1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
|
//===-- SwiftLanguageRuntime.cpp ------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "SwiftLanguageRuntime.h"
#include "Plugins/LanguageRuntime/Swift/LLDBMemoryReader.h"
#include "ReflectionContextInterface.h"
#include "SwiftLanguageRuntimeImpl.h"
#include "SwiftMetadataCache.h"
#include "Plugins/ExpressionParser/Swift/SwiftPersistentExpressionState.h"
#include "Plugins/Process/Utility/RegisterContext_x86.h"
#include "Plugins/TypeSystem/Clang/TypeSystemClang.h"
#include "Utility/ARM64_DWARF_Registers.h"
#include "lldb/Breakpoint/StoppointCallbackContext.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/JITSection.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Progress.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/ValueObject.h"
#include "lldb/Core/ValueObjectCast.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Core/ValueObjectVariable.h"
#include "lldb/DataFormatters/StringPrinter.h"
#include "lldb/Host/OptionParser.h"
#include "lldb/Host/SafeMachO.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/CommandObject.h"
#include "lldb/Interpreter/CommandObjectMultiword.h"
#include "lldb/Interpreter/CommandReturnObject.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/OptionParsing.h"
#include "lldb/Utility/Timer.h"
#include "lldb/lldb-enumerations.h"
#include "swift/AST/ASTMangler.h"
#include "swift/Demangling/Demangle.h"
#include "swift/RemoteInspection/ReflectionContext.h"
#include "swift/RemoteAST/RemoteAST.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Memory.h"
// FIXME: we should not need this
#include "Plugins/Language/Swift/SwiftFormatters.h"
#include "Plugins/Language/Swift/SwiftRuntimeFailureRecognizer.h"
using namespace lldb;
using namespace lldb_private;
LLDB_PLUGIN_DEFINE(SwiftLanguageRuntime)
namespace lldb_private {
char SwiftLanguageRuntime::ID = 0;
extern "C" unsigned long long _swift_classIsSwiftMask = 0;
const char *SwiftLanguageRuntime::GetErrorBackstopName() {
return "swift_errorInMain";
}
const char *SwiftLanguageRuntime::GetStandardLibraryBaseName() {
return "swiftCore";
}
static ConstString GetStandardLibraryName(Process &process) {
// This result needs to be stored in the constructor.
PlatformSP platform_sp(process.GetTarget().GetPlatform());
if (platform_sp)
return platform_sp->GetFullNameForDylib(
ConstString(SwiftLanguageRuntime::GetStandardLibraryBaseName()));
return {};
}
ConstString SwiftLanguageRuntime::GetStandardLibraryName() {
return ::GetStandardLibraryName(*m_process);
}
static bool IsModuleSwiftRuntime(lldb_private::Process &process,
lldb_private::Module &module) {
return module.GetFileSpec().GetFilename() == GetStandardLibraryName(process);
}
AppleObjCRuntimeV2 *
SwiftLanguageRuntime::GetObjCRuntime(lldb_private::Process &process) {
if (auto objc_runtime = ObjCLanguageRuntime::Get(process)) {
if (objc_runtime->GetPluginName() ==
AppleObjCRuntimeV2::GetPluginNameStatic())
return (AppleObjCRuntimeV2 *)objc_runtime;
}
return nullptr;
}
AppleObjCRuntimeV2 *SwiftLanguageRuntime::GetObjCRuntime() {
return GetObjCRuntime(*m_process);
}
enum class RuntimeKind { Swift, ObjC };
/// Detect a statically linked Swift runtime by looking for a well-known symbol.
static bool IsStaticSwiftRuntime(Module &image) {
static ConstString swift_reflection_version_sym("swift_release");
return image.FindFirstSymbolWithNameAndType(swift_reflection_version_sym);
}
/// \return the Swift or Objective-C runtime found in the loaded images.
static ModuleSP findRuntime(Process &process, RuntimeKind runtime_kind) {
AppleObjCRuntimeV2 *objc_runtime = nullptr;
if (runtime_kind == RuntimeKind::ObjC) {
objc_runtime = SwiftLanguageRuntime::GetObjCRuntime(process);
if (!objc_runtime)
return {};
}
ModuleSP runtime_image;
process.GetTarget().GetImages().ForEach([&](const ModuleSP &image) {
if (runtime_kind == RuntimeKind::Swift && image &&
IsModuleSwiftRuntime(process, *image)) {
runtime_image = image;
return false;
}
if (runtime_kind == RuntimeKind::ObjC &&
objc_runtime->IsModuleObjCLibrary(image)) {
runtime_image = image;
return false;
}
return true;
});
if (!runtime_image && runtime_kind == RuntimeKind::Swift) {
// Do a more expensive search for a statically linked Swift runtime.
process.GetTarget().GetImages().ForEach([&](const ModuleSP &image) {
if (image && IsStaticSwiftRuntime(*image)) {
runtime_image = image;
return false;
}
return true;
});
}
return runtime_image;
}
static std::optional<lldb::addr_t>
FindSymbolForSwiftObject(Process &process, RuntimeKind runtime_kind,
StringRef object, const SymbolType sym_type) {
ModuleSP image = findRuntime(process, runtime_kind);
Target &target = process.GetTarget();
if (!image) {
// Don't diagnose a missing Objective-C runtime on platforms that
// don't have one.
if (runtime_kind == RuntimeKind::ObjC) {
auto *obj_file = target.GetExecutableModule()->GetObjectFile();
bool have_objc_interop =
obj_file && obj_file->GetPluginName().equals("mach-o");
if (!have_objc_interop)
return {};
}
target.GetDebugger().GetAsyncErrorStream()->Printf(
"Couldn't find the %s runtime library in loaded images.\n",
(runtime_kind == RuntimeKind::Swift) ? "Swift" : "Objective-C");
return {};
}
SymbolContextList sc_list;
image->FindSymbolsWithNameAndType(ConstString(object), sym_type, sc_list);
if (sc_list.GetSize() != 1)
return {};
SymbolContext SwiftObject_Class;
if (!sc_list.GetContextAtIndex(0, SwiftObject_Class))
return {};
if (!SwiftObject_Class.symbol)
return {};
lldb::addr_t addr =
SwiftObject_Class.symbol->GetAddress().GetLoadAddress(&target);
if (addr && addr != LLDB_INVALID_ADDRESS)
return addr;
return {};
}
static lldb::BreakpointResolverSP
CreateExceptionResolver(const lldb::BreakpointSP &bkpt, bool catch_bp, bool throw_bp) {
BreakpointResolverSP resolver_sp;
if (throw_bp)
resolver_sp.reset(new BreakpointResolverName(
bkpt, "swift_willThrow", eFunctionNameTypeBase, eLanguageTypeUnknown,
Breakpoint::Exact, 0, eLazyBoolNo));
// FIXME: We don't do catch breakpoints for ObjC yet.
// Should there be some way for the runtime to specify what it can do in this
// regard?
return resolver_sp;
}
/// Simple Swift programs may not actually depend on the Swift runtime
/// library (libswiftCore.dylib), but if it is missing, what we can do
/// is limited. This implementation represents that case.
class SwiftLanguageRuntimeStub {
Process &m_process;
public:
SwiftLanguageRuntimeStub(Process &process) : m_process(process) {}
#define STUB_LOG() \
do { \
LLDB_LOGF(GetLog(LLDBLog::Expressions | LLDBLog::Types), \
"Swift language runtime isn't available because %s is not " \
"loaded in the process.", \
GetStandardLibraryName(m_process).AsCString()); \
assert(false && "called into swift language runtime stub"); \
} while (0)
ThreadSafeReflectionContext GetReflectionContext() {
STUB_LOG();
return ThreadSafeReflectionContext();
}
bool GetDynamicTypeAndAddress(ValueObject &in_value,
lldb::DynamicValueType use_dynamic,
TypeAndOrName &class_type_or_name,
Address &address,
Value::ValueType &value_type) {
STUB_LOG();
return false;
}
TypeAndOrName FixUpDynamicType(const TypeAndOrName &type_and_or_name,
ValueObject &static_value) {
STUB_LOG();
return {};
}
bool IsTaggedPointer(lldb::addr_t addr, CompilerType type) {
STUB_LOG();
return false;
}
std::pair<lldb::addr_t, bool> FixupPointerValue(lldb::addr_t addr,
CompilerType type) {
STUB_LOG();
return {addr, false};
}
lldb::addr_t FixupAddress(lldb::addr_t addr, CompilerType type,
Status &error) {
STUB_LOG();
return addr;
}
CompilerType GetTypeFromMetadata(TypeSystemSwift &tss, Address addr) {
STUB_LOG();
return {};
}
void SymbolsDidLoad(const ModuleList &module_list) {}
void ModulesDidLoad(const ModuleList &module_list) {}
bool IsStoredInlineInBuffer(CompilerType type) {
STUB_LOG();
return false;
}
void DumpTyperef(CompilerType type, TypeSystemSwiftTypeRef *module_holder,
Stream *s) {
STUB_LOG();
}
std::optional<uint64_t> GetMemberVariableOffset(CompilerType instance_type,
ValueObject *instance,
llvm::StringRef member_name,
Status *error) {
STUB_LOG();
return {};
}
llvm::Expected<uint32_t> GetNumChildren(CompilerType type,
ExecutionContextScope *exe_scopej) {
STUB_LOG();
return 0;
}
std::optional<std::string> GetEnumCaseName(CompilerType type,
const DataExtractor &data,
ExecutionContext *exe_ctx) {
STUB_LOG();
return {};
}
std::pair<SwiftLanguageRuntime::LookupResult, std::optional<size_t>>
GetIndexOfChildMemberWithName(CompilerType type, llvm::StringRef name,
ExecutionContext *exe_ctx,
bool omit_empty_base_classes,
std::vector<uint32_t> &child_indexes) {
STUB_LOG();
return {};
}
CompilerType GetChildCompilerTypeAtIndex(
CompilerType type, size_t idx, bool transparent_pointers,
bool omit_empty_base_classes, bool ignore_array_bounds,
std::string &child_name, uint32_t &child_byte_size,
int32_t &child_byte_offset, uint32_t &child_bitfield_bit_size,
uint32_t &child_bitfield_bit_offset, bool &child_is_base_class,
bool &child_is_deref_of_parent, ValueObject *valobj,
uint64_t &language_flags) {
STUB_LOG();
return {};
}
std::optional<unsigned> GetNumFields(CompilerType type,
ExecutionContext *exe_ctx) {
STUB_LOG();
return {};
}
llvm::Error GetObjectDescription(Stream &str, ValueObject &object) {
STUB_LOG();
return llvm::createStringError("Swift runtime not initialized");
}
void AddToLibraryNegativeCache(llvm::StringRef library_name) {}
bool IsInLibraryNegativeCache(llvm::StringRef library_name) {
return false;
}
void ReleaseAssociatedRemoteASTContext(swift::ASTContext *ctx) {}
CompilerType BindGenericTypeParameters(StackFrame &stack_frame,
CompilerType base_type) {
STUB_LOG();
return {};
}
CompilerType BindGenericTypeParameters(
CompilerType unbound_type,
std::function<CompilerType(unsigned, unsigned)> type_finder) {
STUB_LOG();
return {};
}
CompilerType GetConcreteType(ExecutionContextScope *exe_scope,
ConstString abstract_type_name) {
STUB_LOG();
return {};
}
std::optional<uint64_t> GetBitSize(CompilerType type,
ExecutionContextScope *exe_scope) {
STUB_LOG();
return {};
}
std::optional<uint64_t> GetByteStride(CompilerType type) {
STUB_LOG();
return {};
}
std::optional<size_t> GetBitAlignment(CompilerType type,
ExecutionContextScope *exe_scope) {
STUB_LOG();
return {};
}
bool IsValidErrorValue(ValueObject &in_value) {
STUB_LOG();
return {};
}
lldb::SyntheticChildrenSP
GetBridgedSyntheticChildProvider(ValueObject &valobj) {
STUB_LOG();
return {};
}
void WillStartExecutingUserExpression(bool runs_in_playground_or_repl) {
if (!runs_in_playground_or_repl)
STUB_LOG();
}
void DidFinishExecutingUserExpression(bool runs_in_playground_or_repl) {
if (!runs_in_playground_or_repl)
STUB_LOG();
}
bool IsABIStable() {
STUB_LOG();
// Pick a sensible default.
