1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
//===-- DNBBreakpoint.cpp ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/29/07.
//
//===----------------------------------------------------------------------===//
#include "DNBBreakpoint.h"
#include "DNBLog.h"
#include "MachProcess.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#pragma mark-- DNBBreakpoint
DNBBreakpoint::DNBBreakpoint(nub_addr_t addr, nub_size_t byte_size,
bool hardware)
: m_retain_count(1), m_byte_size(static_cast<uint32_t>(byte_size)),
m_opcode(), m_addr(addr), m_enabled(0), m_hw_preferred(hardware),
m_is_watchpoint(0), m_watch_read(0), m_watch_write(0),
m_hw_index(INVALID_NUB_HW_INDEX) {}
DNBBreakpoint::~DNBBreakpoint() = default;
void DNBBreakpoint::Dump() const {
if (IsBreakpoint()) {
DNBLog("DNBBreakpoint addr = 0x%llx state = %s type = %s breakpoint "
"hw_index = %i",
(uint64_t)m_addr, m_enabled ? "enabled " : "disabled",
IsHardware() ? "hardware" : "software", GetHardwareIndex());
} else {
DNBLog("DNBBreakpoint addr = 0x%llx size = %llu state = %s type = %s "
"watchpoint (%s%s) hw_index = %i",
(uint64_t)m_addr, (uint64_t)m_byte_size,
m_enabled ? "enabled " : "disabled",
IsHardware() ? "hardware" : "software", m_watch_read ? "r" : "",
m_watch_write ? "w" : "", GetHardwareIndex());
}
}
#pragma mark-- DNBBreakpointList
DNBBreakpointList::DNBBreakpointList() = default;
DNBBreakpointList::~DNBBreakpointList() = default;
DNBBreakpoint *DNBBreakpointList::Add(nub_addr_t addr, nub_size_t length,
bool hardware) {
m_breakpoints.insert(
std::make_pair(addr, DNBBreakpoint(addr, length, hardware)));
iterator pos = m_breakpoints.find(addr);
return &pos->second;
}
bool DNBBreakpointList::Remove(nub_addr_t addr) {
iterator pos = m_breakpoints.find(addr);
if (pos != m_breakpoints.end()) {
m_breakpoints.erase(pos);
return true;
}
return false;
}
DNBBreakpoint *DNBBreakpointList::FindByAddress(nub_addr_t addr) {
iterator pos = m_breakpoints.find(addr);
if (pos != m_breakpoints.end())
return &pos->second;
return NULL;
}
const DNBBreakpoint *DNBBreakpointList::FindByAddress(nub_addr_t addr) const {
const_iterator pos = m_breakpoints.find(addr);
if (pos != m_breakpoints.end())
return &pos->second;
return NULL;
}
const DNBBreakpoint *
DNBBreakpointList::FindByHardwareIndex(uint32_t idx) const {
for (const auto &pos : m_breakpoints)
if (pos.second.GetHardwareIndex() == idx)
return &pos.second;
return nullptr;
}
const DNBBreakpoint *
DNBBreakpointList::FindNearestWatchpoint(nub_addr_t addr) const {
// Exact match
for (const auto &pos : m_breakpoints) {
if (pos.second.IsEnabled()) {
nub_addr_t start_addr = pos.second.Address();
nub_addr_t end_addr = start_addr + pos.second.ByteSize();
if (addr >= start_addr && addr <= end_addr)
return &pos.second;
}
}
// Find watchpoint nearest to this address
// before or after the watched region of memory
const DNBBreakpoint *closest = nullptr;
uint32_t best_match = UINT32_MAX;
for (const auto &pos : m_breakpoints) {
if (pos.second.IsEnabled()) {
nub_addr_t start_addr = pos.second.Address();
nub_addr_t end_addr = start_addr + pos.second.ByteSize();
uint32_t delta = addr < start_addr ? start_addr - addr : addr - end_addr;
if (delta < best_match) {
closest = &pos.second;
best_match = delta;
}
}
}
return closest;
}
// Finds the next breakpoint at an address greater than or equal to "addr"
size_t DNBBreakpointList::FindBreakpointsThatOverlapRange(
nub_addr_t addr, nub_addr_t size, std::vector<DNBBreakpoint *> &bps) {
bps.clear();
iterator end = m_breakpoints.end();
// Find the first breakpoint with an address >= to "addr"
iterator pos = m_breakpoints.lower_bound(addr);
if (pos != end) {
if (pos != m_breakpoints.begin()) {
// Watch out for a breakpoint at an address less than "addr" that might
// still overlap
iterator prev_pos = pos;
--prev_pos;
if (prev_pos->second.IntersectsRange(addr, size, NULL, NULL, NULL))
bps.push_back(&pos->second);
}
while (pos != end) {
// When we hit a breakpoint whose start address is greater than "addr +
// size" we are done.
// Do the math in a way that doesn't risk unsigned overflow with bad
// input.
if ((pos->second.Address() - addr) >= size)
break;
// Check if this breakpoint overlaps, and if it does, add it to the list
if (pos->second.IntersectsRange(addr, size, NULL, NULL, NULL)) {
bps.push_back(&pos->second);
++pos;
}
}
}
return bps.size();
}
void DNBBreakpointList::Dump() const {
const_iterator pos;
const_iterator end = m_breakpoints.end();
for (pos = m_breakpoints.begin(); pos != end; ++pos)
pos->second.Dump();
}
void DNBBreakpointList::DisableAll() {
iterator pos, end = m_breakpoints.end();
for (pos = m_breakpoints.begin(); pos != end; ++pos)
pos->second.SetEnabled(false);
}
void DNBBreakpointList::RemoveTrapsFromBuffer(nub_addr_t addr, nub_size_t size,
void *p) const {
uint8_t *buf = (uint8_t *)p;
const_iterator end = m_breakpoints.end();
const_iterator pos = m_breakpoints.lower_bound(addr);
while (pos != end && (pos->first < (addr + size))) {
nub_addr_t intersect_addr;
nub_size_t intersect_size;
nub_size_t opcode_offset;
const DNBBreakpoint &bp = pos->second;
if (bp.IntersectsRange(addr, size, &intersect_addr, &intersect_size,
&opcode_offset)) {
assert(addr <= intersect_addr && intersect_addr < addr + size);
assert(addr < intersect_addr + intersect_size &&
intersect_addr + intersect_size <= addr + size);
assert(opcode_offset + intersect_size <= bp.ByteSize());
nub_size_t buf_offset = intersect_addr - addr;
::memcpy(buf + buf_offset, bp.SavedOpcodeBytes() + opcode_offset,
intersect_size);
}
++pos;
}
}
void DNBBreakpointList::DisableAllBreakpoints(MachProcess *process) {
iterator pos, end = m_breakpoints.end();
for (pos = m_breakpoints.begin(); pos != end; ++pos)
process->DisableBreakpoint(pos->second.Address(), false);
}
void DNBBreakpointList::DisableAllWatchpoints(MachProcess *process) {
iterator pos, end = m_breakpoints.end();
for (pos = m_breakpoints.begin(); pos != end; ++pos)
process->DisableWatchpoint(pos->second.Address(), false);
}
void DNBBreakpointList::RemoveDisabled() {
iterator pos = m_breakpoints.begin();
while (pos != m_breakpoints.end()) {
if (!pos->second.IsEnabled())
pos = m_breakpoints.erase(pos);
else
++pos;
}
}
|