1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
|
//===-- LLDBMemoryReader.cpp ----------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "LLDBMemoryReader.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/Section.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/Log.h"
#include "llvm/Support/MathExtras.h"
#include "swift/Demangling/Demangle.h"
using namespace lldb;
using namespace lldb_private;
namespace lldb_private {
bool LLDBMemoryReader::queryDataLayout(DataLayoutQueryType type, void *inBuffer,
void *outBuffer) {
switch (type) {
case DLQ_GetPtrAuthMask: {
lldb::addr_t ptrauth_mask = m_process.GetDataAddressMask();
if (ptrauth_mask == LLDB_INVALID_ADDRESS_MASK)
return false;
// The mask returned by the process masks out the non-addressable bits.
uint64_t mask_pattern = ~ptrauth_mask;
// LLDBMemoryReader sets LLDB_FILE_ADDRESS_BIT to distinguish process
// addresses and file addresses that point into a reflection section on
// disk. Setting the bit in the mask ensures it isn't accidentally cleared
// by ptrauth stripping.
mask_pattern |= LLDB_FILE_ADDRESS_BIT;
memcpy(outBuffer, &mask_pattern, m_process.GetAddressByteSize());
return true;
}
case DLQ_GetObjCReservedLowBits: {
auto *result = static_cast<uint8_t *>(outBuffer);
auto &triple = m_process.GetTarget().GetArchitecture().GetTriple();
if (triple.isMacOSX() && triple.getArch() == llvm::Triple::x86_64) {
// Obj-C reserves low bit on 64-bit Intel macOS only.
// Other Apple platforms don't reserve this bit (even when
// running on x86_64-based simulators).
*result = 1;
} else {
*result = 0;
}
return true;
}
case DLQ_GetPointerSize: {
auto *result = static_cast<uint8_t *>(outBuffer);
*result = m_process.GetAddressByteSize();
return true;
}
case DLQ_GetSizeSize: {
auto *result = static_cast<uint8_t *>(outBuffer);
*result = m_process.GetAddressByteSize(); // FIXME: sizeof(size_t)
return true;
}
case DLQ_GetLeastValidPointerValue: {
auto *result = (uint64_t *)outBuffer;
auto &triple = m_process.GetTarget().GetArchitecture().GetTriple();
if (triple.isOSDarwin() && triple.isArch64Bit())
*result = 0x100000000;
else
*result = 0x1000;
return true;
}
case DLQ_GetObjCInteropIsEnabled: {
auto *result = (bool *)outBuffer;
*result = SwiftLanguageRuntime::GetObjCRuntime(m_process) != nullptr;
return true;
}
}
}
swift::remote::RemoteAddress
LLDBMemoryReader::getSymbolAddress(const std::string &name) {
lldbassert(!name.empty());
if (name.empty())
return swift::remote::RemoteAddress(nullptr);
Log *log = GetLog(LLDBLog::Types);
LLDB_LOGV(log, "[MemoryReader] asked to retrieve the address of symbol {0}",
name);
ConstString name_cs(name.c_str(), name.size());
SymbolContextList sc_list;
m_process.GetTarget().GetImages().FindSymbolsWithNameAndType(
name_cs, lldb::eSymbolTypeAny, sc_list);
if (!sc_list.GetSize()) {
LLDB_LOGV(log, "[MemoryReader] symbol resolution failed {0}", name);
return swift::remote::RemoteAddress(nullptr);
}
SymbolContext sym_ctx;
// Remove undefined symbols from the list.
size_t num_sc_matches = sc_list.GetSize();
if (num_sc_matches > 1) {
SymbolContextList tmp_sc_list(sc_list);
sc_list.Clear();
for (size_t idx = 0; idx < num_sc_matches; idx++) {
tmp_sc_list.GetContextAtIndex(idx, sym_ctx);
if (sym_ctx.symbol &&
sym_ctx.symbol->GetType() != lldb::eSymbolTypeUndefined) {
sc_list.Append(sym_ctx);
}
}
}
if (sc_list.GetSize() == 1 && sc_list.GetContextAtIndex(0, sym_ctx)) {
if (sym_ctx.symbol) {
auto load_addr = sym_ctx.symbol->GetLoadAddress(&m_process.GetTarget());
LLDB_LOGV(log, "[MemoryReader] symbol resolved to {0:x}", load_addr);
return swift::remote::RemoteAddress(load_addr);
}
}
// Empty list, resolution failed.
if (sc_list.GetSize() == 0) {
LLDB_LOGV(log, "[MemoryReader] symbol resolution failed {0}", name);
return swift::remote::RemoteAddress(nullptr);
}
// If there's a single symbol, then we're golden. If there's more than
// a symbol, then just make sure all of them agree on the value.
