1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
|
//===-- DynamicRegisterInfo.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Target/DynamicRegisterInfo.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/DataFormatters/FormatManager.h"
#include "lldb/Interpreter/OptionArgParser.h"
#include "lldb/Utility/ArchSpec.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegularExpression.h"
#include "lldb/Utility/StringExtractor.h"
#include "lldb/Utility/StructuredData.h"
using namespace lldb;
using namespace lldb_private;
std::unique_ptr<DynamicRegisterInfo>
DynamicRegisterInfo::Create(const StructuredData::Dictionary &dict,
const ArchSpec &arch) {
auto dyn_reg_info = std::make_unique<DynamicRegisterInfo>();
if (!dyn_reg_info)
return nullptr;
if (dyn_reg_info->SetRegisterInfo(dict, arch) == 0)
return nullptr;
return dyn_reg_info;
}
DynamicRegisterInfo::DynamicRegisterInfo(DynamicRegisterInfo &&info) {
MoveFrom(std::move(info));
}
DynamicRegisterInfo &
DynamicRegisterInfo::operator=(DynamicRegisterInfo &&info) {
MoveFrom(std::move(info));
return *this;
}
void DynamicRegisterInfo::MoveFrom(DynamicRegisterInfo &&info) {
m_regs = std::move(info.m_regs);
m_sets = std::move(info.m_sets);
m_set_reg_nums = std::move(info.m_set_reg_nums);
m_set_names = std::move(info.m_set_names);
m_value_regs_map = std::move(info.m_value_regs_map);
m_invalidate_regs_map = std::move(info.m_invalidate_regs_map);
m_reg_data_byte_size = info.m_reg_data_byte_size;
m_finalized = info.m_finalized;
if (m_finalized) {
const size_t num_sets = m_sets.size();
for (size_t set = 0; set < num_sets; ++set)
m_sets[set].registers = m_set_reg_nums[set].data();
}
info.Clear();
}
llvm::Expected<uint32_t> DynamicRegisterInfo::ByteOffsetFromSlice(
uint32_t index, llvm::StringRef slice_str, lldb::ByteOrder byte_order) {
// Slices use the following format:
// REGNAME[MSBIT:LSBIT]
// REGNAME - name of the register to grab a slice of
// MSBIT - the most significant bit at which the current register value
// starts at
// LSBIT - the least significant bit at which the current register value
// ends at
static llvm::Regex g_bitfield_regex(
"([A-Za-z_][A-Za-z0-9_]*)\\[([0-9]+):([0-9]+)\\]");
llvm::SmallVector<llvm::StringRef, 4> matches;
if (!g_bitfield_regex.match(slice_str, &matches))
return llvm::createStringError(
llvm::inconvertibleErrorCode(),
"failed to match against register bitfield regex (slice: %s)",
slice_str.str().c_str());
llvm::StringRef reg_name_str = matches[1];
llvm::StringRef msbit_str = matches[2];
llvm::StringRef lsbit_str = matches[3];
uint32_t msbit;
uint32_t lsbit;
if (!llvm::to_integer(msbit_str, msbit) ||
!llvm::to_integer(lsbit_str, lsbit))
return llvm::createStringError(
llvm::inconvertibleErrorCode(), "msbit (%s) or lsbit (%s) are invalid",
msbit_str.str().c_str(), lsbit_str.str().c_str());
if (msbit <= lsbit)
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"msbit (%u) must be greater than lsbit (%u)",
msbit, lsbit);
const uint32_t msbyte = msbit / 8;
const uint32_t lsbyte = lsbit / 8;
