1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
//===-- DataDumpExtractorTest.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/DumpDataExtractor.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Endian.h"
#include "lldb/Utility/StreamString.h"
#include "gtest/gtest.h"
#include <complex>
#include <limits>
using namespace lldb;
using namespace lldb_private;
static void TestDumpWithAddress(uint64_t base_addr, size_t item_count,
llvm::StringRef expected) {
std::vector<uint8_t> data{0x11, 0x22};
StreamString result;
DataBufferHeap dumpbuffer(&data[0], data.size());
DataExtractor extractor(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
endian::InlHostByteOrder(), /*addr_size=*/4);
DumpDataExtractor(extractor, &result, 0, lldb::Format::eFormatHex,
/*item_byte_size=*/1, item_count,
/*num_per_line=*/1, base_addr, 0, 0);
ASSERT_EQ(expected, result.GetString());
}
TEST(DumpDataExtractorTest, BaseAddress) {
TestDumpWithAddress(0x12341234, 1, "0x12341234: 0x11");
TestDumpWithAddress(LLDB_INVALID_ADDRESS, 1, "0x11");
TestDumpWithAddress(0x12341234, 2, "0x12341234: 0x11\n0x12341235: 0x22");
TestDumpWithAddress(LLDB_INVALID_ADDRESS, 2, "0x11\n0x22");
}
static void TestDumpWithOffset(offset_t start_offset,
llvm::StringRef expected) {
std::vector<uint8_t> data{0x11, 0x22, 0x33};
StreamString result;
DataBufferHeap dumpbuffer(&data[0], data.size());
DataExtractor extractor(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
endian::InlHostByteOrder(), /*addr_size=*/4);
DumpDataExtractor(extractor, &result, start_offset, lldb::Format::eFormatHex,
/*item_byte_size=*/1, /*item_count=*/data.size(),
/*num_per_line=*/data.size(), /*base_addr=*/0, 0, 0);
ASSERT_EQ(expected, result.GetString());
}
TEST(DumpDataExtractorTest, StartOffset) {
TestDumpWithOffset(0, "0x00000000: 0x11 0x22 0x33");
// The offset applies to the DataExtractor, not the address used when
// formatting.
TestDumpWithOffset(1, "0x00000000: 0x22 0x33");
// If the offset is outside the DataExtractor's range we do nothing.
TestDumpWithOffset(3, "");
}
TEST(DumpDataExtractorTest, NullStream) {
// We don't do any work if there is no output stream.
uint8_t c = 0x11;
StreamString result;
DataBufferHeap dumpbuffer(&c, 0);
DataExtractor extractor(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
endian::InlHostByteOrder(), /*addr_size=*/4);
DumpDataExtractor(extractor, nullptr, 0, lldb::Format::eFormatHex,
/*item_byte_size=*/1, /*item_count=*/1,
/*num_per_line=*/1, /*base_addr=*/0, 0, 0);
ASSERT_EQ("", result.GetString());
}
static void TestDumpImpl(const void *data, size_t data_size,
size_t item_byte_size, size_t item_count,
size_t num_per_line, uint64_t base_addr,
lldb::Format format, llvm::StringRef expected) {
StreamString result;
DataBufferHeap dumpbuffer(data, data_size);
DataExtractor extractor(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
endian::InlHostByteOrder(),
/*addr_size=*/4);
DumpDataExtractor(extractor, &result, 0, format, item_byte_size, item_count,
num_per_line, base_addr, 0, 0);
ASSERT_EQ(expected, result.GetString());
}
template <typename T>
static void TestDump(T data, lldb::Format format, llvm::StringRef expected) {
TestDumpImpl(&data, sizeof(T), sizeof(T), 1, 1, LLDB_INVALID_ADDRESS, format,
expected);
}
static void TestDump(llvm::StringRef str, lldb::Format format,
llvm::StringRef expected) {
TestDumpImpl(str.bytes_begin(),
// +1 to include the NULL char as the last byte
str.size() + 1, str.size() + 1, 1, 1, LLDB_INVALID_ADDRESS,
format, expected);
}
template <typename T>
static void TestDump(const std::vector<T> data, lldb::Format format,
llvm::StringRef expected) {
size_t sz_bytes = data.size() * sizeof(T);
TestDumpImpl(&data[0], sz_bytes, sz_bytes, data.size(), 1,
LLDB_INVALID_ADDRESS, format, expected);
}
TEST(DumpDataExtractorTest, Formats) {
TestDump<uint8_t>(1, lldb::eFormatDefault, "0x01");
TestDump<uint8_t>(1, lldb::eFormatBoolean, "true");
TestDump<uint8_t>(0xAA, lldb::eFormatBinary, "0b10101010");
TestDump<uint8_t>(1, lldb::eFormatBytes, "01");
TestDump<uint8_t>(1, lldb::eFormatBytesWithASCII, "01 .");
TestDump('?', lldb::eFormatChar, "'?'");
TestDump('\x1A', lldb::eFormatCharPrintable, ".");
TestDump('#', lldb::eFormatCharPrintable, "#");
TestDump(std::complex<float>(1.2, 3.4), lldb::eFormatComplex, "1.2 + 3.4i");
TestDump(std::complex<double>(4.5, 6.7), lldb::eFormatComplex, "4.5 + 6.7i");
// long double is not tested here because for some platforms we treat it as 10
// bytes when the compiler allocates 16 bytes of space for it. (see
// DataExtractor::GetLongDouble) Meaning that when we extract the second one,
// it gets the wrong value (it's 6 bytes off). You could manually construct a
// set of bytes to match the 10 byte format but then if the test runs on a
// machine where we don't use 10 it'll break.