Status error;
auto load_addr = sym_ctx.symbol->GetLoadAddress(&m_process.GetTarget());
uint64_t sym_value = m_process.GetTarget().ReadUnsignedIntegerFromMemory(
load_addr, m_process.GetAddressByteSize(), 0, error, true);
for (unsigned i = 1; i < sc_list.GetSize(); ++i) {
uint64_t other_sym_value =
m_process.GetTarget().ReadUnsignedIntegerFromMemory(
load_addr, m_process.GetAddressByteSize(), 0, error, true);
if (sym_value != other_sym_value) {
LLDB_LOGV(log, "[MemoryReader] symbol resolution failed {0}", name);
return swift::remote::RemoteAddress(nullptr);
}
}
LLDB_LOGV(log, "[MemoryReader] symbol resolved to {0}", load_addr);
return swift::remote::RemoteAddress(load_addr);
}
static std::unique_ptr<swift::SwiftObjectFileFormat>
GetSwiftObjectFileFormat(llvm::Triple::ObjectFormatType obj_format_type) {
std::unique_ptr<swift::SwiftObjectFileFormat> obj_file_format;
switch (obj_format_type) {
case llvm::Triple::MachO:
obj_file_format = std::make_unique<swift::SwiftObjectFileFormatMachO>();
break;
case llvm::Triple::ELF:
obj_file_format = std::make_unique<swift::SwiftObjectFileFormatELF>();
break;
case llvm::Triple::COFF:
obj_file_format = std::make_unique<swift::SwiftObjectFileFormatCOFF>();
break;
default:
LLDB_LOG(GetLog(LLDBLog::Types), "Could not determine swift reflection "
"section names for object format type");
break;
}
return obj_file_format;
}
std::optional<swift::remote::RemoteAbsolutePointer>
LLDBMemoryReader::resolvePointerAsSymbol(swift::remote::RemoteAddress address) {
// If an address has a symbol, that symbol provides additional useful data to
// MetadataReader. Without the symbol, MetadataReader can derive the symbol
// by loading other parts of reflection metadata, but that work has a cost.
// For lldb, that data loading can be a significant performance hit. Providing
// a symbol greatly reduces memory read traffic to the process.
auto &target = m_process.GetTarget();
if (!target.GetSwiftUseReflectionSymbols())
return {};
std::optional<Address> maybeAddr =
resolveRemoteAddress(address.getAddressData());
// This is not an assert, but should never happen.
if (!maybeAddr)
return {};
Address addr;
if (maybeAddr->IsSectionOffset()) {
// `address` was tagged, and then successfully mapped (resolved).
addr = *maybeAddr;
} else {
// `address` is a real load address.
if (!target.ResolveLoadAddress(address.getAddressData(), addr))
return {};
}
if (auto section_sp = addr.GetSection()) {
if (auto *obj_file = section_sp->GetObjectFile()) {
auto obj_file_format_type =
obj_file->GetArchitecture().GetTriple().getObjectFormat();
if (auto swift_obj_file_format =
GetSwiftObjectFileFormat(obj_file_format_type)) {
if (!swift_obj_file_format->sectionContainsReflectionData(
section_sp->GetName().GetStringRef()))
return {};
}
}
}
if (auto *symbol = addr.CalculateSymbolContextSymbol()) {
auto mangledName = symbol->GetMangled().GetMangledName().GetStringRef();
// MemoryReader requires this to be a Swift symbol. LLDB can also be
// aware of local symbols, so avoid returning those.
using namespace swift::Demangle;
if (isSwiftSymbol(mangledName) && !isOldFunctionTypeMangling(mangledName))
return {{mangledName, 0}};
}
return {};
}
swift::remote::RemoteAbsolutePointer
LLDBMemoryReader::resolvePointer(swift::remote::RemoteAddress address,
uint64_t readValue) {
Log *log = GetLog(LLDBLog::Types);
// We may have gotten a pointer to a process address, try to map it back
// to a tagged address so further memory reads originating from it benefit
// from the file-cache optimization.
