Gracefully deal with the unlikely event that the alarm thread failed to
// launch.
if (!AlarmThreadRunning())
return false;
// Compute the next expiration before we take the lock. This ensures that
// waiting on the lock doesn't eat into the timeout.
const TimePoint expiration = GetNextExpiration();
{
std::lock_guard<std::mutex> alarm_guard(m_alarm_mutex);
// Find the entry corresponding to the given handle.
const auto it =
std::find_if(m_entries.begin(), m_entries.end(),
[handle](Entry &entry) { return entry.handle == handle; });
if (it == m_entries.end())
return false;
// Update the expiration.
it->expiration = expiration;
// Tell the alarm thread we need to recompute the next alarm.
m_recompute_next_alarm = true;
}
m_alarm_cv.notify_one();
return true;
}
bool Alarm::Cancel(Handle handle) {
// Gracefully deal with the unlikely event that the alarm thread failed to
// launch.
if (!AlarmThreadRunning())
return false;
{
std::lock_guard<std::mutex> alarm_guard(m_alarm_mutex);
const auto it =
std::find_if(m_entries.begin(), m_entries.end(),
[handle](Entry &entry) { return entry.handle == handle; });
if (it == m_entries.end())
return false;
m_entries.erase(it);
}
// No need to notify the alarm thread. This only affects the alarm thread if
// we removed the entry that corresponds to the next alarm. If that's the
// case, the thread will wake up as scheduled, find no expired events, and
// recompute the next alarm time.
return true;
}
Alarm::Entry::Entry(Alarm::Callback callback, Alarm::TimePoint expiration)
: handle(Alarm::GetNextUniqueHandle()), callback(std::move(callback)),
expiration(std::move(expiration)) {}
void Alarm::StartAlarmThread() {
if (!m_alarm_thread.IsJoinable()) {
llvm::Expected<HostThread> alarm_thread = ThreadLauncher::LaunchThread(
"lldb.debugger.alarm-thread", [this] { return AlarmThread(); },
8 * 1024 * 1024); // Use larger 8MB stack for this thread
if (alarm_thread) {
m_alarm_thread = *alarm_thread;
} else {
LLDB_LOG_ERROR(GetLog(LLDBLog::Host), alarm_thread.takeError(),
"failed to launch host thread: {0}");
}
}
}
void Alarm::StopAlarmThread() {
if (m_alarm_thread.IsJoinable()) {
{
std::lock_guard<std::mutex> alarm_guard(m_alarm_mutex);
m_exit = true;
}
m_alarm_cv.notify_one();
m_alarm_thread.Join(nullptr);
}
}
bool Alarm::AlarmThreadRunning() { return m_alarm_thread.IsJoinable(); }
lldb::thread_result_t Alarm::AlarmThread() {
bool exit = false;
std::optional<TimePoint> next_alarm;
const auto predicate = [this] { return m_exit || m_recompute_next_alarm; };
while (!exit) {
// Synchronization between the main thread and the alarm thread using a
// mutex and condition variable. There are 2 reasons the thread can wake up:
//
// 1. The timeout for the next alarm expired.
//
// 2. The condition variable is notified that one of our shared variables
// (see predicate) was modified. Either the thread is asked to shut down
// or a new alarm came in and we need to recompute the next timeout.
//
// Below we only deal with the timeout expiring and fall through for dealing
// with the rest.
llvm::SmallVector<Callback, 1> callbacks;
{
std::unique_lock<std::mutex> alarm_lock(m_alarm_mutex);
if (next_alarm) {
if (!m_alarm_cv.wait_until(alarm_lock, *next_alarm, predicate)) {
// The timeout for the next alarm expired.
// Clear the next timeout to signal that we need to recompute the next
// timeout.
next_alarm.reset();
// Iterate over all the callbacks. Call the ones that have expired
// and remove them from the list.
const TimePoint now = std::chrono::system_clock::now();
auto it = m_entries.begin();
while (it != m_entries.end()) {
if (it->expiration <= now) {
callbacks.emplace_back(std::move(it->callback));
it = m_entries.erase(it);
} else {
it++;
}
}
}
} else {
m_alarm_cv.wait(alarm_lock, predicate);
}
// Fall through after waiting on the condition variable. At this point
// either the predicate is true or we woke up because an alarm expired.
// The alarm thread is shutting down.
if (m_exit) {
exit = true;
if (m_run_callbacks_on_exit) {
for (Entry &entry : m_entries)
callbacks.emplace_back(std::move(entry.callback));
}
}
// A new alarm was added or an alarm expired. Either way we need to
// recompute when this thread should wake up for the next alarm.
if (m_recompute_next_alarm || !next_alarm) {
for (Entry &entry : m_entries) {
if (!next_alarm || entry.expiration < *next_alarm)
next_alarm = entry.expiration;
}
m_recompute_next_alarm = false;
}
}
// Outside the lock, call the callbacks.
for (Callback &callback : callbacks)
callback();
}
return {};
}
Alarm::TimePoint Alarm::GetNextExpiration() const {
return std::chrono::system_clock::now() + m_timeout;
}
Alarm::Handle Alarm::GetNextUniqueHandle() {
static std::atomic<Handle> g_next_handle = 1;
return g_next_handle++;
}
|