1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
//===-- RegisterContextLinux_x86_64.cpp -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===---------------------------------------------------------------------===//
#include "RegisterContextLinux_x86_64.h"
#include "RegisterContextLinux_i386.h"
#include "RegisterContextPOSIX_x86.h"
#include <vector>
using namespace lldb_private;
using namespace lldb;
typedef struct _GPR {
uint64_t r15;
uint64_t r14;
uint64_t r13;
uint64_t r12;
uint64_t rbp;
uint64_t rbx;
uint64_t r11;
uint64_t r10;
uint64_t r9;
uint64_t r8;
uint64_t rax;
uint64_t rcx;
uint64_t rdx;
uint64_t rsi;
uint64_t rdi;
uint64_t orig_rax;
uint64_t rip;
uint64_t cs;
uint64_t rflags;
uint64_t rsp;
uint64_t ss;
uint64_t fs_base;
uint64_t gs_base;
uint64_t ds;
uint64_t es;
uint64_t fs;
uint64_t gs;
} GPR;
struct DBG {
uint64_t dr[8];
};
struct UserArea {
GPR gpr; // General purpose registers.
int32_t fpvalid; // True if FPU is being used.
int32_t pad0;
FXSAVE fpr; // General purpose floating point registers (see FPR for extended
// register sets).
uint64_t tsize; // Text segment size.
uint64_t dsize; // Data segment size.
uint64_t ssize; // Stack segment size.
uint64_t start_code; // VM address of text.
uint64_t start_stack; // VM address of stack bottom (top in rsp).
int64_t signal; // Signal causing core dump.
int32_t reserved; // Unused.
int32_t pad1;
uint64_t ar0; // Location of GPR's.
FXSAVE *fpstate; // Location of FPR's.
uint64_t magic; // Identifier for core dumps.
char u_comm[32]; // Command causing core dump.
DBG dbg; // Debug registers.
uint64_t error_code; // CPU error code.
uint64_t fault_address; // Control register CR3.
};
#define DR_OFFSET(reg_index) \
(LLVM_EXTENSION offsetof(UserArea, dbg) + \
LLVM_EXTENSION offsetof(DBG, dr[reg_index]))
// Include RegisterInfos_x86_64 to declare our g_register_infos_x86_64_with_base
// structure.
#define DECLARE_REGISTER_INFOS_X86_64_STRUCT
#include "RegisterInfos_x86_64_with_base.h"
#undef DECLARE_REGISTER_INFOS_X86_64_STRUCT
static std::vector<lldb_private::RegisterInfo> &GetPrivateRegisterInfoVector() {
static std::vector<lldb_private::RegisterInfo> g_register_infos;
return g_register_infos;
}
static const RegisterInfo *
GetRegisterInfo_i386(const lldb_private::ArchSpec &arch) {
std::vector<lldb_private::RegisterInfo> &g_register_infos =
GetPrivateRegisterInfoVector();
// Allocate RegisterInfo only once
if (g_register_infos.empty()) {
// Copy the register information from base class
std::unique_ptr<RegisterContextLinux_i386> reg_interface(
new RegisterContextLinux_i386(arch));
const RegisterInfo *base_info = reg_interface->GetRegisterInfo();
g_register_infos.insert(g_register_infos.end(), &base_info[0],
&base_info[k_num_registers_i386]);
// Include RegisterInfos_x86_64 to update the g_register_infos structure
// with x86_64 offsets.
#define UPDATE_REGISTER_INFOS_I386_STRUCT_WITH_X86_64_OFFSETS
#include "RegisterInfos_x86_64_with_base.h"
#undef UPDATE_REGISTER_INFOS_I386_STRUCT_WITH_X86_64_OFFSETS
}
return &g_register_infos[0];
}
static const RegisterInfo *GetRegisterInfoPtr(const ArchSpec &target_arch) {
switch (target_arch.GetMachine()) {
case llvm::Triple::x86:
return GetRegisterInfo_i386(target_arch);
case llvm::Triple::x86_64:
return g_register_infos_x86_64_with_base;
default:
assert(false && "Unhandled target architecture.");
return nullptr;
}
}
static uint32_t GetRegisterInfoCount(const ArchSpec &target_arch) {
switch (target_arch.GetMachine()) {
case llvm::Triple::x86: {
assert(!GetPrivateRegisterInfoVector().empty() &&
"i386 register info not yet filled.");
return static_cast<uint32_t>(GetPrivateRegisterInfoVector().size());
}
case llvm::Triple::x86_64:
return static_cast<uint32_t>(sizeof(g_register_infos_x86_64_with_base) /
sizeof(g_register_infos_x86_64_with_base[0]));
default:
assert(false && "Unhandled target architecture.");
return 0;
}
}
static uint32_t GetUserRegisterInfoCount(const ArchSpec &target_arch) {
switch (target_arch.GetMachine()) {
case llvm::Triple::x86:
return static_cast<uint32_t>(k_num_user_registers_i386);
case llvm::Triple::x86_64:
return static_cast<uint32_t>(x86_64_with_base::k_num_user_registers);
default:
assert(false && "Unhandled target architecture.");
return 0;
}
}
RegisterContextLinux_x86_64::RegisterContextLinux_x86_64(
const ArchSpec &target_arch)
: lldb_private::RegisterContextLinux_x86(
target_arch,
{"orig_rax",
nullptr,
sizeof(((GPR *)nullptr)->orig_rax),
(LLVM_EXTENSION offsetof(GPR, orig_rax)),
eEncodingUint,
eFormatHex,
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr}),
m_register_info_p(GetRegisterInfoPtr(target_arch)),
m_register_info_count(GetRegisterInfoCount(target_arch)),
m_user_register_count(GetUserRegisterInfoCount(target_arch)) {}
size_t RegisterContextLinux_x86_64::GetGPRSizeStatic() { return sizeof(GPR); }
const RegisterInfo *RegisterContextLinux_x86_64::GetRegisterInfo() const {
return m_register_info_p;
}
uint32_t RegisterContextLinux_x86_64::GetRegisterCount() const {
return m_register_info_count;
}
uint32_t RegisterContextLinux_x86_64::GetUserRegisterCount() const {
return m_user_register_count;
}
|