swift::remote::RemoteAbsolutePointer process_pointer("", readValue);
if (!readMetadataFromFileCacheEnabled())
return process_pointer;
// Try to strip the pointer before checking if we have it mapped.
auto strippedPointer = signedPointerStripper(process_pointer);
if (strippedPointer.isResolved())
readValue = strippedPointer.getOffset();
auto &target = m_process.GetTarget();
Address addr;
if (!target.ResolveLoadAddress(readValue, addr)) {
LLDB_LOGV(log,
"[MemoryReader] Could not resolve load address of pointer {0:x} "
"read from {1:x}.",
readValue, address.getAddressData());
return process_pointer;
}
auto module_containing_pointer = addr.GetSection()->GetModule();
// Check if the module containing the pointer is registered with
// LLDBMemoryReader.
auto pair_iterator = std::find_if(
m_range_module_map.begin(), m_range_module_map.end(), [&](auto pair) {
return std::get<ModuleSP>(pair) == module_containing_pointer;
});
// We haven't registered the image that contains the pointer.
if (pair_iterator == m_range_module_map.end()) {
LLDB_LOG(log,
"[MemoryReader] Could not resolve find module containing pointer "
"{0:x} read from {1:x}.",
readValue, address.getAddressData());
return process_pointer;
}
// If the containing image is the first registered one, the image's tagged
// start address for it is the first tagged address. Otherwise, the previous
// pair's address is the start tagged address.
uint64_t start_tagged_address = pair_iterator == m_range_module_map.begin()
? LLDB_FILE_ADDRESS_BIT
: std::prev(pair_iterator)->first;
auto *section_list = module_containing_pointer->GetSectionList();
if (section_list->GetSize() == 0) {
LLDB_LOG(log,
"[MemoryReader] Module with empty section list.");
return {};
}
uint64_t tagged_address =
start_tagged_address + addr.GetFileAddress() -
section_list->GetSectionAtIndex(0)->GetFileAddress();
if (tagged_address >= std::get<uint64_t>(*pair_iterator)) {
// If the tagged address invades the next image's tagged address space,
// something went wrong. Log it and just return the process address.
LLDB_LOG(log,
"[MemoryReader] Pointer {0:x} read from {1:x} resolved to tagged "
"address {2:x}, which is outside its image address space.",
readValue, address.getAddressData(), tagged_address);
return process_pointer;
}
swift::remote::RemoteAbsolutePointer tagged_pointer("", tagged_address);
if (tagged_address !=
(uint64_t)signedPointerStripper(tagged_pointer).getOffset()) {
lldb_assert(false, "Tagged pointer runs into pointer authentication mask!",
__FUNCTION__, __FILE__, __LINE__);
return process_pointer;
}
LLDB_LOGV(log,
"[MemoryReader] Successfully resolved pointer {0:x} read from "
"{1:x} to tagged address {2:x}.",
readValue, address.getAddressData(), tagged_address);
return tagged_pointer;
}
bool LLDBMemoryReader::readBytes(swift::remote::RemoteAddress address,
uint8_t *dest, uint64_t size) {
Log *log = GetLog(LLDBLog::Types);
if (m_local_buffer) {
bool overflow = false;
auto addr = address.getAddressData();
auto end = llvm::SaturatingAdd(addr, size, &overflow);
if (overflow) {
LLDB_LOGV(log, "[MemoryReader] address {0:x} + size {1} overflows", addr,
size);
return false;
}
if (addr >= *m_local_buffer &&
end <= *m_local_buffer + m_local_buffer_size) {
// If this crashes, the assumptions stated in
// GetDynamicTypeAndAddress_Protocol() most likely no longer
// hold.