const RegisterInfo *containing_reg_info = GetRegisterInfo(reg_name_str);
if (!containing_reg_info)
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"invalid concrete register \"%s\"",
reg_name_str.str().c_str());
const uint32_t max_bit = containing_reg_info->byte_size * 8;
if (msbit > max_bit)
return llvm::createStringError(
llvm::inconvertibleErrorCode(),
"msbit (%u) must be less than the bitsize of the register \"%s\" (%u)",
msbit, reg_name_str.str().c_str(), max_bit);
if (lsbit > max_bit)
return llvm::createStringError(
llvm::inconvertibleErrorCode(),
"lsbit (%u) must be less than the bitsize of the register \"%s\" (%u)",
lsbit, reg_name_str.str().c_str(), max_bit);
m_invalidate_regs_map[containing_reg_info->kinds[eRegisterKindLLDB]]
.push_back(index);
m_value_regs_map[index].push_back(
containing_reg_info->kinds[eRegisterKindLLDB]);
m_invalidate_regs_map[index].push_back(
containing_reg_info->kinds[eRegisterKindLLDB]);
if (byte_order == eByteOrderLittle)
return containing_reg_info->byte_offset + lsbyte;
if (byte_order == eByteOrderBig)
return containing_reg_info->byte_offset + msbyte;
llvm_unreachable("Invalid byte order");
}
llvm::Expected<uint32_t> DynamicRegisterInfo::ByteOffsetFromComposite(
uint32_t index, StructuredData::Array &composite_reg_list,
lldb::ByteOrder byte_order) {
const size_t num_composite_regs = composite_reg_list.GetSize();
if (num_composite_regs == 0)
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"\"composite\" list is empty");
uint32_t composite_offset = UINT32_MAX;
for (uint32_t composite_idx = 0; composite_idx < num_composite_regs;
++composite_idx) {
ConstString composite_reg_name;
if (!composite_reg_list.GetItemAtIndexAsString(composite_idx,
composite_reg_name, nullptr))
return llvm::createStringError(
llvm::inconvertibleErrorCode(),
"\"composite\" list value is not a Python string at index %d",
composite_idx);
const RegisterInfo *composite_reg_info =
GetRegisterInfo(composite_reg_name.GetStringRef());
if (!composite_reg_info)
return llvm::createStringError(
llvm::inconvertibleErrorCode(),
"failed to find composite register by name: \"%s\"",
composite_reg_name.GetCString());
composite_offset =
std::min(composite_offset, composite_reg_info->byte_offset);
m_value_regs_map[index].push_back(
composite_reg_info->kinds[eRegisterKindLLDB]);
m_invalidate_regs_map[composite_reg_info->kinds[eRegisterKindLLDB]]
.push_back(index);
m_invalidate_regs_map[index].push_back(
composite_reg_info->kinds[eRegisterKindLLDB]);
}
return composite_offset;
}
llvm::Expected<uint32_t> DynamicRegisterInfo::ByteOffsetFromRegInfoDict(
uint32_t index, StructuredData::Dictionary ®_info_dict,
lldb::ByteOrder byte_order) {
uint32_t byte_offset;
if (reg_info_dict.GetValueForKeyAsInteger("offset", byte_offset))
return byte_offset;
// No offset for this register, see if the register has a value
// expression which indicates this register is part of another register.
// Value expressions are things like "rax[31:0]" which state that the
// current register's value is in a concrete register "rax" in bits 31:0.