// Test printable characters.
TestDump(llvm::StringRef("aardvark"), lldb::Format::eFormatCString,
"\"aardvark\"");
// Test unprintable characters.
TestDump(llvm::StringRef("\xcf\xfa\xed\xfe\f"), lldb::Format::eFormatCString,
"\"\\xcf\\xfa\\xed\\xfe\\f\"");
// Test a mix of printable and unprintable characters.
TestDump(llvm::StringRef("\xcf\xfa\ffoo"), lldb::Format::eFormatCString,
"\"\\xcf\\xfa\\ffoo\"");
TestDump<uint16_t>(99, lldb::Format::eFormatDecimal, "99");
// Just prints as a signed integer.
TestDump(-1, lldb::Format::eFormatEnum, "-1");
TestDump(0xcafef00d, lldb::Format::eFormatHex, "0xcafef00d");
TestDump(0xcafef00d, lldb::Format::eFormatHexUppercase, "0xCAFEF00D");
TestDump(0.456, lldb::Format::eFormatFloat, "0.45600000000000002");
TestDump(9, lldb::Format::eFormatOctal, "011");
// Chars packed into an integer.
TestDump<uint32_t>(0x4C4C4442, lldb::Format::eFormatOSType, "'LLDB'");
// Unicode8 doesn't have a specific formatter.
TestDump<uint8_t>(0x34, lldb::Format::eFormatUnicode8, "0x34");
TestDump<uint16_t>(0x1122, lldb::Format::eFormatUnicode16, "U+1122");
TestDump<uint32_t>(0x12345678, lldb::Format::eFormatUnicode32,
"U+0x12345678");
TestDump<unsigned int>(654321, lldb::Format::eFormatUnsigned, "654321");
// This pointer is printed based on the size of uint64_t, so the test is the
// same for 32/64 bit host.
TestDump<uint64_t>(0x4444555566667777, lldb::Format::eFormatPointer,
"0x4444555566667777");
TestDump(std::vector<char>{'A', '\x01', 'C'},
lldb::Format::eFormatVectorOfChar, "{A\\x01C}");
TestDump(std::vector<int8_t>{0, -1, std::numeric_limits<int8_t>::max()},
lldb::Format::eFormatVectorOfSInt8, "{0 -1 127}");
TestDump(std::vector<uint8_t>{12, 0xFF, 34},
lldb::Format::eFormatVectorOfUInt8, "{0x0c 0xff 0x22}");
TestDump(std::vector<int16_t>{-1, 1234, std::numeric_limits<int16_t>::max()},
lldb::Format::eFormatVectorOfSInt16, "{-1 1234 32767}");
TestDump(std::vector<uint16_t>{0xffff, 0xabcd, 0x1234},
lldb::Format::eFormatVectorOfUInt16, "{0xffff 0xabcd 0x1234}");
TestDump(std::vector<int32_t>{0, -1, std::numeric_limits<int32_t>::max()},
lldb::Format::eFormatVectorOfSInt32, "{0 -1 2147483647}");
TestDump(std::vector<uint32_t>{0, 0xffffffff, 0x1234abcd},
lldb::Format::eFormatVectorOfUInt32,
"{0x00000000 0xffffffff 0x1234abcd}");
TestDump(std::vector<int64_t>{0, -1, std::numeric_limits<int64_t>::max()},
lldb::Format::eFormatVectorOfSInt64, "{0 -1 9223372036854775807}");
TestDump(std::vector<uint64_t>{0, 0xaaaabbbbccccdddd},
lldb::Format::eFormatVectorOfUInt64,
"{0x0000000000000000 0xaaaabbbbccccdddd}");
// See half2float for format details.
// Test zeroes.
TestDump(std::vector<uint16_t>{0x0000, 0x8000},
lldb::Format::eFormatVectorOfFloat16, "{0 -0}");
// Some subnormal numbers.