return m_process.GetTarget().GetArchitecture().GetTriple().isOSDarwin()
? true
: false;
}
SwiftLanguageRuntimeStub(const SwiftLanguageRuntimeStub &) = delete;
const SwiftLanguageRuntimeStub &
operator=(const SwiftLanguageRuntimeStub &) = delete;
};
static std::unique_ptr<swift::SwiftObjectFileFormat>
GetObjectFileFormat(llvm::Triple::ObjectFormatType obj_format_type) {
std::unique_ptr<swift::SwiftObjectFileFormat> obj_file_format;
switch (obj_format_type) {
case llvm::Triple::MachO:
obj_file_format = std::make_unique<swift::SwiftObjectFileFormatMachO>();
break;
case llvm::Triple::ELF:
obj_file_format = std::make_unique<swift::SwiftObjectFileFormatELF>();
break;
case llvm::Triple::COFF:
obj_file_format = std::make_unique<swift::SwiftObjectFileFormatCOFF>();
break;
default:
if (Log *log = GetLog(LLDBLog::Types))
log->Printf("%s: Could not find out swift reflection section names for "
"object format type.",
__FUNCTION__);
}
return obj_file_format;
}
static bool HasReflectionInfo(ObjectFile *obj_file) {
if (!obj_file)
return false;
auto findSectionInObject = [&](StringRef name) {
ConstString section_name(name);
SectionSP section_sp =
obj_file->GetSectionList()->FindSectionByName(section_name);
if (section_sp)
return true;
return false;
};
const auto obj_format_type =
obj_file->GetArchitecture().GetTriple().getObjectFormat();
auto obj_file_format_up = GetObjectFileFormat(obj_format_type);
if (!obj_file_format_up)
return false;
StringRef field_md =
obj_file_format_up->getSectionName(swift::ReflectionSectionKind::fieldmd);
StringRef assocty =
obj_file_format_up->getSectionName(swift::ReflectionSectionKind::assocty);
StringRef builtin =
obj_file_format_up->getSectionName(swift::ReflectionSectionKind::builtin);
StringRef capture =
obj_file_format_up->getSectionName(swift::ReflectionSectionKind::capture);
StringRef typeref =
obj_file_format_up->getSectionName(swift::ReflectionSectionKind::typeref);
StringRef reflstr =
obj_file_format_up->getSectionName(swift::ReflectionSectionKind::reflstr);
bool hasReflectionSection =
findSectionInObject(field_md) || findSectionInObject(assocty) ||
findSectionInObject(builtin) || findSectionInObject(capture) ||
findSectionInObject(typeref) || findSectionInObject(reflstr);
return hasReflectionSection;
}
ThreadSafeReflectionContext
SwiftLanguageRuntimeImpl::GetReflectionContext() {
m_reflection_ctx_mutex.lock();
SetupReflection();
// SetupReflection can potentially fail.
if (m_initialized_reflection_ctx)
ProcessModulesToAdd();
return {m_reflection_ctx.get(), m_reflection_ctx_mutex};
}
void SwiftLanguageRuntimeImpl::ProcessModulesToAdd() {
// A snapshot of the modules to be processed. This is necessary because
// AddModuleToReflectionContext may recursively call into this function again.
ModuleList modules_to_add_snapshot;
modules_to_add_snapshot.Swap(m_modules_to_add);
if (modules_to_add_snapshot.IsEmpty())
return;
auto &target = m_process.GetTarget();
auto exe_module = target.GetExecutableModule();
Progress progress("Setting up Swift reflection", {}, modules_to_add_snapshot.GetSize());
size_t completion = 0;
// Add all defered modules to reflection context that were added to
// the target since this SwiftLanguageRuntime was created.
modules_to_add_snapshot.ForEach([&](const ModuleSP &module_sp) -> bool {
AddModuleToReflectionContext(module_sp);
progress.Increment(++completion,
module_sp->GetFileSpec().GetFilename().AsCString());
return true;
});
}
SwiftMetadataCache *
SwiftLanguageRuntimeImpl::GetSwiftMetadataCache() {
if (!m_swift_metadata_cache.is_enabled())
return {};
return &m_swift_metadata_cache;
}
void SwiftLanguageRuntimeImpl::SetupReflection() {
LLDB_SCOPED_TIMER();
std::lock_guard<std::recursive_mutex> lock(m_reflection_ctx_mutex);
if (m_initialized_reflection_ctx)
return;
// The global ABI bit is read by the Swift runtime library.
SetupABIBit();
auto &target = m_process.GetTarget();
auto exe_module = target.GetExecutableModule();
auto *log = GetLog(LLDBLog::Types);
if (!exe_module) {
LLDB_LOGF(log, "%s: Failed to get executable module",
LLVM_PRETTY_FUNCTION);
m_initialized_reflection_ctx = false;
return;
}
bool objc_interop = (bool)findRuntime(m_process, RuntimeKind::ObjC);
const char *objc_interop_msg =
objc_interop ? "with Objective-C interopability" : "Swift only";
auto &triple = exe_module->GetArchitecture().GetTriple();
uint32_t ptr_size = m_process.GetAddressByteSize();
LLDB_LOG(log, "Initializing a {0}-bit reflection context ({1}) for \"{2}\"",
ptr_size * 8, triple.str(), objc_interop_msg);
if (ptr_size == 4 || ptr_size == 8)
m_reflection_ctx = ReflectionContextInterface::CreateReflectionContext(
ptr_size, this->GetMemoryReader(), objc_interop,
GetSwiftMetadataCache());
if (!m_reflection_ctx)
LLDB_LOG(log, "Could not initialize reflection context for \"{0}\"",
triple.str());
// We set m_initialized_reflection_ctx to true here because
// AddModuleToReflectionContext can potentially call into SetupReflection
// again (which will early exit). This is safe to do since every other thread
// using reflection context will have to wait until all the modules are added,
// since the thread performing the initialization locked the mutex.
m_initialized_reflection_ctx = true;
}
bool SwiftLanguageRuntimeImpl::IsABIStable() {
GetReflectionContext();
return _swift_classIsSwiftMask == 2;
}
void SwiftLanguageRuntimeImpl::SetupSwiftError() {
m_SwiftNativeNSErrorISA =
FindSymbolForSwiftObject(m_process, RuntimeKind::Swift,
"__SwiftNativeNSError", eSymbolTypeObjCClass);
}
std::optional<lldb::addr_t>
SwiftLanguageRuntimeImpl::GetSwiftNativeNSErrorISA() {
return m_SwiftNativeNSErrorISA;
}
void SwiftLanguageRuntimeImpl::SetupExclusivity() {
m_dynamic_exclusivity_flag_addr = FindSymbolForSwiftObject(
m_process, RuntimeKind::Swift, "_swift_disableExclusivityChecking",
eSymbolTypeData);
Log *log(GetLog(LLDBLog::Expressions));
if (log)
log->Printf(
"SwiftLanguageRuntime: _swift_disableExclusivityChecking = %llu",
m_dynamic_exclusivity_flag_addr ? *m_dynamic_exclusivity_flag_addr : 0);
}
std::optional<lldb::addr_t>
SwiftLanguageRuntimeImpl::GetDynamicExclusivityFlagAddr() {
return m_dynamic_exclusivity_flag_addr;
}
void SwiftLanguageRuntimeImpl::SetupABIBit() {
if (FindSymbolForSwiftObject(m_process, RuntimeKind::ObjC,
"objc_debug_swift_stable_abi_bit",
eSymbolTypeAny))
_swift_classIsSwiftMask = 2;
else
_swift_classIsSwiftMask = 1;
}
SwiftLanguageRuntimeImpl::SwiftLanguageRuntimeImpl(Process &process)
: m_process(process) {
// The global ABI bit is read by the Swift runtime library.
SetupExclusivity();
SetupSwiftError();
Target &target = m_process.GetTarget();
m_modules_to_add.Append(target.GetImages());
RegisterSwiftRuntimeFailureRecognizer(m_process);
}
LanguageRuntime *
SwiftLanguageRuntime::CreateInstance(Process *process,
lldb::LanguageType language) {
if ((language != eLanguageTypeSwift) || !process)
return nullptr;
return new SwiftLanguageRuntime(process);
}
SwiftLanguageRuntime::SwiftLanguageRuntime(Process *process)
: LanguageRuntime(process) {
// It's not possible to bring up a full SwiftLanguageRuntime if the Swift
// runtime library hasn't been loaded yet.
if (findRuntime(*process, RuntimeKind::Swift))
m_impl = std::make_unique<SwiftLanguageRuntimeImpl>(*process);
else
m_stub = std::make_unique<SwiftLanguageRuntimeStub>(*process);
}
void SwiftLanguageRuntime::ModulesDidLoad(const ModuleList &module_list) {
assert(m_process && "modules loaded without process");
if (m_impl) {
m_impl->ModulesDidLoad(module_list);
return;
}
bool did_load_runtime = false;
module_list.ForEach([&](const ModuleSP &module_sp) -> bool {
did_load_runtime |= IsModuleSwiftRuntime(*m_process, *module_sp) ||
IsStaticSwiftRuntime(*module_sp);
return !did_load_runtime;
});
if (did_load_runtime) {
m_impl = std::make_unique<SwiftLanguageRuntimeImpl>(*m_process);
m_impl->ModulesDidLoad(module_list);
}
}
static llvm::SmallVector<llvm::StringRef, 1>
GetLikelySwiftImageNamesForModule(ModuleSP module) {
if (!module || !module->GetFileSpec())
return {};
auto name =
module->GetFileSpec().GetFileNameStrippingExtension().GetStringRef();
if (name == "libswiftCore")
name = "Swift";
if (name.startswith("libswift"))
name = name.drop_front(8);
if (name.startswith("lib"))
name = name.drop_front(3);
return {name};
}
bool SwiftLanguageRuntimeImpl::AddJitObjectFileToReflectionContext(
ObjectFile &obj_file, llvm::Triple::ObjectFormatType obj_format_type,
llvm::SmallVector<llvm::StringRef, 1> likely_module_names) {
assert(obj_file.GetType() == ObjectFile::eTypeJIT &&
"Not a JIT object file!");
auto obj_file_format = GetObjectFileFormat(obj_format_type);
if (!obj_file_format)
return false;
auto reflection_info_id = m_reflection_ctx->AddImage(
[&](swift::ReflectionSectionKind section_kind)
-> std::pair<swift::remote::RemoteRef<void>, uint64_t> {
auto section_name = obj_file_format->getSectionName(section_kind);
for (auto section : *obj_file.GetSectionList()) {
JITSection *jit_section = llvm::dyn_cast<JITSection>(section.get());
if (jit_section && section->GetName().AsCString() == section_name) {
DataExtractor extractor;
auto section_size = section->GetSectionData(extractor);
if (!section_size)
return {};
auto size = jit_section->getNonJitSize();
auto data = extractor.GetData();
if (section_size < size || !data.begin())
return {};
auto *Buf = malloc(size);
std::memcpy(Buf, data.begin(), size);
swift::remote::RemoteRef<void> remote_ref(section->GetFileAddress(),
Buf);
return {remote_ref, size};
}
}
return {};
},
likely_module_names);
// We don't care to cache modules generated by the jit, because they will
// only be used by the current process.
return reflection_info_id.has_value();
}
std::optional<uint32_t>
SwiftLanguageRuntimeImpl::AddObjectFileToReflectionContext(
ModuleSP module,
llvm::SmallVector<llvm::StringRef, 1> likely_module_names) {
auto obj_format_type =
module->GetArchitecture().GetTriple().getObjectFormat();
auto obj_file_format = GetObjectFileFormat(obj_format_type);
if (!obj_file_format)
return {};
bool should_register_with_symbol_obj_file = [&]() -> bool {
if (!m_process.GetTarget().GetSwiftReadMetadataFromDSYM())
return false;
auto *symbol_file = module->GetSymbolFile();
if (!symbol_file)
return false;
auto *sym_obj_file = symbol_file->GetObjectFile();
if (!sym_obj_file)
return false;
std::optional<llvm::StringRef> maybe_segment_name =
obj_file_format->getSymbolRichSegmentName();
if (!maybe_segment_name)
return false;
llvm::StringRef segment_name = *maybe_segment_name;
auto *section_list = sym_obj_file->GetSectionList();
auto segment_iter = llvm::find_if(*section_list, [&](auto segment) {
return segment->GetName() == segment_name.begin();
});
if (segment_iter == section_list->end())
return false;
auto *segment = segment_iter->get();
auto section_iter =
llvm::find_if(segment->GetChildren(), [&](auto section) {
return obj_file_format->sectionContainsReflectionData(
section->GetName().GetStringRef());
});
return section_iter != segment->GetChildren().end();
}();
std::optional<llvm::StringRef> maybe_segment_name;
std::optional<llvm::StringRef> maybe_secondary_segment_name;
ObjectFile *object_file;
if (should_register_with_symbol_obj_file) {
maybe_segment_name = obj_file_format->getSymbolRichSegmentName();
maybe_secondary_segment_name = obj_file_format->getSegmentName();
object_file = module->GetSymbolFile()->GetObjectFile();
} else {
maybe_segment_name = obj_file_format->getSegmentName();
object_file = module->GetObjectFile();
}
if (!maybe_segment_name)
return {};
llvm::StringRef segment_name = *maybe_segment_name;
auto lldb_memory_reader = GetMemoryReader();
auto maybe_start_and_end = lldb_memory_reader->addModuleToAddressMap(
module, should_register_with_symbol_obj_file);
if (!maybe_start_and_end)
return {};
uint64_t start_address, end_address;
std::tie(start_address, end_address) = *maybe_start_and_end;
auto *section_list = object_file->GetSectionList();
if (section_list->GetSize() == 0)
return false;
auto segment_iter = llvm::find_if(*section_list, [&](auto segment) {
return segment->GetName() == segment_name.begin();
});
if (segment_iter == section_list->end())
return {};
auto *segment = segment_iter->get();
Section *maybe_secondary_segment = nullptr;
if (maybe_secondary_segment_name) {
auto secondary_segment_name = *maybe_secondary_segment_name;
auto segment_iter = llvm::find_if(*section_list, [&](auto segment) {
return segment->GetName() == secondary_segment_name.begin();
});
if (segment_iter != section_list->end())
maybe_secondary_segment = segment_iter->get();
}
auto find_section_with_kind = [&](Section *segment,
swift::ReflectionSectionKind section_kind)
-> std::pair<swift::remote::RemoteRef<void>, uint64_t> {
if (!segment)
return {};
auto section_name = obj_file_format->getSectionName(section_kind);
for (auto section : segment->GetChildren()) {
// Iterate over the sections until we find the reflection section we
// need.
if (section->GetName().AsCString() == section_name) {
DataExtractor extractor;
auto size = section->GetSectionData(extractor);
auto data = extractor.GetData();
size = section->GetFileSize();
if (!data.begin())
return {};
// Alloc a buffer and copy over the reflection section's contents.