// If there is a value expression we can calculate the offset
llvm::StringRef slice_str;
if (reg_info_dict.GetValueForKeyAsString("slice", slice_str, nullptr))
return ByteOffsetFromSlice(index, slice_str, byte_order);
StructuredData::Array *composite_reg_list;
if (reg_info_dict.GetValueForKeyAsArray("composite", composite_reg_list))
return ByteOffsetFromComposite(index, *composite_reg_list, byte_order);
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"insufficient data to calculate byte offset");
}
size_t
DynamicRegisterInfo::SetRegisterInfo(const StructuredData::Dictionary &dict,
const ArchSpec &arch) {
Log *log = GetLog(LLDBLog::Object);
assert(!m_finalized);
StructuredData::Array *sets = nullptr;
if (dict.GetValueForKeyAsArray("sets", sets)) {
const uint32_t num_sets = sets->GetSize();
for (uint32_t i = 0; i < num_sets; ++i) {
ConstString set_name;
if (sets->GetItemAtIndexAsString(i, set_name) && !set_name.IsEmpty()) {
m_sets.push_back({set_name.AsCString(), nullptr, 0, nullptr});
} else {
Clear();
printf("error: register sets must have valid names\n");
return 0;
}
}
m_set_reg_nums.resize(m_sets.size());
}
StructuredData::Array *regs = nullptr;
if (!dict.GetValueForKeyAsArray("registers", regs))
return 0;
const ByteOrder byte_order = arch.GetByteOrder();
const uint32_t num_regs = regs->GetSize();
// typedef std::map<std::string, std::vector<std::string> >
// InvalidateNameMap;
// InvalidateNameMap invalidate_map;
for (uint32_t i = 0; i < num_regs; ++i) {
StructuredData::Dictionary *reg_info_dict = nullptr;
if (!regs->GetItemAtIndexAsDictionary(i, reg_info_dict)) {
Clear();
printf("error: items in the 'registers' array must be dictionaries\n");
regs->DumpToStdout();
return 0;
}
// { 'name':'rcx' , 'bitsize' : 64, 'offset' : 16,
// 'encoding':'uint' , 'format':'hex' , 'set': 0, 'ehframe' : 2,
// 'dwarf' : 2, 'generic':'arg4', 'alt-name':'arg4', },
RegisterInfo reg_info;
std::vector<uint32_t> value_regs;
std::vector<uint32_t> invalidate_regs;
memset(®_info, 0, sizeof(reg_info));
llvm::StringRef name_val;
if (!reg_info_dict->GetValueForKeyAsString("name", name_val)) {
Clear();
printf("error: registers must have valid names and offsets\n");
reg_info_dict->DumpToStdout();
return 0;
}
reg_info.name = ConstString(name_val).GetCString();
llvm::StringRef alt_name_val;
if (reg_info_dict->GetValueForKeyAsString("alt-name", alt_name_val))
reg_info.alt_name = ConstString(alt_name_val).GetCString();
else
reg_info.alt_name = nullptr;
llvm::Expected<uint32_t> byte_offset =
ByteOffsetFromRegInfoDict(i, *reg_info_dict, byte_order);
if (byte_offset)
reg_info.byte_offset = byte_offset.get();
else {
LLDB_LOG_ERROR(log, byte_offset.takeError(),
"error while parsing register {1}: {0}", reg_info.name);
Clear();
reg_info_dict->DumpToStdout();
return 0;
}
uint64_t bitsize = 0;
if (!reg_info_dict->GetValueForKeyAsInteger("bitsize", bitsize)) {
Clear();
printf("error: invalid or missing 'bitsize' key/value pair in register "
"dictionary\n");
reg_info_dict->DumpToStdout();
return 0;
}
reg_info.byte_size = bitsize / 8;
llvm::StringRef format_str;
if (reg_info_dict->GetValueForKeyAsString("format", format_str, nullptr)) {
if (OptionArgParser::ToFormat(format_str.str().c_str(), reg_info.format,
nullptr)
.Fail()) {
Clear();
printf("error: invalid 'format' value in register dictionary\n");
reg_info_dict->DumpToStdout();
return 0;
}
} else {
reg_info_dict->GetValueForKeyAsInteger("format", reg_info.format,
eFormatHex);
}
llvm::StringRef encoding_str;
if (reg_info_dict->GetValueForKeyAsString("encoding", encoding_str))
reg_info.encoding = Args::StringToEncoding(encoding_str, eEncodingUint);
else
