1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
//===-- EmulationStateARM.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "EmulationStateARM.h"
#include "lldb/Interpreter/OptionValueArray.h"
#include "lldb/Interpreter/OptionValueDictionary.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Scalar.h"
#include "Utility/ARM_DWARF_Registers.h"
using namespace lldb;
using namespace lldb_private;
EmulationStateARM::EmulationStateARM() : m_vfp_regs(), m_memory() {
ClearPseudoRegisters();
}
EmulationStateARM::~EmulationStateARM() = default;
bool EmulationStateARM::StorePseudoRegisterValue(uint32_t reg_num,
uint64_t value) {
if (reg_num <= dwarf_cpsr)
m_gpr[reg_num - dwarf_r0] = (uint32_t)value;
else if ((dwarf_s0 <= reg_num) && (reg_num <= dwarf_s31)) {
uint32_t idx = reg_num - dwarf_s0;
m_vfp_regs.s_regs[idx] = (uint32_t)value;
} else if ((dwarf_d0 <= reg_num) && (reg_num <= dwarf_d31)) {
uint32_t idx = reg_num - dwarf_d0;
if (idx < 16) {
m_vfp_regs.s_regs[idx * 2] = (uint32_t)value;
m_vfp_regs.s_regs[idx * 2 + 1] = (uint32_t)(value >> 32);
} else
m_vfp_regs.d_regs[idx - 16] = value;
} else
return false;
return true;
}
uint64_t EmulationStateARM::ReadPseudoRegisterValue(uint32_t reg_num,
bool &success) {
uint64_t value = 0;
success = true;
if (reg_num <= dwarf_cpsr)
value = m_gpr[reg_num - dwarf_r0];
else if ((dwarf_s0 <= reg_num) && (reg_num <= dwarf_s31)) {
uint32_t idx = reg_num - dwarf_s0;
value = m_vfp_regs.s_regs[idx];
} else if ((dwarf_d0 <= reg_num) && (reg_num <= dwarf_d31)) {
uint32_t idx = reg_num - dwarf_d0;
if (idx < 16)
value = (uint64_t)m_vfp_regs.s_regs[idx * 2] |
((uint64_t)m_vfp_regs.s_regs[idx * 2 + 1] << 32);
else
value = m_vfp_regs.d_regs[idx - 16];
} else
success = false;
return value;
}
void EmulationStateARM::ClearPseudoRegisters() {
for (int i = 0; i < 17; ++i)
m_gpr[i] = 0;
for (int i = 0; i < 32; ++i)
m_vfp_regs.s_regs[i] = 0;
for (int i = 0; i < 16; ++i)
m_vfp_regs.d_regs[i] = 0;
}
void EmulationStateARM::ClearPseudoMemory() { m_memory.clear(); }
bool EmulationStateARM::StoreToPseudoAddress(lldb::addr_t p_address,
uint32_t value) {
m_memory[p_address] = value;
return true;
}
uint32_t EmulationStateARM::ReadFromPseudoAddress(lldb::addr_t p_address,
bool &success) {
std::map<lldb::addr_t, uint32_t>::iterator pos;
uint32_t ret_val = 0;
success = true;
pos = m_memory.find(p_address);
if (pos != m_memory.end())
ret_val = pos->second;
else
success = false;
return ret_val;
}
size_t EmulationStateARM::ReadPseudoMemory(
EmulateInstruction *instruction, void *baton,
const EmulateInstruction::Context &context, lldb::addr_t addr, void *dst,
size_t length) {
if (!baton)
return 0;
bool success = true;
EmulationStateARM *pseudo_state = (EmulationStateARM *)baton;
if (length <= 4) {
uint32_t value = pseudo_state->ReadFromPseudoAddress(addr, success);
if (!success)
return 0;
if (endian::InlHostByteOrder() == lldb::eByteOrderBig)
value = llvm::byteswap<uint32_t>(value);
*((uint32_t *)dst) = value;
} else if (length == 8) {
uint32_t value1 = pseudo_state->ReadFromPseudoAddress(addr, success);
if (!success)
return 0;
uint32_t value2 = pseudo_state->ReadFromPseudoAddress(addr + 4, success);
if (!success)
return 0;