// This buffer will be owned by reflection context.
auto *Buf = malloc(size);
std::memcpy(Buf, data.begin(), size);
// The section's address is the start address for this image
// added with the section's virtual address subtracting the start of the
// module's address. We need to use the virtual address instead of the
// file offset because the offsets encoded in the reflection section are
// calculated in the virtual address space.
auto address = start_address + section->GetFileAddress() -
section_list->GetSectionAtIndex(0)->GetFileAddress();
assert(address <= end_address && "Address outside of range!");
swift::remote::RemoteRef<void> remote_ref(address, Buf);
return {remote_ref, size};
}
}
return {};
};
return m_reflection_ctx->AddImage(
[&](swift::ReflectionSectionKind section_kind)
-> std::pair<swift::remote::RemoteRef<void>, uint64_t> {
auto pair = find_section_with_kind(segment, section_kind);
if (pair.first)
return pair;
return find_section_with_kind(maybe_secondary_segment, section_kind);
},
likely_module_names);
}
bool SwiftLanguageRuntimeImpl::AddModuleToReflectionContext(
const lldb::ModuleSP &module_sp) {
// This function is called from within SetupReflection so it cannot
// call GetReflectionContext().
assert(m_initialized_reflection_ctx);
if (!m_reflection_ctx)
return false;
if (!module_sp)
return false;
auto *obj_file = module_sp->GetObjectFile();
if (!obj_file)
return false;
auto &target = m_process.GetTarget();
Address start_address = obj_file->GetBaseAddress();
auto load_ptr = static_cast<uintptr_t>(
start_address.GetLoadAddress(&target));
auto likely_module_names = GetLikelySwiftImageNamesForModule(module_sp);
if (obj_file->GetType() == ObjectFile::eTypeJIT) {
auto object_format_type =
module_sp->GetArchitecture().GetTriple().getObjectFormat();
return AddJitObjectFileToReflectionContext(*obj_file, object_format_type,
likely_module_names);
}
if (load_ptr == 0 || load_ptr == LLDB_INVALID_ADDRESS) {
if (obj_file->GetType() != ObjectFile::eTypeJIT)
LLDB_LOG(GetLog(LLDBLog::Types),
"{0}: failed to get start address for \"{1}\".", __FUNCTION__,
module_sp->GetObjectName()
? module_sp->GetObjectName()
: obj_file->GetFileSpec().GetFilename());
return false;
}
bool found = HasReflectionInfo(obj_file);
LLDB_LOG(GetLog(LLDBLog::Types), "{0} reflection metadata in \"{1}\"",
found ? "Adding" : "No",
module_sp->GetObjectName() ? module_sp->GetObjectName()
: obj_file->GetFileSpec().GetFilename());
if (!found)
return true;
auto read_from_file_cache =
GetMemoryReader()->readMetadataFromFileCacheEnabled();
std::optional<uint32_t> info_id;
// When dealing with ELF, we need to pass in the contents of the on-disk
// file, since the Section Header Table is not present in the child process
if (obj_file->GetPluginName().equals("elf")) {
DataExtractor extractor;
auto size = obj_file->GetData(0, obj_file->GetByteSize(), extractor);
const uint8_t *file_data = extractor.GetDataStart();
llvm::sys::MemoryBlock file_buffer((void *)file_data, size);
info_id = m_reflection_ctx->ReadELF(
swift::remote::RemoteAddress(load_ptr),
std::optional<llvm::sys::MemoryBlock>(file_buffer),
likely_module_names);
} else if (read_from_file_cache &&
obj_file->GetPluginName().equals("mach-o")) {
info_id = AddObjectFileToReflectionContext(module_sp, likely_module_names);
if (!info_id)
info_id = m_reflection_ctx->AddImage(swift::remote::RemoteAddress(load_ptr),
likely_module_names);
} else {
info_id = m_reflection_ctx->AddImage(swift::remote::RemoteAddress(load_ptr),
likely_module_names);
}
if (!info_id) {
LLDB_LOG(GetLog(LLDBLog::Types),
"Error while loading reflection metadata in \"{0}\"",
module_sp->GetObjectName());
return false;
}
if (auto *swift_metadata_cache = GetSwiftMetadataCache())
swift_metadata_cache->registerModuleWithReflectionInfoID(module_sp,
*info_id);
return true;
}
void SwiftLanguageRuntimeImpl::ModulesDidLoad(const ModuleList &module_list) {
// The modules will be lazily processed on the next call to
// GetReflectionContext.
m_modules_to_add.AppendIfNeeded(module_list);
}
std::string
SwiftLanguageRuntimeImpl::GetObjectDescriptionExpr_Result(ValueObject &object) {
Log *log(GetLog(LLDBLog::DataFormatters | LLDBLog::Expressions));
std::string expr_string
= llvm::formatv("Swift._DebuggerSupport.stringForPrintObject({0})",
object.GetName().GetCString()).str();
if (log)
log->Printf("[GetObjectDescriptionExpr_Result] expression: %s",
expr_string.c_str());
return expr_string;
}
std::string
SwiftLanguageRuntimeImpl::GetObjectDescriptionExpr_Ref(ValueObject &object) {
Log *log(GetLog(LLDBLog::DataFormatters | LLDBLog::Expressions));
StreamString expr_string;
std::string expr_str
= llvm::formatv("Swift._DebuggerSupport.stringForPrintObject(Swift."
"unsafeBitCast({0:x}, to: AnyObject.self))",
object.GetValueAsUnsigned(0)).str();
if (log)
log->Printf("[GetObjectDescriptionExpr_Result] expression: %s",
expr_string.GetData());
return expr_str;
}
static const ExecutionContextRef *GetSwiftExeCtx(ValueObject &valobj) {
return (valobj.GetPreferredDisplayLanguage() == eLanguageTypeSwift)
? &valobj.GetExecutionContextRef()
: nullptr;
}
std::string
SwiftLanguageRuntimeImpl::GetObjectDescriptionExpr_Copy(ValueObject &object,
lldb::addr_t ©_location)
{
Log *log(GetLog(LLDBLog::DataFormatters | LLDBLog::Expressions));
ValueObjectSP static_sp(object.GetStaticValue());
CompilerType static_type(static_sp->GetCompilerType());
if (auto non_reference_type = static_type.GetNonReferenceType())
static_type = non_reference_type;
// If we are in a generic context, here the static type of the object
// might end up being generic (i.e. <T>). We want to make sure that
// we correctly map the type into context before asking questions or
// printing, as IRGen requires a fully realized type to work on.
StackFrameSP frame_sp = object.GetFrameSP();
if (!frame_sp)
frame_sp
= m_process.GetThreadList().GetSelectedThread()
->GetSelectedFrame(DoNoSelectMostRelevantFrame);
auto swift_ast_ctx =
static_type.GetTypeSystem().dyn_cast_or_null<TypeSystemSwift>();
if (swift_ast_ctx) {
SwiftScratchContextLock lock(GetSwiftExeCtx(object));
static_type = BindGenericTypeParameters(*frame_sp, static_type);
}
auto stride = 0;
auto opt_stride = static_type.GetByteStride(frame_sp.get());
if (opt_stride)
stride = *opt_stride;
Status error;
copy_location = m_process.AllocateMemory(
stride, ePermissionsReadable | ePermissionsWritable, error);
if (copy_location == LLDB_INVALID_ADDRESS) {
if (log)
log->Printf("[GetObjectDescriptionExpr_Copy] copy_location invalid");
return {};
}
DataExtractor data_extractor;
if (0 == static_sp->GetData(data_extractor, error)) {
if (log)
log->Printf("[GetObjectDescriptionExpr_Copy] data extraction failed");
return {};
}
if (0 == m_process.WriteMemory(copy_location, data_extractor.GetDataStart(),
data_extractor.GetByteSize(), error)) {
if (log)
log->Printf("[GetObjectDescriptionExpr_Copy] memory copy failed");
return {};
}
std::string expr_string
= llvm::formatv("Swift._DebuggerSupport.stringForPrintObject(Swift."
"UnsafePointer<{0}>(bitPattern: {1:x})!.pointee)",
static_type.GetTypeName().GetCString(), copy_location).str();
if (log)
log->Printf("[GetObjectDescriptionExpr_Copy] expression: %s",
expr_string.c_str());
return expr_string;
}
llvm::Error SwiftLanguageRuntimeImpl::RunObjectDescriptionExpr(
ValueObject &object, std::string &expr_string, Stream &result) {
Log *log(GetLog(LLDBLog::DataFormatters | LLDBLog::Expressions));
ValueObjectSP result_sp;
EvaluateExpressionOptions eval_options;
eval_options.SetLanguage(lldb::eLanguageTypeSwift);
eval_options.SetSuppressPersistentResult(true);
eval_options.SetGenerateDebugInfo(true);
eval_options.SetTimeout(m_process.GetUtilityExpressionTimeout());
StackFrameSP frame_sp = object.GetFrameSP();
if (!frame_sp)
frame_sp
= m_process.GetThreadList().GetSelectedThread()
->GetSelectedFrame(DoNoSelectMostRelevantFrame);
if (!frame_sp)
return llvm::createStringError("no execution context to run expression in");
auto eval_result = m_process.GetTarget().EvaluateExpression(
expr_string,
frame_sp.get(),
result_sp, eval_options);
if (log) {
const char *eval_result_str
= m_process.ExecutionResultAsCString(eval_result);
log->Printf("[RunObjectDescriptionExpr] %s", eval_result_str);
}
// Sanity check the result of the expression before moving forward
if (!result_sp) {
if (log)
log->Printf(
"[RunObjectDescriptionExpr] expression generated no result");
return llvm::createStringError("expression produced no result");
}
if (result_sp->GetError().Fail()) {
if (log)
log->Printf(
"[RunObjectDescriptionExpr] expression generated error: %s",
result_sp->GetError().AsCString());
return result_sp->GetError().ToError();
}
if (!result_sp->GetCompilerType().IsValid()) {
if (log)
log->Printf("[RunObjectDescriptionExpr] expression generated "
"invalid type");
return llvm::createStringError("expression produced invalid result type");
}
formatters::StringPrinter::ReadStringAndDumpToStreamOptions dump_options;
dump_options.SetEscapeNonPrintables(false);
dump_options.SetQuote('\0');
dump_options.SetPrefixToken(nullptr);
if (formatters::swift::String_SummaryProvider(
*result_sp.get(), result,
TypeSummaryOptions()
.SetLanguage(lldb::eLanguageTypeSwift)
.SetCapping(eTypeSummaryUncapped),
dump_options)) {
if (log)
log->Printf("[RunObjectDescriptionExpr] expression completed "
"successfully");
return llvm::Error::success();
}
if (log)
log->Printf("[RunObjectDescriptionExpr] expression generated "
"invalid string data");
return llvm::createStringError("expression produced unprintable string");
}
static bool IsVariable(ValueObject &object) {
if (object.IsSynthetic())
return IsVariable(*object.GetNonSyntheticValue());
return bool(object.GetVariable());
}
static bool IsSwiftResultVariable(ConstString name) {
if (name) {
llvm::StringRef name_sr(name.GetStringRef());
if (name_sr.size() > 2 &&
(name_sr.startswith("$R") || name_sr.startswith("$E")) &&
::isdigit(name_sr[2]))
return true;
}
return false;
}
static bool IsSwiftReferenceType(ValueObject &object) {
CompilerType object_type(object.GetCompilerType());
if (object_type.GetTypeSystem().isa_and_nonnull<TypeSystemSwift>()) {
Flags type_flags(object_type.GetTypeInfo());
if (type_flags.AllSet(eTypeIsClass | eTypeHasValue |
eTypeInstanceIsPointer))
return true;
}
return false;
}
llvm::Error
SwiftLanguageRuntimeImpl::GetObjectDescription(Stream &str,
ValueObject &object) {
if (object.IsUninitializedReference())
return llvm::createStringError("<uninitialized>");
std::string expr_string;
if (::IsVariable(object) || ::IsSwiftResultVariable(object.GetName())) {
// if the object is a Swift variable, it has two properties:
// a) its name is something we can refer to in expressions for free
// b) its type may be something we can't actually talk about in expressions
// so, just use the result variable's name in the expression and be done
// with it
expr_string = GetObjectDescriptionExpr_Result(object);
} else if (::IsSwiftReferenceType(object)) {
// if this is a Swift class, it has two properties:
// a) we do not need its type name, AnyObject is just as good
// b) its value is something we can directly use to refer to it
// so, just use the ValueObject's pointer-value and be done with it
expr_string = GetObjectDescriptionExpr_Ref(object);
}
if (!expr_string.empty()) {
StreamString probe_stream;
auto error = RunObjectDescriptionExpr(object, expr_string, probe_stream);
if (error)
return error;
str.Printf("%s", probe_stream.GetData());
return llvm::Error::success();
}
// In general, don't try to use the name of the ValueObject as it might end up
// referring to the wrong thing. Instead, copy the object data into the
// target and call object description on the copy.