reg_info_dict->GetValueForKeyAsInteger("encoding", reg_info.encoding,
eEncodingUint);
size_t set = 0;
if (!reg_info_dict->GetValueForKeyAsInteger("set", set) ||
set >= m_sets.size()) {
Clear();
printf("error: invalid 'set' value in register dictionary, valid values "
"are 0 - %i\n",
(int)set);
reg_info_dict->DumpToStdout();
return 0;
}
// Fill in the register numbers
reg_info.kinds[lldb::eRegisterKindLLDB] = i;
reg_info.kinds[lldb::eRegisterKindProcessPlugin] = i;
uint32_t eh_frame_regno = LLDB_INVALID_REGNUM;
reg_info_dict->GetValueForKeyAsInteger("gcc", eh_frame_regno,
LLDB_INVALID_REGNUM);
if (eh_frame_regno == LLDB_INVALID_REGNUM)
reg_info_dict->GetValueForKeyAsInteger("ehframe", eh_frame_regno,
LLDB_INVALID_REGNUM);
reg_info.kinds[lldb::eRegisterKindEHFrame] = eh_frame_regno;
reg_info_dict->GetValueForKeyAsInteger(
"dwarf", reg_info.kinds[lldb::eRegisterKindDWARF], LLDB_INVALID_REGNUM);
llvm::StringRef generic_str;
if (reg_info_dict->GetValueForKeyAsString("generic", generic_str))
reg_info.kinds[lldb::eRegisterKindGeneric] =
Args::StringToGenericRegister(generic_str);
else
reg_info_dict->GetValueForKeyAsInteger(
"generic", reg_info.kinds[lldb::eRegisterKindGeneric],
LLDB_INVALID_REGNUM);
// Check if this register invalidates any other register values when it is
// modified
StructuredData::Array *invalidate_reg_list = nullptr;
if (reg_info_dict->GetValueForKeyAsArray("invalidate-regs",
invalidate_reg_list)) {
const size_t num_regs = invalidate_reg_list->GetSize();
if (num_regs > 0) {
for (uint32_t idx = 0; idx < num_regs; ++idx) {
ConstString invalidate_reg_name;
uint64_t invalidate_reg_num;
if (invalidate_reg_list->GetItemAtIndexAsString(
idx, invalidate_reg_name)) {
const RegisterInfo *invalidate_reg_info =
GetRegisterInfo(invalidate_reg_name.GetStringRef());
if (invalidate_reg_info) {
m_invalidate_regs_map[i].push_back(
invalidate_reg_info->kinds[eRegisterKindLLDB]);
} else {
// TODO: print error invalid slice string that doesn't follow the
// format
printf("error: failed to find a 'invalidate-regs' register for "
"\"%s\" while parsing register \"%s\"\n",
invalidate_reg_name.GetCString(), reg_info.name);
}
} else if (invalidate_reg_list->GetItemAtIndexAsInteger(
idx, invalidate_reg_num)) {
if (invalidate_reg_num != UINT64_MAX)
m_invalidate_regs_map[i].push_back(invalidate_reg_num);
else
printf("error: 'invalidate-regs' list value wasn't a valid "
"integer\n");
} else {
printf("error: 'invalidate-regs' list value wasn't a python string "
"or integer\n");
}
}
} else {
printf("error: 'invalidate-regs' contained an empty list\n");
}
}
// Calculate the register offset
const size_t end_reg_offset = reg_info.byte_offset + reg_info.byte_size;
if (m_reg_data_byte_size < end_reg_offset)
m_reg_data_byte_size = end_reg_offset;
m_regs.push_back(reg_info);
m_set_reg_nums[set].push_back(i);
}
Finalize(arch);
return m_regs.size();
}
size_t DynamicRegisterInfo::SetRegisterInfo(
std::vector<DynamicRegisterInfo::Register> &®s,
const ArchSpec &arch) {
assert(!m_finalized);
for (auto it : llvm::enumerate(regs)) {
uint32_t local_regnum = it.index();
const DynamicRegisterInfo::Register ® = it.value();
assert(reg.name);
assert(reg.set_name);
if (!reg.value_regs.empty())
m_value_regs_map[local_regnum] = std::move(reg.value_regs);
if (!reg.invalidate_regs.empty())
m_invalidate_regs_map[local_regnum] = std::move(reg.invalidate_regs);
if (reg.value_reg_offset != 0) {
assert(reg.value_regs.size() == 1);
m_value_reg_offset_map[local_regnum] = reg.value_reg_offset;
}
struct RegisterInfo reg_info {
reg.name.AsCString(), reg.alt_name.AsCString(), reg.byte_size,
reg.byte_offset, reg.encoding, reg.format,
{reg.regnum_ehframe, reg.regnum_dwarf, reg.regnum_generic,