if (endian::InlHostByteOrder() == lldb::eByteOrderBig) {
value1 = llvm::byteswap<uint32_t>(value1);
value2 = llvm::byteswap<uint32_t>(value2);
}
((uint32_t *)dst)[0] = value1;
((uint32_t *)dst)[1] = value2;
} else
success = false;
if (success)
return length;
return 0;
}
size_t EmulationStateARM::WritePseudoMemory(
EmulateInstruction *instruction, void *baton,
const EmulateInstruction::Context &context, lldb::addr_t addr,
const void *dst, size_t length) {
if (!baton)
return 0;
EmulationStateARM *pseudo_state = (EmulationStateARM *)baton;
if (length <= 4) {
uint32_t value;
memcpy (&value, dst, sizeof (uint32_t));
if (endian::InlHostByteOrder() == lldb::eByteOrderBig)
value = llvm::byteswap<uint32_t>(value);
pseudo_state->StoreToPseudoAddress(addr, value);
return length;
} else if (length == 8) {
uint32_t value1;
uint32_t value2;
memcpy (&value1, dst, sizeof (uint32_t));
memcpy(&value2, static_cast<const uint8_t *>(dst) + sizeof(uint32_t),
sizeof(uint32_t));
if (endian::InlHostByteOrder() == lldb::eByteOrderBig) {
value1 = llvm::byteswap<uint32_t>(value1);
value2 = llvm::byteswap<uint32_t>(value2);
}
pseudo_state->StoreToPseudoAddress(addr, value1);
pseudo_state->StoreToPseudoAddress(addr + 4, value2);
return length;
}
return 0;
}
bool EmulationStateARM::ReadPseudoRegister(
EmulateInstruction *instruction, void *baton,
const lldb_private::RegisterInfo *reg_info,
lldb_private::RegisterValue ®_value) {
if (!baton || !reg_info)
return false;
bool success = true;
EmulationStateARM *pseudo_state = (EmulationStateARM *)baton;
const uint32_t dwarf_reg_num = reg_info->kinds[eRegisterKindDWARF];
assert(dwarf_reg_num != LLDB_INVALID_REGNUM);
uint64_t reg_uval =
pseudo_state->ReadPseudoRegisterValue(dwarf_reg_num, success);
if (success)
success = reg_value.SetUInt(reg_uval, reg_info->byte_size);
return success;
}
bool EmulationStateARM::WritePseudoRegister(
EmulateInstruction *instruction, void *baton,
const EmulateInstruction::Context &context,
const lldb_private::RegisterInfo *reg_info,
const lldb_private::RegisterValue ®_value) {
if (!baton || !reg_info)
return false;
EmulationStateARM *pseudo_state = (EmulationStateARM *)baton;
const uint32_t dwarf_reg_num = reg_info->kinds[eRegisterKindDWARF];
assert(dwarf_reg_num != LLDB_INVALID_REGNUM);
return pseudo_state->StorePseudoRegisterValue(dwarf_reg_num,
reg_value.GetAsUInt64());
}
bool EmulationStateARM::CompareState(EmulationStateARM &other_state,
Stream &out_stream) {
bool match = true;
for (int i = 0; match && i < 17; ++i) {
if (m_gpr[i] != other_state.m_gpr[i]) {
match = false;
out_stream.Printf("r%d: 0x%x != 0x%x\n", i, m_gpr[i],
other_state.m_gpr[i]);
}
}
for (int i = 0; match && i < 32; ++i) {
if (m_vfp_regs.s_regs[i] != other_state.m_vfp_regs.s_regs[i]) {
match = false;
out_stream.Printf("s%d: 0x%x != 0x%x\n", i, m_vfp_regs.s_regs[i],
other_state.m_vfp_regs.s_regs[i]);
}
}
for (int i = 0; match && i < 16; ++i) {
if (m_vfp_regs.d_regs[i] != other_state.m_vfp_regs.d_regs[i]) {
match = false;
out_stream.Printf("d%d: 0x%" PRIx64 " != 0x%" PRIx64 "\n", i + 16,
m_vfp_regs.d_regs[i], other_state.m_vfp_regs.d_regs[i]);
}
}
// other_state is the expected state. If it has memory, check it.