memcpy(dest, (void *)addr, size);
return true;
}
}
LLDB_LOGV(log, "[MemoryReader] asked to read {0} bytes at address {1:x}",
size, address.getAddressData());
std::optional<Address> maybeAddr =
resolveRemoteAddressFromSymbolObjectFile(address.getAddressData());
if (!maybeAddr)
maybeAddr = resolveRemoteAddress(address.getAddressData());
if (!maybeAddr) {
LLDB_LOGV(log, "[MemoryReader] could not resolve address {0:x}",
address.getAddressData());
return false;
}
auto addr = *maybeAddr;
if (addr.IsSectionOffset()) {
auto section = addr.GetSection();
auto *object_file = section->GetObjectFile();
if (object_file->GetType() == ObjectFile::Type::eTypeDebugInfo) {
LLDB_LOGV(log, "[MemoryReader] Reading memory from symbol rich binary");
return object_file->ReadSectionData(section.get(), addr.GetOffset(), dest,
size);
}
}
if (size > m_max_read_amount) {
LLDB_LOGV(log, "[MemoryReader] memory read exceeds maximum allowed size");
return false;
}
Target &target(m_process.GetTarget());
Status error;
// We only want to allow the file-cache optimization if we resolved the
// address to section + offset.
const bool force_live_memory =
!readMetadataFromFileCacheEnabled() || !addr.IsSectionOffset();
if (size > target.ReadMemory(addr, dest, size, error, force_live_memory)) {
LLDB_LOGV(log,
"[MemoryReader] memory read returned fewer bytes than asked for");
return false;
}
if (error.Fail()) {
LLDB_LOGV(log, "[MemoryReader] memory read returned error: {0}",
error.AsCString());
return false;
}
auto format_data = [](auto dest, auto size) {
StreamString stream;
for (uint64_t i = 0; i < size; i++) {
stream.PutHex8(dest[i]);
stream.PutChar(' ');
}
return std::string(stream.GetData());
};
LLDB_LOGV(log, "[MemoryReader] memory read returned data: {0}",
format_data(dest, size));
return true;
}
bool LLDBMemoryReader::readString(swift::remote::RemoteAddress address,
std::string &dest) {
Log *log = GetLog(LLDBLog::Types);
auto format_string = [](const std::string &dest) {
StreamString stream;
for (auto c : dest) {
if (c >= 32 && c <= 127) {
stream << c;
} else {
stream << "\\0";
stream.PutHex8(c);
}
}
return std::string(stream.GetData());
};
LLDB_LOGV(log, "[MemoryReader] asked to read string data at address {0:x}",
address.getAddressData());
std::optional<Address> maybeAddr =
resolveRemoteAddressFromSymbolObjectFile(address.getAddressData());
if (!maybeAddr)
maybeAddr = resolveRemoteAddress(address.getAddressData());
if (!maybeAddr) {
LLDB_LOGV(log, "[MemoryReader] could not resolve address {0:x}",
address.getAddressData());
return false;
}
auto addr = *maybeAddr;
if (addr.IsSectionOffset()) {
auto section = addr.GetSection();
auto *object_file = section->GetObjectFile();
if (object_file->GetType() == ObjectFile::Type::eTypeDebugInfo) {
LLDB_LOGV(log, "[MemoryReader] Reading memory from symbol rich binary");
dest = object_file->GetCStrFromSection(section.get(), addr.GetOffset());
LLDB_LOGV(log, "[MemoryReader] memory read returned string: \"{0}\"",
format_string(dest));
return true;
}
}
Target &target(m_process.GetTarget());
Status error;
// We only want to allow the file-cache optimization if we resolved the
// address to section + offset.
const bool force_live_memory =
!readMetadataFromFileCacheEnabled() || !addr.IsSectionOffset();
target.ReadCStringFromMemory(addr, dest, error, force_live_memory);
if (error.Success()) {
LLDB_LOGV(log, "[MemoryReader] memory read returned string: \"{0}\"",
format_string(dest));
return true;
}
LLDB_LOGV(log, "[MemoryReader] memory read returned error: {0}",
error.AsCString());
return false;
}
void LLDBMemoryReader::pushLocalBuffer(uint64_t local_buffer,
uint64_t local_buffer_size) {
lldbassert(!m_local_buffer);
m_local_buffer = local_buffer;
m_local_buffer_size = local_buffer_size;
}
void LLDBMemoryReader::popLocalBuffer() {
lldbassert(m_local_buffer);
m_local_buffer.reset();
m_local_buffer_size = 0;
}
std::optional<std::pair<uint64_t, uint64_t>>
LLDBMemoryReader::addModuleToAddressMap(ModuleSP module,
bool register_symbol_obj_file) {
if (!readMetadataFromFileCacheEnabled())
return {};
assert(register_symbol_obj_file <=
m_process.GetTarget().GetSwiftReadMetadataFromDSYM() &&
"Trying to register symbol object file, but reading from it is "
"disabled!");
// The first available address is the mask, since subsequent images are mapped
// in ascending order, all of them will contain this mask.
uint64_t module_start_address = LLDB_FILE_ADDRESS_BIT;
if (!m_range_module_map.empty())
// We map the images contiguously one after the other, all with the tag bit
// set.