reg.regnum_remote, local_regnum},
// value_regs and invalidate_regs are filled by Finalize()
nullptr, nullptr, reg.flags_type
};
m_regs.push_back(reg_info);
uint32_t set = GetRegisterSetIndexByName(reg.set_name, true);
assert(set < m_sets.size());
assert(set < m_set_reg_nums.size());
assert(set < m_set_names.size());
m_set_reg_nums[set].push_back(local_regnum);
};
Finalize(arch);
return m_regs.size();
}
void DynamicRegisterInfo::Finalize(const ArchSpec &arch) {
if (m_finalized)
return;
m_finalized = true;
const size_t num_sets = m_sets.size();
for (size_t set = 0; set < num_sets; ++set) {
assert(m_sets.size() == m_set_reg_nums.size());
m_sets[set].num_registers = m_set_reg_nums[set].size();
m_sets[set].registers = m_set_reg_nums[set].data();
}
// make sure value_regs are terminated with LLDB_INVALID_REGNUM
for (reg_to_regs_map::iterator pos = m_value_regs_map.begin(),
end = m_value_regs_map.end();
pos != end; ++pos) {
if (pos->second.back() != LLDB_INVALID_REGNUM)
pos->second.push_back(LLDB_INVALID_REGNUM);
}
// Now update all value_regs with each register info as needed
const size_t num_regs = m_regs.size();
for (size_t i = 0; i < num_regs; ++i) {
if (m_value_regs_map.find(i) != m_value_regs_map.end())
m_regs[i].value_regs = m_value_regs_map[i].data();
else
m_regs[i].value_regs = nullptr;
}
// Expand all invalidation dependencies
for (reg_to_regs_map::iterator pos = m_invalidate_regs_map.begin(),
end = m_invalidate_regs_map.end();
pos != end; ++pos) {
const uint32_t reg_num = pos->first;
if (m_regs[reg_num].value_regs) {
reg_num_collection extra_invalid_regs;
for (const uint32_t invalidate_reg_num : pos->second) {
reg_to_regs_map::iterator invalidate_pos =
m_invalidate_regs_map.find(invalidate_reg_num);
if (invalidate_pos != m_invalidate_regs_map.end()) {
for (const uint32_t concrete_invalidate_reg_num :
invalidate_pos->second) {
if (concrete_invalidate_reg_num != reg_num)
extra_invalid_regs.push_back(concrete_invalidate_reg_num);
}
}
}
pos->second.insert(pos->second.end(), extra_invalid_regs.begin(),
extra_invalid_regs.end());
}
}
// sort and unique all invalidate registers and make sure each is terminated
// with LLDB_INVALID_REGNUM
for (reg_to_regs_map::iterator pos = m_invalidate_regs_map.begin(),
end = m_invalidate_regs_map.end();
pos != end; ++pos) {
if (pos->second.size() > 1) {
llvm::sort(pos->second);
reg_num_collection::iterator unique_end =
std::unique(pos->second.begin(), pos->second.end());
if (unique_end != pos->second.end())
pos->second.erase(unique_end, pos->second.end());
}
assert(!pos->second.empty());
if (pos->second.back() != LLDB_INVALID_REGNUM)
pos->second.push_back(LLDB_INVALID_REGNUM);
}
// Now update all invalidate_regs with each register info as needed
for (size_t i = 0; i < num_regs; ++i) {
if (m_invalidate_regs_map.find(i) != m_invalidate_regs_map.end())
m_regs[i].invalidate_regs = m_invalidate_regs_map[i].data();
else
m_regs[i].invalidate_regs = nullptr;
}
// Check if we need to automatically set the generic registers in case they
// weren't set
bool generic_regs_specified = false;
for (const auto ® : m_regs) {
if (reg.kinds[eRegisterKindGeneric] != LLDB_INVALID_REGNUM) {
generic_regs_specified = true;
break;
}
}
if (!generic_regs_specified) {
switch (arch.GetMachine()) {
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32:
case llvm::Triple::aarch64_be:
for (auto ® : m_regs) {
if (strcmp(reg.name, "pc") == 0)
reg.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_PC;
else if ((strcmp(reg.name, "fp") == 0) ||
(strcmp(reg.name, "x29") == 0))
reg.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_FP;
else if ((strcmp(reg.name, "lr") == 0) ||
(strcmp(reg.name, "x30") == 0))