if (!other_state.m_memory.empty() && m_memory != other_state.m_memory) {
match = false;
out_stream.Printf("memory does not match\n");
out_stream.Printf("got memory:\n");
for (auto p : m_memory)
out_stream.Printf("0x%08" PRIx64 ": 0x%08x\n", p.first, p.second);
out_stream.Printf("expected memory:\n");
for (auto p : other_state.m_memory)
out_stream.Printf("0x%08" PRIx64 ": 0x%08x\n", p.first, p.second);
}
return match;
}
bool EmulationStateARM::LoadRegistersStateFromDictionary(
OptionValueDictionary *reg_dict, char kind, int first_reg, int num) {
StreamString sstr;
for (int i = 0; i < num; ++i) {
sstr.Clear();
sstr.Printf("%c%d", kind, i);
OptionValueSP value_sp = reg_dict->GetValueForKey(sstr.GetString());
if (value_sp.get() == nullptr)
return false;
uint64_t reg_value = value_sp->GetValueAs<uint64_t>().value_or(0);
StorePseudoRegisterValue(first_reg + i, reg_value);
}
return true;
}
bool EmulationStateARM::LoadStateFromDictionary(
OptionValueDictionary *test_data) {
static constexpr llvm::StringLiteral memory_key("memory");
static constexpr llvm::StringLiteral registers_key("registers");
if (!test_data)
return false;
OptionValueSP value_sp = test_data->GetValueForKey(memory_key);
// Load memory, if present.
if (value_sp.get() != nullptr) {
static constexpr llvm::StringLiteral address_key("address");
static constexpr llvm::StringLiteral data_key("data");
uint64_t start_address = 0;
OptionValueDictionary *mem_dict = value_sp->GetAsDictionary();
value_sp = mem_dict->GetValueForKey(address_key);
if (value_sp.get() == nullptr)
return false;
else
start_address = value_sp->GetValueAs<uint64_t>().value_or(0);
value_sp = mem_dict->GetValueForKey(data_key);
OptionValueArray *mem_array = value_sp->GetAsArray();
if (!mem_array)
return false;
uint32_t num_elts = mem_array->GetSize();
uint32_t address = (uint32_t)start_address;
for (uint32_t i = 0; i < num_elts; ++i) {
value_sp = mem_array->GetValueAtIndex(i);
if (value_sp.get() == nullptr)
return false;
uint64_t value = value_sp->GetValueAs<uint64_t>().value_or(0);
StoreToPseudoAddress(address, value);
address = address + 4;
}
}
value_sp = test_data->GetValueForKey(registers_key);
if (value_sp.get() == nullptr)
return false;
// Load General Registers
OptionValueDictionary *reg_dict = value_sp->GetAsDictionary();
if (!LoadRegistersStateFromDictionary(reg_dict, 'r', dwarf_r0, 16))
return false;
static constexpr llvm::StringLiteral cpsr_name("cpsr");
value_sp = reg_dict->GetValueForKey(cpsr_name);
if (value_sp.get() == nullptr)
return false;
StorePseudoRegisterValue(dwarf_cpsr,
value_sp->GetValueAs<uint64_t>().value_or(0));
// Load s/d Registers
// To prevent you giving both types in a state and overwriting
// one or the other, we'll expect to get either all S registers,
// or all D registers. Not a mix of the two.
bool found_s_registers =
LoadRegistersStateFromDictionary(reg_dict, 's', dwarf_s0, 32);
bool found_d_registers =
LoadRegistersStateFromDictionary(reg_dict, 'd', dwarf_d0, 32);
return found_s_registers != found_d_registers;
}
|