// The address that maps the last module is exactly the address the new
// module should start at.
module_start_address = m_range_module_map.back().first;
#ifndef NDEBUG
static std::initializer_list<uint64_t> objc_bits = {
SWIFT_ABI_ARM_IS_OBJC_BIT, SWIFT_ABI_X86_64_IS_OBJC_BIT,
SWIFT_ABI_ARM64_IS_OBJC_BIT};
for (auto objc_bit : objc_bits)
assert((module_start_address & objc_bit) != objc_bit &&
"LLDB file address bit clashes with an obj-c bit!");
#endif
ObjectFile *object_file;
if (register_symbol_obj_file) {
auto *symbol_file = module->GetSymbolFile();
if (!symbol_file)
return {};
object_file = symbol_file->GetObjectFile();
} else {
object_file = module->GetObjectFile();
}
if (!object_file)
return {};
SectionList *section_list = object_file->GetSectionList();
auto section_list_size = section_list->GetSize();
if (section_list_size == 0)
return {};
auto first_section = section_list->GetSectionAtIndex(0);
auto last_section =
section_list->GetSectionAtIndex(section_list->GetSize() - 1);
// The total size is the last section's file address plus size, subtracting
// the first section's file address.
auto start_file_address = first_section->GetFileAddress();
uint64_t end_file_address =
last_section->GetFileAddress() + last_section->GetByteSize();
auto size = end_file_address - start_file_address;
auto module_end_address = module_start_address + size;
if (module_end_address !=
(uint64_t)signedPointerStripper(
swift::remote::RemoteAbsolutePointer("", module_end_address))
.getOffset()) {
lldb_assert(false,
"LLDBMemoryReader module to address map ran into pointer "
"authentication mask!",
__FUNCTION__, __FILE__, __LINE__);
return {};
}
// The address for the next image is the next pointer aligned address
// available after the end of the current image.
uint64_t next_module_start_address = llvm::alignTo(module_end_address, 8);
m_range_module_map.emplace_back(next_module_start_address, module);
if (register_symbol_obj_file)
m_modules_with_metadata_in_symbol_obj_file.insert(module);
return {{module_start_address, module_end_address}};
}
std::optional<std::pair<uint64_t, lldb::ModuleSP>>
LLDBMemoryReader::getFileAddressAndModuleForTaggedAddress(
uint64_t tagged_address) const {
Log *log(GetLog(LLDBLog::Types));
if (!readMetadataFromFileCacheEnabled())
return {};
// If the address contains our mask, this is an image we registered.
if (!(tagged_address & LLDB_FILE_ADDRESS_BIT))
return {};
// Dummy pair with the address we're looking for.
auto comparison_pair = std::make_pair(tagged_address, ModuleSP());
// Explicitly compare only the addresses, never the modules in the pairs.
auto pair_iterator = std::lower_bound(
m_range_module_map.begin(), m_range_module_map.end(), comparison_pair,
[](auto &a, auto &b) { return a.first < b.first; });
// If the address is larger than anything we have mapped the address is out
if (pair_iterator == m_range_module_map.end()) {
LLDB_LOG(log,
"[MemoryReader] Address {0:x} is larger than the upper bound "
"address of the mapped in modules",
tagged_address);
return {};
}
ModuleSP module = pair_iterator->second;
auto *section_list = module->GetSectionList();
if (section_list->GetSize() == 0) {
LLDB_LOG(log,
"[MemoryReader] Module with empty section list.");
return {};
}
uint64_t file_address;
if (pair_iterator == m_range_module_map.begin())
// Since this is the first registered module,
// clearing the tag bit will give the virtual file address.
file_address = tagged_address & ~LLDB_FILE_ADDRESS_BIT;
else
// The end of the previous section is the start of the current one.
