1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
#include <stdio.h>
#include <stdlib.h>
#include <mach-o/loader.h>
#include <vector>
#include <string>
#include <mach/thread_status.h>
#include <string.h>
#include <uuid/uuid.h>
// Create an empty corefile with a "kern ver str" LC_NOTE.
// If an existing binary is given as an optional 2nd argument on the cmd line,
// the UUID from that binary will be encoded in the corefile.
// Otherwise a pre-set UUID will be put in the corefile that
// is created.
union uint32_buf {
uint8_t bytebuf[4];
uint32_t val;
};
union uint64_buf {
uint8_t bytebuf[8];
uint64_t val;
};
void
add_uint64(std::vector<uint8_t> &buf, uint64_t val)
{
uint64_buf conv;
conv.val = val;
for (int i = 0; i < 8; i++)
buf.push_back(conv.bytebuf[i]);
}
void
add_uint32(std::vector<uint8_t> &buf, uint32_t val)
{
uint32_buf conv;
conv.val = val;
for (int i = 0; i < 4; i++)
buf.push_back(conv.bytebuf[i]);
}
std::vector<uint8_t>
x86_lc_thread_load_command ()
{
std::vector<uint8_t> data;
add_uint32 (data, LC_THREAD); // thread_command.cmd
add_uint32 (data, 184); // thread_command.cmdsize
add_uint32 (data, x86_THREAD_STATE64); // thread_command.flavor
add_uint32 (data, x86_THREAD_STATE64_COUNT); // thread_command.count
add_uint64 (data, 0x0000000000000000); // rax
add_uint64 (data, 0x0000000000000400); // rbx
add_uint64 (data, 0x0000000000000000); // rcx
add_uint64 (data, 0x0000000000000000); // rdx
add_uint64 (data, 0x0000000000000000); // rdi
add_uint64 (data, 0x0000000000000000); // rsi
add_uint64 (data, 0xffffff9246e2ba20); // rbp
add_uint64 (data, 0xffffff9246e2ba10); // rsp
add_uint64 (data, 0x0000000000000000); // r8
add_uint64 (data, 0x0000000000000000); // r9
add_uint64 (data, 0x0000000000000000); // r10
add_uint64 (data, 0x0000000000000000); // r11
add_uint64 (data, 0xffffff7f96ce5fe1); // r12
add_uint64 (data, 0x0000000000000000); // r13
add_uint64 (data, 0x0000000000000000); // r14
add_uint64 (data, 0xffffff9246e2bac0); // r15
add_uint64 (data, 0xffffff8015a8f6d0); // rip
add_uint64 (data, 0x0000000000011111); // rflags
add_uint64 (data, 0x0000000000022222); // cs
add_uint64 (data, 0x0000000000033333); // fs
add_uint64 (data, 0x0000000000044444); // gs
return data;
}
void
add_lc_note_kern_ver_str_load_command (std::vector<std::vector<uint8_t> > &loadcmds,
std::vector<uint8_t> &payload,
int payload_file_offset,
std::string ident)
{
std::vector<uint8_t> loadcmd_data;
add_uint32 (loadcmd_data, LC_NOTE); // note_command.cmd
add_uint32 (loadcmd_data, 40); // note_command.cmdsize
char lc_note_name[16];
memset (lc_note_name, 0, 16);
strcpy (lc_note_name, "kern ver str");
// lc_note.data_owner
for (int i = 0; i < 16; i++)
loadcmd_data.push_back (lc_note_name[i]);
// we start writing the payload at payload_file_offset to leave
// room at the start for the header & the load commands.
uint64_t current_payload_offset = payload.size() + payload_file_offset;
add_uint64 (loadcmd_data, current_payload_offset); // note_command.offset
add_uint64 (loadcmd_data, 4 + ident.size() + 1); // note_command.size
loadcmds.push_back (loadcmd_data);
add_uint32 (payload, 1); // kerneL_version_string.version
for (int i = 0; i < ident.size() + 1; i++)
{
payload.push_back (ident[i]);
}
}
void
add_lc_segment (std::vector<std::vector<uint8_t> > &loadcmds,
std::vector<uint8_t> &payload,
int payload_file_offset)
{
std::vector<uint8_t> loadcmd_data;
struct segment_command_64 seg;
seg.cmd = LC_SEGMENT_64;
seg.cmdsize = sizeof (struct segment_command_64); // no sections
memset (seg.segname, 0, 16);
seg.vmaddr = 0xffffff7f96400000;
seg.vmsize = 4096;
seg.fileoff = payload.size() + payload_file_offset;
seg.filesize = 0;
seg.maxprot = 1;
seg.initprot = 1;
seg.nsects = 0;
seg.flags = 0;
uint8_t *p = (uint8_t*) &seg;
for (int i = 0; i < sizeof (struct segment_command_64); i++)
{
loadcmd_data.push_back (*(p + i));
}
loadcmds.push_back (loadcmd_data);
}
std::string
get_uuid_from_binary (const char *fn)
{
FILE *f = fopen(fn, "r");
if (f == nullptr)
{
fprintf (stderr, "Unable to open binary '%s' to get uuid\n", fn);
exit(1);
}
uint32_t num_of_load_cmds = 0;
uint32_t size_of_load_cmds = 0;
std::string uuid;
off_t file_offset = 0;
uint8_t magic[4];
if (::fread (magic, 1, 4, f) != 4)
{
fprintf (stderr, "Failed to read magic number from input file %s\n", fn);
exit (1);