lldb::addr_t copy_location = LLDB_INVALID_ADDRESS;
expr_string = GetObjectDescriptionExpr_Copy(object, copy_location);
if (copy_location == LLDB_INVALID_ADDRESS) {
return llvm::createStringError(
"Failed to allocate memory for copy object.");
}
auto cleanup = llvm::make_scope_exit(
[&]() { m_process.DeallocateMemory(copy_location); });
if (expr_string.empty())
return llvm::createStringError("no object description");
return RunObjectDescriptionExpr(object, expr_string, str);
}
StructuredDataImpl *
SwiftLanguageRuntime::GetLanguageSpecificData(StackFrame &frame) {
auto sc = frame.GetSymbolContext(eSymbolContextFunction);
if (!sc.function)
return nullptr;
auto dict_sp = std::make_shared<StructuredData::Dictionary>();
auto symbol = sc.function->GetMangled().GetMangledName().GetStringRef();
auto is_async = SwiftLanguageRuntime::IsAnySwiftAsyncFunctionSymbol(symbol);
dict_sp->AddBooleanItem("IsSwiftAsyncFunction", is_async);
auto *data = new StructuredDataImpl;
data->SetObjectSP(dict_sp);
return data;
}
void SwiftLanguageRuntime::FindFunctionPointersInCall(
StackFrame &frame, std::vector<Address> &addresses, bool debug_only,
bool resolve_thunks) {
// Extract the mangled name from the stack frame, and realize the
// function type in the Target's SwiftASTContext. Then walk the
// arguments looking for function pointers. If we find one in the
// FIRST argument, we can fetch the pointer value and return that.
// FIXME: when we can ask swift/llvm for the location of function
// arguments, then we can do this for all the function pointer
// arguments we find.
SymbolContext sc = frame.GetSymbolContext(eSymbolContextSymbol);
if (sc.symbol) {
Mangled mangled_name = sc.symbol->GetMangled();
if (mangled_name.GuessLanguage() == lldb::eLanguageTypeSwift) {
Status error;
Target &target = frame.GetThread()->GetProcess()->GetTarget();
ExecutionContext exe_ctx(frame);
std::optional<SwiftScratchContextReader> maybe_swift_ast =
target.GetSwiftScratchContext(error, frame);
auto scratch_ctx = maybe_swift_ast->get();
if (scratch_ctx) {
if (SwiftASTContext *swift_ast = scratch_ctx->GetSwiftASTContext(&sc)) {
CompilerType function_type = swift_ast->GetTypeFromMangledTypename(
mangled_name.GetMangledName());
if (error.Success()) {
if (function_type.IsFunctionType()) {
// FIXME: For now we only check the first argument since
// we don't know how to find the values of arguments
// further in the argument list.
//
// int num_arguments = function_type.GetFunctionArgumentCount();
// for (int i = 0; i < num_arguments; i++)
for (int i = 0; i < 1; i++) {
CompilerType argument_type =
function_type.GetFunctionArgumentTypeAtIndex(i);
if (argument_type.IsFunctionPointerType()) {
// We found a function pointer argument. Try to track
// down its value. This is a hack for now, we really
// should ask swift/llvm how to find the argument(s)
// given the Swift decl for this function, and then
// look those up in the frame.
ABISP abi_sp(frame.GetThread()->GetProcess()->GetABI());
ValueList argument_values;
Value input_value;
auto clang_ctx = ScratchTypeSystemClang::GetForTarget(target);
if (!clang_ctx)
continue;
CompilerType clang_void_ptr_type =
clang_ctx->GetBasicType(eBasicTypeVoid).GetPointerType();
input_value.SetValueType(Value::ValueType::Scalar);
input_value.SetCompilerType(clang_void_ptr_type);
argument_values.PushValue(input_value);
bool success = abi_sp->GetArgumentValues(
*(frame.GetThread().get()), argument_values);
if (success) {
// Now get a pointer value from the zeroth argument.
Status error;
DataExtractor data;
ExecutionContext exe_ctx;
frame.CalculateExecutionContext(exe_ctx);
error = argument_values.GetValueAtIndex(0)->GetValueAsData(
&exe_ctx, data, NULL);
lldb::offset_t offset = 0;
lldb::addr_t fn_ptr_addr = data.GetAddress(&offset);
Address fn_ptr_address;
fn_ptr_address.SetLoadAddress(fn_ptr_addr, &target);
// Now check to see if this has debug info:
bool add_it = true;
if (resolve_thunks) {
SymbolContext sc;
fn_ptr_address.CalculateSymbolContext(
&sc, eSymbolContextEverything);
if (sc.comp_unit && sc.symbol) {
ConstString symbol_name =
sc.symbol->GetMangled().GetMangledName();
if (symbol_name) {
SymbolContext target_context;
if (GetTargetOfPartialApply(sc, symbol_name,
target_context)) {
if (target_context.symbol)
fn_ptr_address =
target_context.symbol->GetAddress();
else if (target_context.function)
fn_ptr_address =
target_context.function->GetAddressRange()
.GetBaseAddress();
}
}
}
}
if (debug_only) {
LineEntry line_entry;
fn_ptr_address.CalculateSymbolContextLineEntry(line_entry);
if (!line_entry.IsValid())
add_it = false;
}
if (add_it)
addresses.push_back(fn_ptr_address);
}
}
}
}
}
}
}
}
}
}
//------------------------------------------------------------------
// Exception breakpoint Precondition class for Swift:
//------------------------------------------------------------------
void SwiftLanguageRuntimeImpl::SwiftExceptionPrecondition::AddTypeName(
const char *class_name) {
m_type_names.insert(class_name);
}
void SwiftLanguageRuntimeImpl::SwiftExceptionPrecondition::AddEnumSpec(
const char *enum_name, const char *element_name) {
std::unordered_map<std::string, std::vector<std::string>>::value_type
new_value(enum_name, std::vector<std::string>());
auto result = m_enum_spec.emplace(new_value);
result.first->second.push_back(element_name);
}
SwiftLanguageRuntimeImpl::SwiftExceptionPrecondition::
SwiftExceptionPrecondition() {}
ValueObjectSP SwiftLanguageRuntime::CalculateErrorValueObjectFromValue(
Value &value, ConstString name, bool persistent) {
if (!m_process)
return {};
ValueObjectSP error_valobj_sp;
auto type_system_or_err =
m_process->GetTarget().GetScratchTypeSystemForLanguage(
eLanguageTypeSwift);
if (!type_system_or_err)
return error_valobj_sp;
auto *ast_context =
llvm::dyn_cast_or_null<TypeSystemSwift>(type_system_or_err->get());
if (!ast_context)
return error_valobj_sp;
CompilerType swift_error_proto_type = ast_context->GetErrorType();
value.SetCompilerType(swift_error_proto_type);
error_valobj_sp = ValueObjectConstResult::Create(m_process, value, name);
if (error_valobj_sp && error_valobj_sp->GetError().Success()) {
error_valobj_sp = error_valobj_sp->GetQualifiedRepresentationIfAvailable(
lldb::eDynamicCanRunTarget, true);
if (!IsValidErrorValue(*(error_valobj_sp.get()))) {
error_valobj_sp.reset();
}
}
if (persistent && error_valobj_sp) {
ExecutionContext ctx =
error_valobj_sp->GetExecutionContextRef().Lock(false);
auto *exe_scope = ctx.GetBestExecutionContextScope();
if (!exe_scope)
return error_valobj_sp;
Target &target = m_process->GetTarget();
auto *persistent_state =
target.GetSwiftPersistentExpressionState(*exe_scope);
ConstString persistent_variable_name(
persistent_state->GetNextPersistentVariableName(/*is_error*/ true));
lldb::ValueObjectSP const_valobj_sp;
// Check in case our value is already a constant value
if (error_valobj_sp->GetIsConstant()) {
const_valobj_sp = error_valobj_sp;
const_valobj_sp->SetName(persistent_variable_name);
} else
const_valobj_sp =
error_valobj_sp->CreateConstantValue(persistent_variable_name);
lldb::ValueObjectSP live_valobj_sp = error_valobj_sp;
error_valobj_sp = const_valobj_sp;
ExpressionVariableSP clang_expr_variable_sp(
persistent_state->CreatePersistentVariable(error_valobj_sp));
clang_expr_variable_sp->m_live_sp = live_valobj_sp;
clang_expr_variable_sp->m_flags |=
ClangExpressionVariable::EVIsProgramReference;
error_valobj_sp = clang_expr_variable_sp->GetValueObject();
}
return error_valobj_sp;
}
ValueObjectSP
SwiftLanguageRuntime::CalculateErrorValue(StackFrameSP frame_sp,
ConstString variable_name) {
ProcessSP process_sp(frame_sp->GetThread()->GetProcess());
Status error;
Target *target = frame_sp->CalculateTarget().get();
ValueObjectSP error_valobj_sp;
auto *runtime = Get(process_sp);
if (!runtime)
return error_valobj_sp;
std::optional<Value> arg0 =
runtime->GetErrorReturnLocationAfterReturn(frame_sp);
if (!arg0)
return error_valobj_sp;
ExecutionContext exe_ctx;
frame_sp->CalculateExecutionContext(exe_ctx);
auto *exe_scope = exe_ctx.GetBestExecutionContextScope();
if (!exe_scope)
return error_valobj_sp;
std::optional<SwiftScratchContextReader> maybe_scratch_context =
target->GetSwiftScratchContext(error, *frame_sp);
if (!maybe_scratch_context || error.Fail())
return error_valobj_sp;
auto scratch_ctx = maybe_scratch_context->get();
if (!scratch_ctx)
return error_valobj_sp;
auto buffer_up =
std::make_unique<DataBufferHeap>(arg0->GetScalar().GetByteSize(), 0);
arg0->GetScalar().GetBytes(buffer_up->GetData());
lldb::DataBufferSP buffer(std::move(buffer_up));
CompilerType swift_error_proto_type = scratch_ctx->GetErrorType();
if (!swift_error_proto_type.IsValid())
return error_valobj_sp;
error_valobj_sp = ValueObjectConstResult::Create(
exe_scope, swift_error_proto_type, variable_name, buffer,
endian::InlHostByteOrder(), exe_ctx.GetAddressByteSize());
if (error_valobj_sp->GetError().Fail())
return error_valobj_sp;
error_valobj_sp = error_valobj_sp->GetQualifiedRepresentationIfAvailable(
lldb::eDynamicCanRunTarget, true);
return error_valobj_sp;
}
void SwiftLanguageRuntime::RegisterGlobalError(Target &target, ConstString name,
lldb::addr_t addr) {
auto type_system_or_err =
target.GetScratchTypeSystemForLanguage(eLanguageTypeSwift);
if (!type_system_or_err) {
llvm::consumeError(type_system_or_err.takeError());
return;
}
auto *swift_ast_ctx = llvm::dyn_cast_or_null<SwiftASTContextForExpressions>(
type_system_or_err->get());
if (swift_ast_ctx && !swift_ast_ctx->HasFatalErrors()) {
std::string module_name = "$__lldb_module_for_";
module_name.append(&name.GetCString()[1]);
SourceModule module_info;
module_info.path.push_back(ConstString(module_name));
Status module_creation_error;
swift::ModuleDecl *module_decl =
swift_ast_ctx->CreateModule(module_info, module_creation_error,
/*importInfo*/ {});
if (module_creation_error.Success() && module_decl) {
const bool is_static = false;
const auto introducer = swift::VarDecl::Introducer::Let;
swift::VarDecl *var_decl = new (*swift_ast_ctx->GetASTContext())
swift::VarDecl(is_static, introducer, swift::SourceLoc(),
swift_ast_ctx->GetIdentifier(name.GetCString()),
module_decl);
var_decl->setInterfaceType(
llvm::expectedToStdOptional(
swift_ast_ctx->GetSwiftType(swift_ast_ctx->GetErrorType()))
.value_or(swift::Type()));
var_decl->setDebuggerVar(true);
SwiftPersistentExpressionState *persistent_state =
llvm::cast<SwiftPersistentExpressionState>(
target.GetPersistentExpressionStateForLanguage(
lldb::eLanguageTypeSwift));
if (!persistent_state)
return;
persistent_state->RegisterSwiftPersistentDecl({swift_ast_ctx, var_decl});
ConstString mangled_name;
{
swift::Mangle::ASTMangler mangler(true);
mangled_name = ConstString(mangler.mangleGlobalVariableFull(var_decl));
}
lldb::addr_t symbol_addr;
{
ProcessSP process_sp(target.GetProcessSP());
Status alloc_error;
symbol_addr = process_sp->AllocateMemory(
process_sp->GetAddressByteSize(),
lldb::ePermissionsWritable | lldb::ePermissionsReadable,
alloc_error);
if (alloc_error.Success() && symbol_addr != LLDB_INVALID_ADDRESS) {
Status write_error;
process_sp->WritePointerToMemory(symbol_addr, addr, write_error);
if (write_error.Success()) {
persistent_state->RegisterSymbol(mangled_name, symbol_addr);
}
}
}
}
}
}
lldb::BreakpointPreconditionSP
SwiftLanguageRuntimeImpl::GetBreakpointExceptionPrecondition(
LanguageType language, bool throw_bp) {
if (language != eLanguageTypeSwift)
return lldb::BreakpointPreconditionSP();
if (!throw_bp)
return lldb::BreakpointPreconditionSP();
BreakpointPreconditionSP precondition_sp(
new SwiftLanguageRuntimeImpl::SwiftExceptionPrecondition());
return precondition_sp;
}
bool SwiftLanguageRuntimeImpl::SwiftExceptionPrecondition::EvaluatePrecondition(
StoppointCallbackContext &context) {
if (!m_type_names.empty()) {
StackFrameSP frame_sp = context.exe_ctx_ref.GetFrameSP();
if (!frame_sp)
return true;
ValueObjectSP error_valobj_sp = SwiftLanguageRuntime::CalculateErrorValue(
frame_sp, ConstString("__swift_error_var"));
if (!error_valobj_sp || error_valobj_sp->GetError().Fail())
return true;
// This shouldn't fail, since at worst it will return me the object I just
// successfully got.