// We also need to add the first section's file address since we remove it
// when constructing the range to module map.
file_address = tagged_address - std::prev(pair_iterator)->first;
// We also need to add the module's file address, since we subtract it when
// building the range to module map.
file_address += section_list->GetSectionAtIndex(0)->GetFileAddress();
return {{file_address, module}};
}
std::optional<Address>
LLDBMemoryReader::resolveRemoteAddress(uint64_t address) const {
Log *log(GetLog(LLDBLog::Types));
auto maybe_pair = getFileAddressAndModuleForTaggedAddress(address);
if (!maybe_pair)
return Address(address);
uint64_t file_address = maybe_pair->first;
ModuleSP module = maybe_pair->second;
if (m_modules_with_metadata_in_symbol_obj_file.count(module))
return Address(address);
auto *object_file = module->GetObjectFile();
if (!object_file)
return {};
Address resolved(file_address, object_file->GetSectionList());
// If the address doesn't have a section it means we couldn't find a section
// that contains that file address, and the "resolved" instance is wrong.
// Calculate the virtual address by finding out the slide of the associated
// module, and adding that to the file address.
if (resolved.GetSection()) {
LLDB_LOGV(log,
"[MemoryReader] Successfully resolved mapped address {0:x} into "
"file address {1:x}",
address, resolved.GetFileAddress());
return resolved;
}
auto *sec_list = module->GetSectionList();
if (sec_list->GetSize() == 0) {
LLDB_LOG(log,
"[MemoryReader] Could not calculate virtual address from file "
"address {0:x}, no sections in {1}",
file_address, object_file->GetFileSpec().GetFilename());
return {};
}
SectionSP sec = sec_list->GetSectionAtIndex(0);
addr_t sec_file_address = sec->GetFileAddress();
addr_t sec_load_address = sec->GetLoadBaseAddress(&m_process.GetTarget());
if (sec_load_address < sec_file_address) {
LLDB_LOG(log,
"[MemoryReader] section load address {0:x} is smaller than "
"section file address {1:x}",
sec_load_address, sec_file_address);
return {};
}
addr_t slide = sec_load_address - sec_file_address;
bool overflow = false;
addr_t virtual_address = llvm::SaturatingAdd(file_address, slide, &overflow);
if (overflow) {
LLDB_LOG(log, "[MemoryReader] file address {0:x} + slide {1:x} overflows",
sec_load_address, sec_file_address);
return {};
}
resolved = Address(virtual_address);
LLDB_LOGV(log,
"[MemoryReader] Could not find section with file address {0:x} "
"and file {1}, resolved it into virtual address {2:x}",
file_address, object_file->GetFileSpec().GetFilename(),
virtual_address);
return resolved;
}
std::optional<Address>
LLDBMemoryReader::resolveRemoteAddressFromSymbolObjectFile(
uint64_t address) const {
Log *log(GetLog(LLDBLog::Types));
if (!m_process.GetTarget().GetSwiftReadMetadataFromDSYM())
return {};
auto maybe_pair = getFileAddressAndModuleForTaggedAddress(address);
if (!maybe_pair)
return {};
uint64_t file_address = maybe_pair->first;
ModuleSP module = maybe_pair->second;
if (!m_modules_with_metadata_in_symbol_obj_file.count(module))
return {};
auto *symbol_file = module->GetSymbolFile();
if (!symbol_file)
return {};
auto *object_file = symbol_file->GetObjectFile();
if (!object_file)
return {};
Address resolved(file_address, object_file->GetSectionList());
if (!resolved.IsSectionOffset()) {
LLDB_LOG(log,
"[MemoryReader] Could not make a real address out of file address "
"{0:x} and object file {1}",
file_address, object_file->GetFileSpec().GetFilename());
return {};
}
if (!resolved.GetSection()
->GetParent()
->GetName()
.GetStringRef()
.contains_insensitive("DWARF")) {
auto *main_object_file = module->GetObjectFile();
resolved = Address(file_address, main_object_file->GetSectionList());
}
LLDB_LOGV(log,
"[MemoryReader] Successfully resolved mapped address {0:x} into "
"file address {1:x} from symbol object file.",
address, file_address);
return resolved;
}
bool LLDBMemoryReader::readMetadataFromFileCacheEnabled() const {
auto &triple = m_process.GetTarget().GetArchitecture().GetTriple();
// 32 doesn't have a flag bit we can reliably use, so reading from filecache
// is disabled on it.
return m_process.GetTarget().GetSwiftReadMetadataFromFileCache() &&
triple.isArch64Bit();
}
} // namespace lldb_private
|