}
uint8_t magic_32_be[] = {0xfe, 0xed, 0xfa, 0xce};
uint8_t magic_32_le[] = {0xce, 0xfa, 0xed, 0xfe};
uint8_t magic_64_be[] = {0xfe, 0xed, 0xfa, 0xcf};
uint8_t magic_64_le[] = {0xcf, 0xfa, 0xed, 0xfe};
if (memcmp (magic, magic_32_be, 4) == 0 || memcmp (magic, magic_64_be, 4) == 0)
{
fprintf (stderr, "big endian corefiles not supported\n");
exit (1);
}
::fseeko (f, 0, SEEK_SET);
if (memcmp (magic, magic_32_le, 4) == 0)
{
struct mach_header mh;
if (::fread (&mh, 1, sizeof (mh), f) != sizeof (mh))
{
fprintf (stderr, "error reading mach header from input file\n");
exit (1);
}
if (mh.cputype != CPU_TYPE_X86_64)
{
fprintf (stderr, "This tool creates an x86_64 corefile but "
"the supplied binary '%s' is cputype 0x%x\n",
fn, (uint32_t) mh.cputype);
exit (1);
}
num_of_load_cmds = mh.ncmds;
size_of_load_cmds = mh.sizeofcmds;
file_offset += sizeof (struct mach_header);
}
else
{
struct mach_header_64 mh;
if (::fread (&mh, 1, sizeof (mh), f) != sizeof (mh))
{
fprintf (stderr, "error reading mach header from input file\n");
exit (1);
}
if (mh.cputype != CPU_TYPE_X86_64)
{
fprintf (stderr, "This tool creates an x86_64 corefile but "
"the supplied binary '%s' is cputype 0x%x\n",
fn, (uint32_t) mh.cputype);
exit (1);
}
num_of_load_cmds = mh.ncmds;
size_of_load_cmds = mh.sizeofcmds;
file_offset += sizeof (struct mach_header_64);
}
off_t load_cmds_offset = file_offset;
for (int i = 0; i < num_of_load_cmds && (file_offset - load_cmds_offset) < size_of_load_cmds; i++)
{
::fseeko (f, file_offset, SEEK_SET);
uint32_t cmd;
uint32_t cmdsize;
::fread (&cmd, sizeof (uint32_t), 1, f);
::fread (&cmdsize, sizeof (uint32_t), 1, f);
if (cmd == LC_UUID)
{
struct uuid_command uuidcmd;
::fseeko (f, file_offset, SEEK_SET);
if (::fread (&uuidcmd, 1, sizeof (uuidcmd), f) != sizeof (uuidcmd))
{
fprintf (stderr, "Unable to read LC_UUID load command.\n");
exit (1);
}
uuid_string_t uuidstr;
uuid_unparse (uuidcmd.uuid, uuidstr);
uuid = uuidstr;
break;
}
file_offset += cmdsize;
}
return uuid;
}
int main (int argc, char **argv)
{
if (argc != 2 && argc != 3)
{
fprintf (stderr, "usage: create-empty-corefile <output-core-name> [binary-to-copy-uuid-from]\n");
fprintf (stderr, "Create a Mach-O corefile with an LC_NOTE 'kern ver str' load command/payload\n");
fprintf (stderr, "If a binary is given as a second argument, the Mach-O UUID of that file will\n");
fprintf (stderr, "be read and used in the corefile's LC_NOTE payload.\n");
exit (1);
}
std::string ident = "EFI UUID=3F9BA21F-55EA-356A-A349-BBA6F51FE8B1";
if (argc == 3)
{
std::string uuid_from_file = get_uuid_from_binary (argv[2]);
if (!uuid_from_file.empty())
{
ident = "EFI UUID=";
ident += uuid_from_file;
}
}
// An array of load commands (in the form of byte arrays)
std::vector<std::vector<uint8_t> > load_commands;
// An array of corefile contents (page data, lc_note data, etc)
std::vector<uint8_t> payload;
// First add all the load commands / payload so we can figure out how large
// the load commands will actually be.
load_commands.push_back (x86_lc_thread_load_command());
add_lc_note_kern_ver_str_load_command (load_commands, payload, 0, ident);
add_lc_segment (load_commands, payload, 0);
int size_of_load_commands = 0;
for (const auto &lc : load_commands)
size_of_load_commands += lc.size();
int header_and_load_cmd_room = sizeof (struct mach_header_64) + size_of_load_commands;
// Erase the load commands / payload now that we know how much space is needed,
// redo it.
load_commands.clear();
payload.clear();
load_commands.push_back (x86_lc_thread_load_command());
add_lc_note_kern_ver_str_load_command (load_commands, payload, header_and_load_cmd_room, ident);
add_lc_segment (load_commands, payload, header_and_load_cmd_room);
struct mach_header_64 mh;
mh.magic = MH_MAGIC_64;
mh.cputype = CPU_TYPE_X86_64;
mh.cpusubtype = CPU_SUBTYPE_X86_64_ALL;
mh.filetype = MH_CORE;
mh.ncmds = load_commands.size();
mh.sizeofcmds = size_of_load_commands;
mh.flags = 0;
mh.reserved = 0;
FILE *f = fopen (argv[1], "w");
if (f == nullptr)
{
fprintf (stderr, "Unable to open file %s for writing\n", argv[1]);
exit (1);
}
fwrite (&mh, sizeof (struct mach_header_64), 1, f);
for (const auto &lc : load_commands)
fwrite (lc.data(), lc.size(), 1, f);
fseek (f, header_and_load_cmd_room, SEEK_SET);
fwrite (payload.data(), payload.size(), 1, f);
fclose (f);
}
|