TestDump(std::vector<uint16_t>{0x0001, 0x8001},
lldb::Format::eFormatVectorOfFloat16, "{5.9605E-8 -5.9605E-8}");
// A full mantisse and empty expontent.
TestDump(std::vector<uint16_t>{0x83ff, 0x03ff},
lldb::Format::eFormatVectorOfFloat16, "{-6.0976E-5 6.0976E-5}");
// Some normal numbers.
TestDump(std::vector<uint16_t>{0b0100001001001000},
lldb::Format::eFormatVectorOfFloat16, "{3.1406}");
// Largest and smallest normal number.
TestDump(std::vector<uint16_t>{0x0400, 0x7bff},
lldb::Format::eFormatVectorOfFloat16, "{6.1035E-5 65504}");
TestDump(std::vector<uint16_t>{0xabcd, 0x1234},
lldb::Format::eFormatVectorOfFloat16, "{-0.060944 7.5722E-4}");
// quiet/signaling NaNs.
TestDump(std::vector<uint16_t>{0xffff, 0xffc0, 0x7fff, 0x7fc0},
lldb::Format::eFormatVectorOfFloat16, "{NaN NaN NaN NaN}");
// +/-Inf.
TestDump(std::vector<uint16_t>{0xfc00, 0x7c00},
lldb::Format::eFormatVectorOfFloat16, "{-Inf +Inf}");
TestDump(std::vector<float>{std::numeric_limits<float>::min(),
std::numeric_limits<float>::max()},
lldb::Format::eFormatVectorOfFloat32,
"{1.17549435E-38 3.40282347E+38}");
TestDump(std::vector<float>{std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::signaling_NaN(),
-std::numeric_limits<float>::quiet_NaN(),
-std::numeric_limits<float>::signaling_NaN()},
lldb::Format::eFormatVectorOfFloat32, "{NaN NaN NaN NaN}");
TestDump(std::vector<double>{std::numeric_limits<double>::min(),
std::numeric_limits<double>::max()},
lldb::Format::eFormatVectorOfFloat64,
"{2.2250738585072014E-308 1.7976931348623157E+308}");
TestDump(
std::vector<double>{
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::signaling_NaN(),
-std::numeric_limits<double>::quiet_NaN(),
-std::numeric_limits<double>::signaling_NaN(),
},
lldb::Format::eFormatVectorOfFloat64, "{NaN NaN NaN NaN}");
// Not sure we can rely on having uint128_t everywhere so emulate with
// uint64_t.
TestDump(
std::vector<uint64_t>{0x1, 0x1111222233334444, 0xaaaabbbbccccdddd, 0x0},
lldb::Format::eFormatVectorOfUInt128,
"{0x11112222333344440000000000000001 "
"0x0000000000000000aaaabbbbccccdddd}");
TestDump(std::vector<int>{2, 4}, lldb::Format::eFormatComplexInteger,
"2 + 4i");
// Without an execution context this just prints the pointer on its own.
TestDump<uint32_t>(0x11223344, lldb::Format::eFormatAddressInfo,
"0x11223344");
// Input not written in hex form because that requires C++17.
TestDump<float>(10, lldb::Format::eFormatHexFloat, "0x1.4p3");
TestDump<double>(10, lldb::Format::eFormatHexFloat, "0x1.4p3");
// long double not supported, see ItemByteSizeErrors.
// Can't disassemble without an execution context.
TestDump<uint32_t>(0xcafef00d, lldb::Format::eFormatInstruction,
"invalid target");
// Has no special handling, intended for use elsewhere.
TestDump<int>(99, lldb::Format::eFormatVoid, "0x00000063");
}
TEST(DumpDataExtractorTest, FormatCharArray) {
// Unlike the other formats, charArray isn't 1 array of N chars.
// It must be passed as N chars of 1 byte each.
// (eFormatVectorOfChar does this swap for you)
std::vector<char> data{'A', '\x01', '#'};
StreamString result;
DataBufferHeap dumpbuffer(&data[0], data.size());
DataExtractor extractor(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
endian::InlHostByteOrder(), /*addr_size=*/4);
DumpDataExtractor(extractor, &result, 0, lldb::Format::eFormatCharArray,
/*item_byte_size=*/1,
/*item_count=*/data.size(),
/*num_per_line=*/data.size(), 0, 0, 0);
ASSERT_EQ("0x00000000: A\\x01#", result.GetString());
result.Clear();
DumpDataExtractor(extractor, &result, 0, lldb::Format::eFormatCharArray, 1,
data.size(), 1, 0, 0, 0);
// ASSERT macro thinks the split strings are multiple arguments so make a var.
const char *expected = "0x00000000: A\n"
"0x00000001: \\x01\n"
"0x00000002: #";
ASSERT_EQ(expected, result.GetString());
}
template <typename T>
void TestDumpMultiLine(std::vector<T> data, lldb::Format format,
size_t num_per_line, llvm::StringRef expected) {
size_t sz_bytes = data.size() * sizeof(T);
TestDumpImpl(&data[0], sz_bytes, data.size(), sz_bytes, num_per_line,
0x80000000, format, expected);
}
template <typename T>
void TestDumpMultiLine(const T *data, size_t num_items, lldb::Format format,
size_t num_per_line, llvm::StringRef expected) {
TestDumpImpl(data, sizeof(T) * num_items, sizeof(T), num_items, num_per_line,
0x80000000, format, expected);
}
TEST(DumpDataExtractorTest, MultiLine) {
// A vector counts as 1 item regardless of size.