reg.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_RA;
else if ((strcmp(reg.name, "sp") == 0) ||
(strcmp(reg.name, "x31") == 0))
reg.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_SP;
else if (strcmp(reg.name, "cpsr") == 0)
reg.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_FLAGS;
}
break;
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
for (auto ® : m_regs) {
if ((strcmp(reg.name, "pc") == 0) || (strcmp(reg.name, "r15") == 0))
reg.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_PC;
else if ((strcmp(reg.name, "sp") == 0) ||
(strcmp(reg.name, "r13") == 0))
reg.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_SP;
else if ((strcmp(reg.name, "lr") == 0) ||
(strcmp(reg.name, "r14") == 0))
reg.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_RA;
else if ((strcmp(reg.name, "r7") == 0) &&
arch.GetTriple().getVendor() == llvm::Triple::Apple)
reg.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_FP;
else if ((strcmp(reg.name, "r11") == 0) &&
arch.GetTriple().getVendor() != llvm::Triple::Apple)
reg.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_FP;
else if (strcmp(reg.name, "fp") == 0)
reg.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_FP;
else if (strcmp(reg.name, "cpsr") == 0)
reg.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_FLAGS;
}
break;
case llvm::Triple::x86:
for (auto ® : m_regs) {
if ((strcmp(reg.name, "eip") == 0) || (strcmp(reg.name, "pc") == 0))
reg.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_PC;
else if ((strcmp(reg.name, "esp") == 0) ||
(strcmp(reg.name, "sp") == 0))
reg.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_SP;
else if ((strcmp(reg.name, "ebp") == 0) ||
(strcmp(reg.name, "fp") == 0))
reg.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_FP;
else if ((strcmp(reg.name, "eflags") == 0) ||
(strcmp(reg.name, "flags") == 0))
reg.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_FLAGS;
}
break;
case llvm::Triple::x86_64:
for (auto ® : m_regs) {
if ((strcmp(reg.name, "rip") == 0) || (strcmp(reg.name, "pc") == 0))
reg.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_PC;
else if ((strcmp(reg.name, "rsp") == 0) ||
(strcmp(reg.name, "sp") == 0))
reg.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_SP;
else if ((strcmp(reg.name, "rbp") == 0) ||
(strcmp(reg.name, "fp") == 0))
reg.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_FP;
else if ((strcmp(reg.name, "rflags") == 0) ||
(strcmp(reg.name, "eflags") == 0) ||
(strcmp(reg.name, "flags") == 0))
reg.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_FLAGS;
}
break;
default:
break;
}
}
// At this stage call ConfigureOffsets to calculate register offsets for
// targets supporting dynamic offset calculation. It also calculates
// total byte size of register data.
ConfigureOffsets();
// Check if register info is reconfigurable
// AArch64 SVE register set has configurable register sizes
if (arch.GetTriple().isAArch64()) {
for (const auto ® : m_regs) {
if (strcmp(reg.name, "vg") == 0) {
m_is_reconfigurable = true;
break;
}
}
}
}
void DynamicRegisterInfo::ConfigureOffsets() {
// We are going to create a map between remote (eRegisterKindProcessPlugin)
// and local (eRegisterKindLLDB) register numbers. This map will give us
// remote register numbers in increasing order for offset calculation.
std::map<uint32_t, uint32_t> remote_to_local_regnum_map;
for (const auto ® : m_regs)
remote_to_local_regnum_map[reg.kinds[eRegisterKindProcessPlugin]] =
reg.kinds[eRegisterKindLLDB];
// At this stage we manually calculate g/G packet offsets of all primary
// registers, only if target XML or qRegisterInfo packet did not send
// an offset explicitly.