std::string full_error_name(
error_valobj_sp->GetCompilerType().GetTypeName().AsCString());
size_t last_dot_pos = full_error_name.rfind('.');
std::string type_name_base;
if (last_dot_pos == std::string::npos)
type_name_base = full_error_name;
else {
if (last_dot_pos + 1 <= full_error_name.size())
type_name_base =
full_error_name.substr(last_dot_pos + 1, full_error_name.size());
}
// The type name will be the module and then the type. If the match name
// has a dot, we require a complete
// match against the type, if the type name has no dot, we match it against
// the base.
for (std::string name : m_type_names) {
if (name.rfind('.') != std::string::npos) {
if (name == full_error_name)
return true;
} else {
if (name == type_name_base)
return true;
}
}
return false;
}
return true;
}
void SwiftLanguageRuntimeImpl::SwiftExceptionPrecondition::GetDescription(
Stream &stream, lldb::DescriptionLevel level) {
if (level == eDescriptionLevelFull || level == eDescriptionLevelVerbose) {
if (m_type_names.size() > 0) {
stream.Printf("\nType Filters:");
for (std::string name : m_type_names) {
stream.Printf(" %s", name.c_str());
}
stream.Printf("\n");
}
}
}
Status
SwiftLanguageRuntimeImpl::SwiftExceptionPrecondition::ConfigurePrecondition(
Args &args) {
Status error;
std::vector<std::string> object_typenames;
OptionParsing::GetOptionValuesAsStrings(args, "exception-typename",
object_typenames);
for (auto type_name : object_typenames)
AddTypeName(type_name.c_str());
return error;
}
void SwiftLanguageRuntimeImpl::AddToLibraryNegativeCache(
StringRef library_name) {
std::lock_guard<std::mutex> locker(m_negative_cache_mutex);
m_library_negative_cache.insert(library_name);
}
bool SwiftLanguageRuntimeImpl::IsInLibraryNegativeCache(
StringRef library_name) {
std::lock_guard<std::mutex> locker(m_negative_cache_mutex);
return m_library_negative_cache.count(library_name) == 1;
}
class ProjectionSyntheticChildren : public SyntheticChildren {
public:
struct FieldProjection {
ConstString name;
CompilerType type;
int32_t byte_offset;
FieldProjection(CompilerType parent_type, ExecutionContext *exe_ctx,
size_t idx, ValueObject *valobj) {
const bool transparent_pointers = false;
const bool omit_empty_base_classes = true;
const bool ignore_array_bounds = false;
bool child_is_base_class = false;
bool child_is_deref_of_parent = false;
std::string child_name;
uint32_t child_byte_size;
uint32_t child_bitfield_bit_size;
uint32_t child_bitfield_bit_offset;
uint64_t language_flags;
auto type_or_err = parent_type.GetChildCompilerTypeAtIndex(
exe_ctx, idx, transparent_pointers, omit_empty_base_classes,
ignore_array_bounds, child_name, child_byte_size, byte_offset,
child_bitfield_bit_size, child_bitfield_bit_offset,
child_is_base_class, child_is_deref_of_parent, valobj,
language_flags);
if (!type_or_err)
LLDB_LOG_ERROR(GetLog(LLDBLog::Types), type_or_err.takeError(),
"could not find child #{1}: {0}", idx);
else
type = *type_or_err;
if (child_is_base_class)
type.Clear(); // invalidate - base classes are dealt with outside of the
// projection
else
name.SetCStringWithLength(child_name.c_str(), child_name.size());
}
bool IsValid() { return !name.IsEmpty() && type.IsValid(); }
explicit operator bool() { return IsValid(); }
};
struct TypeProjection {
std::vector<FieldProjection> field_projections;
ConstString type_name;
};
typedef std::unique_ptr<TypeProjection> TypeProjectionUP;
bool IsScripted() override { return false; }
std::string GetDescription() override {
return "projection synthetic children";
}
ProjectionSyntheticChildren(const Flags &flags, TypeProjectionUP &&projection)
: SyntheticChildren(flags), m_projection(std::move(projection)) {}
protected:
TypeProjectionUP m_projection;
class ProjectionFrontEndProvider : public SyntheticChildrenFrontEnd {
public:
ProjectionFrontEndProvider(ValueObject &backend,
TypeProjectionUP &projection)
: SyntheticChildrenFrontEnd(backend), m_num_bases(0),
m_projection(projection.get()) {
lldbassert(m_projection && "need a valid projection");
CompilerType type(backend.GetCompilerType());
m_num_bases = type.GetNumDirectBaseClasses();
}
llvm::Expected<uint32_t> CalculateNumChildren() override {
return m_projection->field_projections.size() + m_num_bases;
}
lldb::ValueObjectSP GetChildAtIndex(uint32_t idx) override {
if (idx < m_num_bases) {
if (ValueObjectSP base_object_sp =
m_backend.GetChildAtIndex(idx, true)) {
CompilerType base_type(base_object_sp->GetCompilerType());
ConstString base_type_name(base_type.GetTypeName());
if (base_type_name.IsEmpty() ||
!SwiftLanguageRuntime::IsSwiftClassName(
base_type_name.GetCString()))
return base_object_sp;
base_object_sp = m_backend.GetSyntheticBase(
0, base_type, true,
Mangled(base_type_name)
.GetDemangledName());
return base_object_sp;
} else
return nullptr;
}
idx -= m_num_bases;
if (idx < m_projection->field_projections.size()) {
auto &projection(m_projection->field_projections.at(idx));
return m_backend.GetSyntheticChildAtOffset(
projection.byte_offset, projection.type, true, projection.name);
}
return nullptr;
}
size_t GetIndexOfChildWithName(ConstString name) override {
for (size_t idx = 0; idx < m_projection->field_projections.size();
idx++) {
if (m_projection->field_projections.at(idx).name == name)
return idx;
}
return UINT32_MAX;
}
lldb::ChildCacheState Update() override {
return ChildCacheState::eRefetch;
}
bool MightHaveChildren() override { return true; }
ConstString GetSyntheticTypeName() override {
return m_projection->type_name;
}
private:
size_t m_num_bases;
TypeProjectionUP::element_type *m_projection;
};
public:
SyntheticChildrenFrontEnd::AutoPointer
GetFrontEnd(ValueObject &backend) override {
return SyntheticChildrenFrontEnd::AutoPointer(
new ProjectionFrontEndProvider(backend, m_projection));
}
};
lldb::SyntheticChildrenSP
SwiftLanguageRuntimeImpl::GetBridgedSyntheticChildProvider(
ValueObject &valobj) {
ConstString type_name = valobj.GetCompilerType().GetTypeName();
if (!type_name.IsEmpty()) {
auto iter = m_bridged_synthetics_map.find(type_name.AsCString()),
end = m_bridged_synthetics_map.end();
if (iter != end)
return iter->second;
}
ProjectionSyntheticChildren::TypeProjectionUP type_projection(
new ProjectionSyntheticChildren::TypeProjectionUP::element_type());
if (auto maybe_swift_ast_ctx = valobj.GetSwiftScratchContext()) {
CompilerType swift_type =
maybe_swift_ast_ctx->get()->GetTypeFromMangledTypename(type_name);
if (swift_type.IsValid()) {
ExecutionContext exe_ctx(m_process);
bool any_projected = false;
for (size_t idx = 0, e = llvm::expectedToStdOptional(
swift_type.GetNumChildren(true, &exe_ctx))
.value_or(0);
idx < e; idx++) {
// if a projection fails, keep going - we have offsets here, so it
// should be OK to skip some members
if (auto projection = ProjectionSyntheticChildren::FieldProjection(
swift_type, &exe_ctx, idx, &valobj)) {
any_projected = true;
type_projection->field_projections.push_back(projection);
}
}
if (any_projected) {
type_projection->type_name = swift_type.GetDisplayTypeName();
SyntheticChildrenSP synth_sp =
SyntheticChildrenSP(new ProjectionSyntheticChildren(
SyntheticChildren::Flags(), std::move(type_projection)));
m_bridged_synthetics_map.insert({type_name.AsCString(), synth_sp});
return synth_sp;
}
}
}
return nullptr;
}
std::optional<std::pair<lldb::ValueObjectSP, bool>>
SwiftLanguageRuntime::ExtractSwiftValueObjectFromCxxWrapper(
ValueObject &valobj) {
ValueObjectSP swift_valobj;
// There are three flavors of C++ wrapper classes:
// - Reference types wrappers, which have no ivars, and have one super class
// which contains an opaque pointer to the Swift instance.
// - Value type wrappers which has one ivar, an opaque pointer to the Swift
// instance.
// - Value type wrappers, which has one ivar, a single char array with the
// swift value embedded directly in it.