TestDumpMultiLine(std::vector<uint8_t>{0x11},
lldb::Format::eFormatVectorOfUInt8, 1,
"0x80000000: {0x11}");
TestDumpMultiLine(std::vector<uint8_t>{0x11, 0x22},
lldb::Format::eFormatVectorOfUInt8, 1,
"0x80000000: {0x11 0x22}");
// If you have multiple vectors then that's multiple items.
// Here we say that these 2 bytes are actually 2 1 byte vectors.
const std::vector<uint8_t> vector_data{0x11, 0x22};
TestDumpMultiLine(vector_data.data(), 2, lldb::Format::eFormatVectorOfUInt8,
1, "0x80000000: {0x11}\n0x80000001: {0x22}");
// Single value formats can span multiple lines.
const std::vector<uint8_t> bytes{0x11, 0x22, 0x33};
const char *expected_bytes_3_line = "0x80000000: 0x11\n"
"0x80000001: 0x22\n"
"0x80000002: 0x33";
TestDumpMultiLine(bytes.data(), bytes.size(), lldb::Format::eFormatHex, 1,
expected_bytes_3_line);
// Lines may not have the full number of items.
TestDumpMultiLine(bytes.data(), bytes.size(), lldb::Format::eFormatHex, 4,
"0x80000000: 0x11 0x22 0x33");
const char *expected_bytes_2_line = "0x80000000: 0x11 0x22\n"
"0x80000002: 0x33";
TestDumpMultiLine(bytes.data(), bytes.size(), lldb::Format::eFormatHex, 2,
expected_bytes_2_line);
// The line address accounts for item sizes other than 1 byte.
const std::vector<uint16_t> shorts{0x1111, 0x2222, 0x3333};
const char *expected_shorts_2_line = "0x80000000: 0x1111 0x2222\n"
"0x80000004: 0x3333";
TestDumpMultiLine(shorts.data(), shorts.size(), lldb::Format::eFormatHex, 2,
expected_shorts_2_line);
// The ascii column is positioned using the maximum line length.
const std::vector<char> chars{'L', 'L', 'D', 'B'};
const char *expected_chars_2_lines = "0x80000000: 4c 4c 44 LLD\n"
"0x80000003: 42 B";
TestDumpMultiLine(chars.data(), chars.size(),
lldb::Format::eFormatBytesWithASCII, 3,
expected_chars_2_lines);
}
void TestDumpWithItemByteSize(size_t item_byte_size, lldb::Format format,
llvm::StringRef expected) {
// We won't be reading this data so anything will do.
uint8_t dummy = 0;
TestDumpImpl(&dummy, 1, item_byte_size, 1, 1, LLDB_INVALID_ADDRESS, format,
expected);
}
TEST(DumpDataExtractorTest, ItemByteSizeErrors) {
TestDumpWithItemByteSize(
16, lldb::Format::eFormatBoolean,
"error: unsupported byte size (16) for boolean format");
TestDumpWithItemByteSize(21, lldb::Format::eFormatChar,
"error: unsupported byte size (21) for char format");
TestDumpWithItemByteSize(
18, lldb::Format::eFormatComplexInteger,
"error: unsupported byte size (18) for complex integer format");
// The code uses sizeof(long double) for these checks. This changes by host
// but we know it won't be >16.
TestDumpWithItemByteSize(
34, lldb::Format::eFormatComplex,
"error: unsupported byte size (34) for complex float format");
TestDumpWithItemByteSize(
18, lldb::Format::eFormatFloat,
"error: unsupported byte size (18) for float format");
// We want sizes to exactly match one of float/double.
TestDumpWithItemByteSize(
14, lldb::Format::eFormatComplex,
"error: unsupported byte size (14) for complex float format");
TestDumpWithItemByteSize(3, lldb::Format::eFormatFloat,
"error: unsupported byte size (3) for float format");
// We only allow float and double size.
TestDumpWithItemByteSize(
1, lldb::Format::eFormatHexFloat,
"error: unsupported byte size (1) for hex float format");
TestDumpWithItemByteSize(
17, lldb::Format::eFormatHexFloat,
"error: unsupported byte size (17) for hex float format");
}
|