uint32_t reg_offset = 0;
for (auto const ®num_pair : remote_to_local_regnum_map) {
if (m_regs[regnum_pair.second].byte_offset == LLDB_INVALID_INDEX32 &&
m_regs[regnum_pair.second].value_regs == nullptr) {
m_regs[regnum_pair.second].byte_offset = reg_offset;
reg_offset = m_regs[regnum_pair.second].byte_offset +
m_regs[regnum_pair.second].byte_size;
}
}
// Now update all value_regs with each register info as needed
for (auto ® : m_regs) {
if (reg.value_regs != nullptr) {
// Assign a valid offset to all pseudo registers that have only a single
// parent register in value_regs list, if not assigned by stub. Pseudo
// registers with value_regs list populated will share same offset as
// that of their corresponding parent register.
if (reg.byte_offset == LLDB_INVALID_INDEX32) {
uint32_t value_regnum = reg.value_regs[0];
if (value_regnum != LLDB_INVALID_INDEX32 &&
reg.value_regs[1] == LLDB_INVALID_INDEX32) {
reg.byte_offset =
GetRegisterInfoAtIndex(value_regnum)->byte_offset;
auto it = m_value_reg_offset_map.find(reg.kinds[eRegisterKindLLDB]);
if (it != m_value_reg_offset_map.end())
reg.byte_offset += it->second;
}
}
}
reg_offset = reg.byte_offset + reg.byte_size;
if (m_reg_data_byte_size < reg_offset)
m_reg_data_byte_size = reg_offset;
}
}
bool DynamicRegisterInfo::IsReconfigurable() { return m_is_reconfigurable; }
size_t DynamicRegisterInfo::GetNumRegisters() const { return m_regs.size(); }
size_t DynamicRegisterInfo::GetNumRegisterSets() const { return m_sets.size(); }
size_t DynamicRegisterInfo::GetRegisterDataByteSize() const {
return m_reg_data_byte_size;
}
const RegisterInfo *
DynamicRegisterInfo::GetRegisterInfoAtIndex(uint32_t i) const {
if (i < m_regs.size())
return &m_regs[i];
return nullptr;
}
const RegisterInfo *DynamicRegisterInfo::GetRegisterInfo(uint32_t kind,
uint32_t num) const {
uint32_t reg_index = ConvertRegisterKindToRegisterNumber(kind, num);
if (reg_index != LLDB_INVALID_REGNUM)
return &m_regs[reg_index];
return nullptr;
}
const RegisterSet *DynamicRegisterInfo::GetRegisterSet(uint32_t i) const {
if (i < m_sets.size())
return &m_sets[i];
return nullptr;
}
uint32_t
DynamicRegisterInfo::GetRegisterSetIndexByName(const ConstString &set_name,
bool can_create) {
name_collection::iterator pos, end = m_set_names.end();
for (pos = m_set_names.begin(); pos != end; ++pos) {
if (*pos == set_name)
return std::distance(m_set_names.begin(), pos);
}
m_set_names.push_back(set_name);
m_set_reg_nums.resize(m_set_reg_nums.size() + 1);
RegisterSet new_set = {set_name.AsCString(), nullptr, 0, nullptr};
m_sets.push_back(new_set);
return m_sets.size() - 1;
}
uint32_t
DynamicRegisterInfo::ConvertRegisterKindToRegisterNumber(uint32_t kind,
uint32_t num) const {
reg_collection::const_iterator pos, end = m_regs.end();
for (pos = m_regs.begin(); pos != end; ++pos) {
if (pos->kinds[kind] == num)
return std::distance(m_regs.begin(), pos);
}
return LLDB_INVALID_REGNUM;
}
void DynamicRegisterInfo::Clear() {
m_regs.clear();
m_sets.clear();
m_set_reg_nums.clear();
m_set_names.clear();
m_value_regs_map.clear();
m_invalidate_regs_map.clear();