// In all cases the value object should have exactly one child.
if (valobj.GetNumChildrenIgnoringErrors() != 1)
return {};
auto child_valobj = valobj.GetChildAtIndex(0, true);
auto child_type = child_valobj->GetCompilerType();
auto child_name = child_type.GetMangledTypeName();
// If this is a reference wrapper, the first child is actually the super
// class.
if (child_name == "swift::_impl::RefCountedClass") {
// The super class should have exactly one ivar, the opaque pointer that
// points to the Swift instance.
if (child_valobj->GetNumChildrenIgnoringErrors() != 1)
return {};
auto opaque_ptr_valobj = child_valobj->GetChildAtIndex(0, true);
// This is a Swift class type, which is a reference, so no need to wrap the
// corresponding Swift type behind a pointer.
return {{opaque_ptr_valobj, false}};
}
if (child_name == "swift::_impl::OpaqueStorage") {
if (child_valobj->GetNumChildrenIgnoringErrors() != 1)
return {};
auto opaque_ptr_valobj = child_valobj->GetChildAtIndex(0, true);
// This is a Swift value stored behind a pointer.
return {{opaque_ptr_valobj, true}};
}
CompilerType element_type;
if (child_type.IsArrayType(&element_type))
if (element_type.IsCharType())
// This is an Swift value type inlined directly into the C++ type as a
// char[n].
return {{valobj.GetSP(), false}};
return {};
}
void SwiftLanguageRuntimeImpl::WillStartExecutingUserExpression(
bool runs_in_playground_or_repl) {
if (runs_in_playground_or_repl)
return;
std::lock_guard<std::mutex> lock(m_active_user_expr_mutex);
Log *log(GetLog(LLDBLog::Expressions));
LLDB_LOG(log,
"SwiftLanguageRuntime: starting user expression. "
"Number active: %u",
m_active_user_expr_count + 1);
if (m_active_user_expr_count++ > 0)
return;
auto dynamic_exlusivity_flag_addr = GetDynamicExclusivityFlagAddr();
if (!dynamic_exlusivity_flag_addr) {
LLDB_LOG(log, "Failed to get address of disableExclusivityChecking flag");
return;
}
// We're executing the first user expression. Toggle the flag.
auto type_system_or_err =
m_process.GetTarget().GetScratchTypeSystemForLanguage(
eLanguageTypeC_plus_plus);
if (!type_system_or_err) {
LLDB_LOG_ERROR(
log, type_system_or_err.takeError(),
"SwiftLanguageRuntime: Unable to get pointer to type system");
return;
}
auto ts = *type_system_or_err;
if (!ts) {
LLDB_LOG(log, "type system no longer live");
return;
}
ConstString BoolName("bool");
std::optional<uint64_t> bool_size =
ts->GetBuiltinTypeByName(BoolName).GetByteSize(nullptr);
if (!bool_size)
return;
Status error;
Scalar original_value;
m_process.ReadScalarIntegerFromMemory(
*dynamic_exlusivity_flag_addr, *bool_size, false, original_value, error);
m_original_dynamic_exclusivity_flag_state = original_value.UInt() != 0;
if (error.Fail()) {
LLDB_LOG(log,
"SwiftLanguageRuntime: Unable to read disableExclusivityChecking "
"flag state: %s",
error.AsCString());
return;
}
Scalar new_value(1U);
m_process.WriteScalarToMemory(*m_dynamic_exclusivity_flag_addr, new_value,
*bool_size, error);
if (error.Fail()) {
LLDB_LOG(log,
"SwiftLanguageRuntime: Unable to set disableExclusivityChecking "
"flag state: %s",
error.AsCString());
return;
}
LLDB_LOG(log,
"SwiftLanguageRuntime: Changed disableExclusivityChecking flag "
"state from %u to 1",
m_original_dynamic_exclusivity_flag_state);
}
void SwiftLanguageRuntimeImpl::DidFinishExecutingUserExpression(
bool runs_in_playground_or_repl) {
if (runs_in_playground_or_repl)
return;
std::lock_guard<std::mutex> lock(m_active_user_expr_mutex);
Log *log(GetLog(LLDBLog::Expressions));
--m_active_user_expr_count;
LLDB_LOG(log,
"SwiftLanguageRuntime: finished user expression. "
"Number active: %u",
m_active_user_expr_count);
if (m_active_user_expr_count > 0)
return;
auto dynamic_exlusivity_flag_addr = GetDynamicExclusivityFlagAddr();
if (!dynamic_exlusivity_flag_addr) {
LLDB_LOG(log, "Failed to get address of disableExclusivityChecking flag");
return;
}
auto type_system_or_err =
m_process.GetTarget().GetScratchTypeSystemForLanguage(
eLanguageTypeC_plus_plus);
if (!type_system_or_err) {
LLDB_LOG_ERROR(
log, type_system_or_err.takeError(),
"SwiftLanguageRuntime: Unable to get pointer to type system");
return;
}
auto ts = *type_system_or_err;
if (!ts) {
LLDB_LOG(log, "type system no longer live");
return;
}
ConstString BoolName("bool");
std::optional<uint64_t> bool_size =
ts->GetBuiltinTypeByName(BoolName).GetByteSize(nullptr);
if (!bool_size)
return;
Status error;
Scalar original_value(m_original_dynamic_exclusivity_flag_state ? 1U : 0U);
m_process.WriteScalarToMemory(*dynamic_exlusivity_flag_addr, original_value,
*bool_size, error);
if (error.Fail()) {
LLDB_LOG(log,
"SwiftLanguageRuntime: Unable to reset "
"disableExclusivityChecking flag state: %s",
error.AsCString());
return;
}
if (log)
LLDB_LOG(log,
"SwiftLanguageRuntime: Changed "
"disableExclusivityChecking flag state back to %u",
m_original_dynamic_exclusivity_flag_state);
}
std::optional<Value> SwiftLanguageRuntime::GetErrorReturnLocationAfterReturn(
lldb::StackFrameSP frame_sp) {
std::optional<Value> error_val;
llvm::StringRef error_reg_name;
ArchSpec arch_spec(GetTargetRef().GetArchitecture());
switch (arch_spec.GetMachine()) {
case llvm::Triple::ArchType::arm:
error_reg_name = "r6";
break;
case llvm::Triple::ArchType::aarch64:
error_reg_name = "x21";
break;
case llvm::Triple::ArchType::x86_64:
error_reg_name = "r12";
break;
default:
break;
}
if (error_reg_name.empty())
return error_val;
RegisterContextSP reg_ctx = frame_sp->GetRegisterContext();
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(error_reg_name);
lldbassert(reg_info &&
"didn't get the right register name for swift error register");
if (!reg_info)
return error_val;
RegisterValue reg_value;
if (!reg_ctx->ReadRegister(reg_info, reg_value)) {
// Do some logging here.
return error_val;
}
lldb::addr_t error_addr = reg_value.GetAsUInt64();
if (error_addr == 0)
return error_val;
Value val;
if (reg_value.GetScalarValue(val.GetScalar())) {
val.SetValueType(Value::ValueType::Scalar);
val.SetContext(Value::ContextType::RegisterInfo,
const_cast<RegisterInfo *>(reg_info));
error_val = val;
}
return error_val;
}
std::optional<Value> SwiftLanguageRuntime::GetErrorReturnLocationBeforeReturn(
lldb::StackFrameSP frame_sp, bool &need_to_check_after_return) {
std::optional<Value> error_val;
if (!frame_sp) {
need_to_check_after_return = false;
return error_val;
}
// For Architectures where the error isn't returned in a register,
// there's a magic variable that points to the value. Check that first:
ConstString error_location_name("$error");
VariableListSP variables_sp = frame_sp->GetInScopeVariableList(false);
VariableSP error_loc_var_sp = variables_sp->FindVariable(
error_location_name, eValueTypeVariableArgument);
if (error_loc_var_sp) {
need_to_check_after_return = false;
ValueObjectSP error_loc_val_sp = frame_sp->GetValueObjectForFrameVariable(
error_loc_var_sp, eNoDynamicValues);
if (error_loc_val_sp && error_loc_val_sp->GetError().Success())
error_val = error_loc_val_sp->GetValue();
return error_val;
}
// Otherwise, see if we know which register it lives in from the calling
// convention. This should probably go in the ABI plugin not here, but the
// Swift ABI can change with swiftlang versions and that would make it awkward
// in the ABI.
Function *func = frame_sp->GetSymbolContext(eSymbolContextFunction).function;
if (!func) {
need_to_check_after_return = false;
return error_val;
}
need_to_check_after_return = func->CanThrow();
return error_val;
}
lldb::BreakpointResolverSP
SwiftLanguageRuntime::CreateExceptionResolver(const lldb::BreakpointSP &bkpt, bool catch_bp,
bool throw_bp) {
return ::CreateExceptionResolver(bkpt, catch_bp, throw_bp);
}
static OptionDefinition g_swift_demangle_options[] = {
// clang-format off
{LLDB_OPT_SET_1, false, "expand", 'e', OptionParser::eNoArgument, nullptr, {}, 0, eArgTypeNone, "Whether LLDB should print the demangled tree"},
// clang-format on
};
class CommandObjectSwift_Demangle : public CommandObjectParsed {
public:
CommandObjectSwift_Demangle(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "demangle",
"Demangle a Swift mangled name",
"language swift demangle"),
m_options() {
CommandArgumentData mangled_name_arg{eArgTypeSymbol};
m_arguments.push_back({mangled_name_arg});
}
~CommandObjectSwift_Demangle() {}
Options *GetOptions() override { return &m_options; }
class CommandOptions : public Options {
public:
CommandOptions() : Options(), m_expand(false, false) {
OptionParsingStarting(nullptr);
}
virtual ~CommandOptions() {}
Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
ExecutionContext *execution_context) override {
Status error;
const int short_option = m_getopt_table[option_idx].val;
switch (short_option) {
case 'e':
m_expand.SetCurrentValue(true);
break;
default:
error.SetErrorStringWithFormat("invalid short option character '%c'",
short_option);
break;
}
return error;
}
void OptionParsingStarting(ExecutionContext *execution_context) override {
m_expand.Clear();
}
llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
return llvm::ArrayRef(g_swift_demangle_options);
}
// Options table: Required for subclasses of Options.
OptionValueBoolean m_expand;
};
protected:
void DoExecute(Args &command, CommandReturnObject &result) override {
for (size_t i = 0; i < command.GetArgumentCount(); i++) {
StringRef name = command.GetArgumentAtIndex(i);
if (!name.empty()) {
Context ctx;
NodePointer node_ptr = nullptr;
// Match the behavior of swift-demangle and accept Swift symbols without
// the leading `$`. This makes symbol copy & paste more convenient.
if (name.startswith("S") || name.startswith("s")) {
std::string correctedName = std::string("$") + name.str();
node_ptr =
SwiftLanguageRuntime::DemangleSymbolAsNode(correctedName, ctx);
} else {
node_ptr = SwiftLanguageRuntime::DemangleSymbolAsNode(name, ctx);
}
if (node_ptr) {
if (m_options.m_expand)
result.GetOutputStream().PutCString(getNodeTreeAsString(node_ptr));
result.GetOutputStream().Printf(
"%s ---> %s\n", name.data(),
swift::Demangle::nodeToString(node_ptr).c_str());
}
}
}
result.SetStatus(lldb::eReturnStatusSuccessFinishResult);
}
CommandOptions m_options;
};
class CommandObjectSwift_RefCount : public CommandObjectRaw {
public:
CommandObjectSwift_RefCount(CommandInterpreter &interpreter)
: CommandObjectRaw(interpreter, "refcount",
"Inspect the reference count data for a Swift object",
"language swift refcount",
eCommandProcessMustBePaused | eCommandRequiresFrame) {}
~CommandObjectSwift_RefCount() {}
Options *GetOptions() override { return nullptr; }
private:
enum class ReferenceCountType {
eReferenceStrong,
eReferenceUnowned,
eReferenceWeak,
};
std::optional<uint32_t> getReferenceCount(StringRef ObjName,
ReferenceCountType Type,
ExecutionContext &exe_ctx,
StackFrameSP &Frame) {
std::string Kind;
switch (Type) {
case ReferenceCountType::eReferenceStrong:
Kind = "";
break;
case ReferenceCountType::eReferenceUnowned:
Kind = "Unowned";
break;
case ReferenceCountType::eReferenceWeak:
Kind = "Weak";
break;
}
EvaluateExpressionOptions eval_options;
eval_options.SetLanguage(lldb::eLanguageTypeSwift);
eval_options.SetSuppressPersistentResult(true);
ValueObjectSP result_valobj_sp;
std::string Expr =
(llvm::Twine("Swift._get") + Kind + llvm::Twine("RetainCount(") +
ObjName + llvm::Twine(")"))
.str();
bool evalStatus = exe_ctx.GetTargetSP()->EvaluateExpression(
Expr, Frame.get(), result_valobj_sp, eval_options);
if (evalStatus != eExpressionCompleted)
return std::nullopt;
bool success = false;
uint32_t count = result_valobj_sp->GetSyntheticValue()->GetValueAsUnsigned(
UINT32_MAX, &success);
if (!success)
return std::nullopt;
return count;
}
protected:
void DoExecute(llvm::StringRef command,
CommandReturnObject &result) override {
StackFrameSP frame_sp(m_exe_ctx.GetFrameSP());
EvaluateExpressionOptions options;
options.SetLanguage(lldb::eLanguageTypeSwift);
options.SetSuppressPersistentResult(true);
ValueObjectSP result_valobj_sp;
// We want to evaluate first the object we're trying to get the
// refcount of, in order, to, e.g. see whether it's available.