m_reg_data_byte_size = 0;
m_finalized = false;
}
void DynamicRegisterInfo::Dump() const {
StreamFile s(stdout, false);
const size_t num_regs = m_regs.size();
s.Printf("%p: DynamicRegisterInfo contains %" PRIu64 " registers:\n",
static_cast<const void *>(this), static_cast<uint64_t>(num_regs));
for (size_t i = 0; i < num_regs; ++i) {
s.Printf("[%3" PRIu64 "] name = %-10s", (uint64_t)i, m_regs[i].name);
s.Printf(", size = %2u, offset = %4u, encoding = %u, format = %-10s",
m_regs[i].byte_size, m_regs[i].byte_offset, m_regs[i].encoding,
FormatManager::GetFormatAsCString(m_regs[i].format));
if (m_regs[i].kinds[eRegisterKindProcessPlugin] != LLDB_INVALID_REGNUM)
s.Printf(", process plugin = %3u",
m_regs[i].kinds[eRegisterKindProcessPlugin]);
if (m_regs[i].kinds[eRegisterKindDWARF] != LLDB_INVALID_REGNUM)
s.Printf(", dwarf = %3u", m_regs[i].kinds[eRegisterKindDWARF]);
if (m_regs[i].kinds[eRegisterKindEHFrame] != LLDB_INVALID_REGNUM)
s.Printf(", ehframe = %3u", m_regs[i].kinds[eRegisterKindEHFrame]);
if (m_regs[i].kinds[eRegisterKindGeneric] != LLDB_INVALID_REGNUM)
s.Printf(", generic = %3u", m_regs[i].kinds[eRegisterKindGeneric]);
if (m_regs[i].alt_name)
s.Printf(", alt-name = %s", m_regs[i].alt_name);
if (m_regs[i].value_regs) {
s.Printf(", value_regs = [ ");
for (size_t j = 0; m_regs[i].value_regs[j] != LLDB_INVALID_REGNUM; ++j) {
s.Printf("%s ", m_regs[m_regs[i].value_regs[j]].name);
}
s.Printf("]");
}
if (m_regs[i].invalidate_regs) {
s.Printf(", invalidate_regs = [ ");
for (size_t j = 0; m_regs[i].invalidate_regs[j] != LLDB_INVALID_REGNUM;
++j) {
s.Printf("%s ", m_regs[m_regs[i].invalidate_regs[j]].name);
}
s.Printf("]");
}
s.EOL();
}
const size_t num_sets = m_sets.size();
s.Printf("%p: DynamicRegisterInfo contains %" PRIu64 " register sets:\n",
static_cast<const void *>(this), static_cast<uint64_t>(num_sets));
for (size_t i = 0; i < num_sets; ++i) {
s.Printf("set[%" PRIu64 "] name = %s, regs = [", (uint64_t)i,
m_sets[i].name);
for (size_t idx = 0; idx < m_sets[i].num_registers; ++idx) {
s.Printf("%s ", m_regs[m_sets[i].registers[idx]].name);
}
s.Printf("]\n");
}
}
const lldb_private::RegisterInfo *
DynamicRegisterInfo::GetRegisterInfo(llvm::StringRef reg_name) const {
for (auto ®_info : m_regs)
if (reg_info.name == reg_name)
return ®_info;
return nullptr;
}
void lldb_private::addSupplementaryRegister(
std::vector<DynamicRegisterInfo::Register> ®s,
DynamicRegisterInfo::Register new_reg_info) {
assert(!new_reg_info.value_regs.empty());
const uint32_t reg_num = regs.size();
regs.push_back(new_reg_info);
std::map<uint32_t, std::vector<uint32_t>> new_invalidates;
for (uint32_t value_reg : new_reg_info.value_regs) {
// copy value_regs to invalidate_regs
new_invalidates[reg_num].push_back(value_reg);
// copy invalidate_regs from the parent register
llvm::append_range(new_invalidates[reg_num],
regs[value_reg].invalidate_regs);
// add reverse invalidate entries
for (uint32_t x : new_invalidates[reg_num])
new_invalidates[x].push_back(reg_num);
}
for (const auto &x : new_invalidates)
llvm::append_range(regs[x.first].invalidate_regs, x.second);
}
|