// So, given `language swift refcount patatino`, we try to
// evaluate `expr patatino` and fail early in case there is
// an error.
bool evalStatus = m_exe_ctx.GetTargetSP()->EvaluateExpression(
command, frame_sp.get(), result_valobj_sp, options);
if (evalStatus != eExpressionCompleted) {
result.SetStatus(lldb::eReturnStatusFailed);
if (result_valobj_sp && result_valobj_sp->GetError().Fail())
result.AppendError(result_valobj_sp->GetError().AsCString());
return;
}
// At this point, we're sure we're grabbing in our hands a valid
// object and we can ask questions about it. `refcounts` are only
// defined on class objects, so we throw an error in case we're
// trying to look at something else.
result_valobj_sp = result_valobj_sp->GetQualifiedRepresentationIfAvailable(
lldb::eDynamicCanRunTarget, true);
CompilerType result_type(result_valobj_sp->GetCompilerType());
if (!(result_type.GetTypeInfo() & lldb::eTypeInstanceIsPointer)) {
result.AppendError("refcount only available for class types");
result.SetStatus(lldb::eReturnStatusFailed);
return;
}
// Ask swift debugger support in the compiler about the objects
// reference counts, and return them to the user.
std::optional<uint32_t> strong = getReferenceCount(
command, ReferenceCountType::eReferenceStrong, m_exe_ctx, frame_sp);
std::optional<uint32_t> unowned = getReferenceCount(
command, ReferenceCountType::eReferenceUnowned, m_exe_ctx, frame_sp);
std::optional<uint32_t> weak = getReferenceCount(
command, ReferenceCountType::eReferenceWeak, m_exe_ctx, frame_sp);
std::string unavailable = "<unavailable>";
result.AppendMessageWithFormat(
"refcount data: (strong = %s, unowned = %s, weak = %s)\n",
strong ? std::to_string(*strong).c_str() : unavailable.c_str(),
unowned ? std::to_string(*unowned).c_str() : unavailable.c_str(),
weak ? std::to_string(*weak).c_str() : unavailable.c_str());
result.SetStatus(lldb::eReturnStatusSuccessFinishResult);
}
};
class CommandObjectMultiwordSwift : public CommandObjectMultiword {
public:
CommandObjectMultiwordSwift(CommandInterpreter &interpreter)
: CommandObjectMultiword(
interpreter, "swift",
"A set of commands for operating on the Swift Language Runtime.",
"swift <subcommand> [<subcommand-options>]") {
LoadSubCommand("demangle", CommandObjectSP(new CommandObjectSwift_Demangle(
interpreter)));
LoadSubCommand("refcount", CommandObjectSP(new CommandObjectSwift_RefCount(
interpreter)));
}
virtual ~CommandObjectMultiwordSwift() {}
};
void SwiftLanguageRuntime::Initialize() {
PluginManager::RegisterPlugin(
GetPluginNameStatic(), "Language runtime for the Swift language",
CreateInstance,
[](CommandInterpreter &interpreter) -> lldb::CommandObjectSP {
return CommandObjectSP(new CommandObjectMultiwordSwift(interpreter));
},
SwiftLanguageRuntimeImpl::GetBreakpointExceptionPrecondition);
}
void SwiftLanguageRuntime::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
#define FORWARD(METHOD, ...) \
assert(m_impl || m_stub); \
return m_impl ? m_impl->METHOD(__VA_ARGS__) : m_stub->METHOD(__VA_ARGS__);
ThreadSafeReflectionContext
SwiftLanguageRuntime::GetReflectionContext() {
// Hand written because the ternary operator prevents RVO when compiling with
// MSVC.
assert(m_impl || m_stub);
if (m_impl)
return m_impl->GetReflectionContext();
return m_stub->GetReflectionContext();
}
void SwiftLanguageRuntime::SymbolsDidLoad(const ModuleList &module_list) {
FORWARD(SymbolsDidLoad, module_list);
}
bool SwiftLanguageRuntime::GetDynamicTypeAndAddress(
ValueObject &in_value, lldb::DynamicValueType use_dynamic,
TypeAndOrName &class_type_or_name, Address &address,
Value::ValueType &value_type) {
FORWARD(GetDynamicTypeAndAddress, in_value, use_dynamic, class_type_or_name,
address, value_type);
}
CompilerType SwiftLanguageRuntime::BindGenericTypeParameters(
CompilerType unbound_type,
std::function<CompilerType(unsigned, unsigned)> type_resolver) {
FORWARD(BindGenericTypeParameters, unbound_type, type_resolver);
}
void SwiftLanguageRuntime::DumpTyperef(CompilerType type,
TypeSystemSwiftTypeRef *module_holder,
Stream *s) {
FORWARD(DumpTyperef, type, module_holder, s);
}
TypeAndOrName
SwiftLanguageRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name,
ValueObject &static_value) {
FORWARD(FixUpDynamicType, type_and_or_name, static_value);
}
bool SwiftLanguageRuntime::IsTaggedPointer(lldb::addr_t addr,
CompilerType type) {
FORWARD(IsTaggedPointer, addr, type);
}
std::pair<lldb::addr_t, bool>
SwiftLanguageRuntime::FixupPointerValue(lldb::addr_t addr, CompilerType type) {
FORWARD(FixupPointerValue, addr, type);
}
lldb::addr_t SwiftLanguageRuntime::FixupAddress(lldb::addr_t addr,
CompilerType type,
Status &error) {
FORWARD(FixupAddress, addr, type, error);
}
CompilerType SwiftLanguageRuntime::GetTypeFromMetadata(TypeSystemSwift &tss,
Address addr) {
FORWARD(GetTypeFromMetadata, tss, addr);
}
bool SwiftLanguageRuntime::IsStoredInlineInBuffer(CompilerType type) {
FORWARD(IsStoredInlineInBuffer, type);
}
std::optional<uint64_t> SwiftLanguageRuntime::GetMemberVariableOffset(
CompilerType instance_type, ValueObject *instance,
llvm::StringRef member_name, Status *error) {
FORWARD(GetMemberVariableOffset, instance_type, instance, member_name, error);
}
llvm::Expected<uint32_t>
SwiftLanguageRuntime::GetNumChildren(CompilerType type,
ExecutionContextScope *exe_scope) {
FORWARD(GetNumChildren, type, exe_scope);
}
std::optional<std::string> SwiftLanguageRuntime::GetEnumCaseName(
CompilerType type, const DataExtractor &data, ExecutionContext *exe_ctx) {
FORWARD(GetEnumCaseName, type, data, exe_ctx);
}
std::pair<SwiftLanguageRuntime::LookupResult, std::optional<size_t>>
SwiftLanguageRuntime::GetIndexOfChildMemberWithName(
CompilerType type, llvm::StringRef name, ExecutionContext *exe_ctx,
bool omit_empty_base_classes, std::vector<uint32_t> &child_indexes) {
FORWARD(GetIndexOfChildMemberWithName, type, name, exe_ctx,
omit_empty_base_classes, child_indexes);
}
llvm::Expected<CompilerType> SwiftLanguageRuntime::GetChildCompilerTypeAtIndex(
CompilerType type, size_t idx, bool transparent_pointers,
bool omit_empty_base_classes, bool ignore_array_bounds,
std::string &child_name, uint32_t &child_byte_size,
int32_t &child_byte_offset, uint32_t &child_bitfield_bit_size,
uint32_t &child_bitfield_bit_offset, bool &child_is_base_class,
bool &child_is_deref_of_parent, ValueObject *valobj,
uint64_t &language_flags) {
FORWARD(GetChildCompilerTypeAtIndex, type, idx, transparent_pointers,
omit_empty_base_classes, ignore_array_bounds, child_name,
child_byte_size, child_byte_offset,
child_bitfield_bit_size, child_bitfield_bit_offset,
child_is_base_class, child_is_deref_of_parent, valobj,
language_flags);
}
std::optional<unsigned>
SwiftLanguageRuntime::GetNumFields(CompilerType type,
ExecutionContext *exe_ctx) {
FORWARD(GetNumFields, type, exe_ctx);
}
llvm::Error SwiftLanguageRuntime::GetObjectDescription(Stream &str,
ValueObject &object) {
FORWARD(GetObjectDescription, str, object);
}
void SwiftLanguageRuntime::AddToLibraryNegativeCache(
llvm::StringRef library_name) {
FORWARD(AddToLibraryNegativeCache, library_name);
}
bool SwiftLanguageRuntime::IsInLibraryNegativeCache(
llvm::StringRef library_name) {
FORWARD(IsInLibraryNegativeCache, library_name);
}
void SwiftLanguageRuntime::ReleaseAssociatedRemoteASTContext(
swift::ASTContext *ctx) {
FORWARD(ReleaseAssociatedRemoteASTContext, ctx);
}
CompilerType
SwiftLanguageRuntime::BindGenericTypeParameters(StackFrame &stack_frame,
CompilerType base_type) {
FORWARD(BindGenericTypeParameters, stack_frame, base_type);
}
CompilerType
SwiftLanguageRuntime::GetConcreteType(ExecutionContextScope *exe_scope,
ConstString abstract_type_name) {
FORWARD(GetConcreteType, exe_scope, abstract_type_name);
}
std::optional<uint64_t>
SwiftLanguageRuntime::GetBitSize(CompilerType type,
ExecutionContextScope *exe_scope) {
FORWARD(GetBitSize, type, exe_scope);
}
std::optional<uint64_t>
SwiftLanguageRuntime::GetByteStride(CompilerType type) {
FORWARD(GetByteStride, type);
}
std::optional<size_t>
SwiftLanguageRuntime::GetBitAlignment(CompilerType type,
ExecutionContextScope *exe_scope) {
FORWARD(GetBitAlignment, type, exe_scope);
}
bool SwiftLanguageRuntime::IsValidErrorValue(ValueObject &in_value) {
FORWARD(IsValidErrorValue, in_value);
}
lldb::SyntheticChildrenSP
SwiftLanguageRuntime::GetBridgedSyntheticChildProvider(ValueObject &valobj) {
FORWARD(GetBridgedSyntheticChildProvider, valobj);
}
void SwiftLanguageRuntime::WillStartExecutingUserExpression(
bool runs_in_playground_or_repl) {
FORWARD(WillStartExecutingUserExpression, runs_in_playground_or_repl);
}
void SwiftLanguageRuntime::DidFinishExecutingUserExpression(
bool runs_in_playground_or_repl) {
FORWARD(DidFinishExecutingUserExpression, runs_in_playground_or_repl);
}
bool SwiftLanguageRuntime::IsABIStable() { FORWARD(IsABIStable); }
namespace {
/// The target specific register numbers used for async unwinding.
///
/// For UnwindPlans, these use eh_frame / dwarf register numbering.
struct AsyncUnwindRegisterNumbers {
uint32_t async_ctx_regnum;
uint32_t fp_regnum;
uint32_t pc_regnum;
/// A register to use as a marker to indicate how the async context is passed
/// to the function (indirectly, or not). This needs to be communicated to the
/// frames below us as they need to react differently. There is no good way to
/// expose this, so we set another dummy register to communicate this state.
uint32_t dummy_regnum;
};
} // namespace
static std::optional<AsyncUnwindRegisterNumbers>
GetAsyncUnwindRegisterNumbers(llvm::Triple::ArchType triple) {
switch (triple) {
case llvm::Triple::x86_64: {
AsyncUnwindRegisterNumbers regnums;
regnums.async_ctx_regnum = dwarf_r14_x86_64;
regnums.fp_regnum = dwarf_rbp_x86_64;
regnums.pc_regnum = dwarf_rip_x86_64;
regnums.dummy_regnum = dwarf_r15_x86_64;
return regnums;
}
case llvm::Triple::aarch64: {
AsyncUnwindRegisterNumbers regnums;
regnums.async_ctx_regnum = arm64_dwarf::x22;
regnums.fp_regnum = arm64_dwarf::fp;
regnums.pc_regnum = arm64_dwarf::pc;
regnums.dummy_regnum = arm64_dwarf::x23;
return regnums;
}
default:
return {};
}
}
lldb::addr_t SwiftLanguageRuntime::GetAsyncContext(RegisterContext *regctx) {
if (!regctx)
return LLDB_INVALID_ADDRESS;
auto arch = regctx->CalculateTarget()->GetArchitecture();
if (auto regnums = GetAsyncUnwindRegisterNumbers(arch.GetMachine())) {
auto reg = regctx->ConvertRegisterKindToRegisterNumber(
RegisterKind::eRegisterKindDWARF, regnums->async_ctx_regnum);
return regctx->ReadRegisterAsUnsigned(reg, LLDB_INVALID_ADDRESS);
}
assert(false && "swift async supports only x86_64 and arm64");
return LLDB_INVALID_ADDRESS;
}
// Examine the register state and detect the transition from a real
// stack frame to an AsyncContext frame, or a frame in the middle of
// the AsyncContext chain, and return an UnwindPlan for these situations.
UnwindPlanSP
SwiftLanguageRuntime::GetRuntimeUnwindPlan(ProcessSP process_sp,
RegisterContext *regctx,
bool &behaves_like_zeroth_frame) {
LLDB_SCOPED_TIMER();
Target &target(process_sp->GetTarget());
auto arch = target.GetArchitecture();
std::optional<AsyncUnwindRegisterNumbers> regnums =
GetAsyncUnwindRegisterNumbers(arch.GetMachine());
if (!regnums)
return UnwindPlanSP();
// If we can't fetch the fp reg, and we *can* fetch the async
// context register, then we're in the middle of the AsyncContext
// chain, return an UnwindPlan for that.
addr_t fp = regctx->GetFP(LLDB_INVALID_ADDRESS);
if (fp == LLDB_INVALID_ADDRESS) {
if (GetAsyncContext(regctx) != LLDB_INVALID_ADDRESS)
return GetFollowAsyncContextUnwindPlan(process_sp, regctx, arch,
behaves_like_zeroth_frame);
return UnwindPlanSP();
}
// If we're in the prologue of a function, don't provide a Swift async
// unwind plan. We can be tricked by unmodified caller-registers that
// make this look like an async frame when this is a standard ABI function
// call, and the parent is the async frame.
// This assumes that the frame pointer register will be modified in the
// prologue.
Address pc;
pc.SetLoadAddress(regctx->GetPC(), &target);
SymbolContext sc;
if (pc.IsValid())
if (!pc.CalculateSymbolContext(&sc, eSymbolContextFunction |
eSymbolContextSymbol))
return UnwindPlanSP();
Address func_start_addr;
uint32_t prologue_size;
ConstString mangled_name;
if (sc.function) {
func_start_addr = sc.function->GetAddressRange().GetBaseAddress();
prologue_size = sc.function->GetPrologueByteSize();
mangled_name = sc.function->GetMangled().GetMangledName();
} else if (sc.symbol) {
func_start_addr = sc.symbol->GetAddress();
prologue_size = sc.symbol->GetPrologueByteSize();
mangled_name = sc.symbol->GetMangled().GetMangledName();
} else {
return UnwindPlanSP();
}
AddressRange prologue_range(func_start_addr, prologue_size);
bool in_prologue = (func_start_addr == pc ||
prologue_range.ContainsLoadAddress(pc, &target));
if (in_prologue) {
if (!IsAnySwiftAsyncFunctionSymbol(mangled_name.GetStringRef()))
return UnwindPlanSP();
} else {
addr_t saved_fp = LLDB_INVALID_ADDRESS;
Status error;
if (!process_sp->ReadMemory(fp, &saved_fp, 8, error))
return UnwindPlanSP();
// Get the high nibble of the dreferenced fp; if the 60th bit is set,
// this is the transition to a swift async AsyncContext chain.
if ((saved_fp & (0xfULL << 60)) >> 60 != 1)
return UnwindPlanSP();
}
// The coroutine funclets split from an async function have 2 different ABIs:
// - Async suspend partial functions and the first funclet get their async
// context directly in the async register.
// - Async await resume partial functions take their context indirectly, it
// needs to be dereferenced to get the actual function's context.
// The debug info for locals reflects this difference, so our unwinding of the
// context register needs to reflect it too.
bool indirect_context =
IsSwiftAsyncAwaitResumePartialFunctionSymbol(mangled_name.GetStringRef());
UnwindPlan::RowSP row(new UnwindPlan::Row);
const int32_t ptr_size = 8;
row->SetOffset(0);
// A DWARF Expression to set the CFA.
// pushes the frame pointer register - 8
// dereference
// FIXME: Row::RegisterLocation::RestoreType doesn't have a
// deref(reg-value + offset) yet, shortcut around it with
// a dwarf expression for now.
// The CFA of an async frame is the address of it's associated AsyncContext.
// In an async frame currently on the stack, this address is stored right
// before the saved frame pointer on the stack.
static const uint8_t g_cfa_dwarf_expression_x86_64[] = {
llvm::dwarf::DW_OP_breg6, // DW_OP_breg6, register 6 == rbp
0x78, // sleb128 -8 (ptrsize)
llvm::dwarf::DW_OP_deref,
};
static const uint8_t g_cfa_dwarf_expression_arm64[] = {
llvm::dwarf::DW_OP_breg29, // DW_OP_breg29, register 29 == fp
0x78, // sleb128 -8 (ptrsize)
llvm::dwarf::DW_OP_deref,
};
constexpr unsigned expr_size = sizeof(g_cfa_dwarf_expression_arm64);
static_assert(sizeof(g_cfa_dwarf_expression_x86_64) ==
sizeof(g_cfa_dwarf_expression_arm64),
"Code relies on DWARF expressions being the same size");
const uint8_t *expr = nullptr;
if (arch.GetMachine() == llvm::Triple::x86_64)
expr = g_cfa_dwarf_expression_x86_64;
else if (arch.GetMachine() == llvm::Triple::aarch64)
expr = g_cfa_dwarf_expression_arm64;
else
llvm_unreachable("Unsupported architecture");
if (in_prologue) {
if (indirect_context)
row->GetCFAValue().SetIsRegisterDereferenced(regnums->async_ctx_regnum);
else
row->GetCFAValue().SetIsRegisterPlusOffset(regnums->async_ctx_regnum, 0);
} else {
row->GetCFAValue().SetIsDWARFExpression(expr, expr_size);
}
if (indirect_context) {
if (in_prologue) {
row->SetRegisterLocationToSame(regnums->async_ctx_regnum, false);
} else {
// In a "resume" coroutine, the passed context argument needs to be
// dereferenced once to get the context. This is reflected in the debug
// info so we need to account for it and report am async register value
// that needs to be dereferenced to get to the context.
// Note that the size passed for the DWARF expression is the size of the
// array minus one. This skips the last deref for this use.
assert(expr[expr_size - 1] == llvm::dwarf::DW_OP_deref &&
"Should skip a deref");
row->SetRegisterLocationToIsDWARFExpression(regnums->async_ctx_regnum,
expr, expr_size - 1, false);
}
} else {
// In the first part of a split async function, the context is passed
// directly, so we can use the CFA value directly.
row->SetRegisterLocationToIsCFAPlusOffset(regnums->async_ctx_regnum, 0,
false);
// The fact that we are in this case needs to be communicated to the frames
// below us as they need to react differently. There is no good way to
// expose this, so we set another dummy register to communicate this state.
static const uint8_t g_dummy_dwarf_expression[] = {
llvm::dwarf::DW_OP_const1u, 0
};
row->SetRegisterLocationToIsDWARFExpression(
regnums->dummy_regnum, g_dummy_dwarf_expression,
sizeof(g_dummy_dwarf_expression), false);
}
std::optional<addr_t> pc_after_prologue = [&]() -> std::optional<addr_t> {
// In the prologue, use the async_reg as is, it has not been clobbered.
if (in_prologue)
return TrySkipVirtualParentProlog(GetAsyncContext(regctx), *process_sp,
indirect_context);
// Both ABIs (x86_64 and aarch64) guarantee the async reg is saved at:
// *(fp - 8).
Status error;
addr_t async_reg_entry_value = LLDB_INVALID_ADDRESS;
process_sp->ReadMemory(fp - ptr_size, &async_reg_entry_value, ptr_size,
error);
if (error.Fail())
return {};
return TrySkipVirtualParentProlog(async_reg_entry_value, *process_sp,
indirect_context);
}();
if (pc_after_prologue)
row->SetRegisterLocationToIsConstant(regnums->pc_regnum, *pc_after_prologue,
false);
else
row->SetRegisterLocationToAtCFAPlusOffset(regnums->pc_regnum, ptr_size,
false);
row->SetUnspecifiedRegistersAreUndefined(true);
UnwindPlanSP plan = std::make_shared<UnwindPlan>(lldb::eRegisterKindDWARF);
plan->AppendRow(row);
plan->SetSourceName("Swift Transition-to-AsyncContext-Chain");
plan->SetSourcedFromCompiler(eLazyBoolNo);
plan->SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
plan->SetUnwindPlanForSignalTrap(eLazyBoolYes);
return plan;
}
UnwindPlanSP SwiftLanguageRuntime::GetFollowAsyncContextUnwindPlan(
ProcessSP process_sp, RegisterContext *regctx, ArchSpec &arch,
bool &behaves_like_zeroth_frame) {
LLDB_SCOPED_TIMER();
UnwindPlan::RowSP row(new UnwindPlan::Row);
const int32_t ptr_size = 8;
row->SetOffset(0);
std::optional<AsyncUnwindRegisterNumbers> regnums =
GetAsyncUnwindRegisterNumbers(arch.GetMachine());
if (!regnums)
return UnwindPlanSP();
const bool is_indirect =
regctx->ReadRegisterAsUnsigned(regnums->dummy_regnum, (uint64_t)-1ll) ==
(uint64_t)-1ll;
// In the general case, the async register setup by the frame above us
// should be dereferenced twice to get our context, except when the frame
// above us is an async frame on the OS stack that takes its context directly
// (see discussion in GetRuntimeUnwindPlan()). The availability of
// dummy_regnum is used as a marker for this situation.
if (!is_indirect) {
row->GetCFAValue().SetIsRegisterDereferenced(regnums->async_ctx_regnum);
row->SetRegisterLocationToSame(regnums->async_ctx_regnum, false);
} else {
static const uint8_t async_dwarf_expression_x86_64[] = {
llvm::dwarf::DW_OP_regx, dwarf_r14_x86_64, // DW_OP_regx, reg
llvm::dwarf::DW_OP_deref, // DW_OP_deref
llvm::dwarf::DW_OP_deref, // DW_OP_deref
};
static const uint8_t async_dwarf_expression_arm64[] = {
llvm::dwarf::DW_OP_regx, arm64_dwarf::x22, // DW_OP_regx, reg
llvm::dwarf::DW_OP_deref, // DW_OP_deref
llvm::dwarf::DW_OP_deref, // DW_OP_deref
};
const unsigned expr_size = sizeof(async_dwarf_expression_x86_64);
static_assert(sizeof(async_dwarf_expression_x86_64) ==
sizeof(async_dwarf_expression_arm64),
"Expressions of different sizes");
const uint8_t *expression = nullptr;
if (arch.GetMachine() == llvm::Triple::x86_64)
expression = async_dwarf_expression_x86_64;
else if (arch.GetMachine() == llvm::Triple::aarch64)
expression = async_dwarf_expression_arm64;
else
llvm_unreachable("Unsupported architecture");
// Note how the register location gets the same expression pointer with a
// different size. We just skip the trailing deref for it.
assert(expression[expr_size - 1] == llvm::dwarf::DW_OP_deref &&
"Should skip a deref");
row->GetCFAValue().SetIsDWARFExpression(expression, expr_size);
row->SetRegisterLocationToIsDWARFExpression(
regnums->async_ctx_regnum, expression, expr_size - 1, false);
}
// Suppose this is unwinding frame #2 of a call stack. The value given for
// the async register has two possible values, depending on what frame #1
// expects:
// 1. The CFA of frame #1, direct ABI, dereferencing it once produces CFA of
// Frame #2.
// 2. The CFA of frame #0, indirect ABI, dereferencing it twice produces CFA
// of Frame #2.
const unsigned num_indirections = 1 + is_indirect;
if (std::optional<addr_t> pc_after_prologue = TrySkipVirtualParentProlog(
GetAsyncContext(regctx), *process_sp, num_indirections))
row->SetRegisterLocationToIsConstant(regnums->pc_regnum, *pc_after_prologue,
false);
else
row->SetRegisterLocationToAtCFAPlusOffset(regnums->pc_regnum, ptr_size,
false);
row->SetUnspecifiedRegistersAreUndefined(true);
UnwindPlanSP plan = std::make_shared<UnwindPlan>(lldb::eRegisterKindDWARF);
plan->AppendRow(row);
plan->SetSourceName("Swift Following-AsyncContext-Chain");
plan->SetSourcedFromCompiler(eLazyBoolNo);
plan->SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
plan->SetUnwindPlanForSignalTrap(eLazyBoolYes);
behaves_like_zeroth_frame = true;
return plan;
}
std::optional<lldb::addr_t> SwiftLanguageRuntime::TrySkipVirtualParentProlog(
lldb::addr_t async_reg_val, Process &process, unsigned num_indirections) {
assert(num_indirections <= 2 &&
"more than two dereferences should not be needed");
if (async_reg_val == LLDB_INVALID_ADDRESS || async_reg_val == 0)
return {};
const auto ptr_size = process.GetAddressByteSize();
Status error;
// Compute the CFA of this frame.
addr_t cfa = async_reg_val;
for (; num_indirections != 0; --num_indirections) {
process.ReadMemory(cfa, &cfa, ptr_size, error);
if (error.Fail())
return {};
}
// The last funclet will have a zero CFA, we don't want to read that.
if (cfa == 0)
return {};
// Get the PC of the parent frame, i.e. the continuation pointer, which is
// the second field of the CFA.
addr_t pc_location = cfa + ptr_size;
addr_t pc_value = LLDB_INVALID_ADDRESS;
process.ReadMemory(pc_location, &pc_value, ptr_size, error);
if (error.Fail())
return {};
Address pc;
Target &target = process.GetTarget();
pc.SetLoadAddress(pc_value, &target);
if (!pc.IsValid())
return {};
SymbolContext sc;
if (!pc.CalculateSymbolContext(&sc,
eSymbolContextFunction | eSymbolContextSymbol))
return {};
if (!sc.symbol && !sc.function)
return {};
auto prologue_size = sc.symbol ? sc.symbol->GetPrologueByteSize()
: sc.function->GetPrologueByteSize();
return pc_value + prologue_size;
}
} // namespace lldb_private
|