1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
|
//===-- TestRISCVEmulator.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "gtest/gtest.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Utility/ArchSpec.h"
#include "lldb/Utility/RegisterValue.h"
#include "Plugins/Instruction/RISCV/EmulateInstructionRISCV.h"
#include "Plugins/Process/Utility/RegisterInfoPOSIX_riscv64.h"
#include "Plugins/Process/Utility/lldb-riscv-register-enums.h"
using namespace llvm;
using namespace lldb;
using namespace lldb_private;
struct RISCVEmulatorTester : public EmulateInstructionRISCV, testing::Test {
RegisterInfoPOSIX_riscv64::GPR gpr;
RegisterInfoPOSIX_riscv64::FPR fpr;
uint8_t memory[1024] = {0};
RISCVEmulatorTester(std::string triple = "riscv64-unknown-linux-gnu")
: EmulateInstructionRISCV(ArchSpec(triple)) {
EmulateInstruction::SetReadRegCallback(ReadRegisterCallback);
EmulateInstruction::SetWriteRegCallback(WriteRegisterCallback);
EmulateInstruction::SetReadMemCallback(ReadMemoryCallback);
EmulateInstruction::SetWriteMemCallback(WriteMemoryCallback);
ClearAll();
}
static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
const RegisterInfo *reg_info,
RegisterValue ®_value) {
RISCVEmulatorTester *tester = (RISCVEmulatorTester *)instruction;
uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
if (reg == gpr_x0_riscv)
reg_value.SetUInt(0, reg_info->byte_size);
if (reg >= gpr_pc_riscv && reg <= gpr_x31_riscv)
reg_value.SetUInt(tester->gpr.gpr[reg], reg_info->byte_size);
if (reg >= fpr_f0_riscv && reg <= fpr_f31_riscv)
reg_value.SetUInt(tester->fpr.fpr[reg - fpr_f0_riscv],
reg_info->byte_size);
if (reg == fpr_fcsr_riscv)
reg_value.SetUInt(tester->fpr.fcsr, reg_info->byte_size);
return true;
}
static bool WriteRegisterCallback(EmulateInstruction *instruction,
void *baton, const Context &context,
const RegisterInfo *reg_info,
const RegisterValue ®_value) {
RISCVEmulatorTester *tester = (RISCVEmulatorTester *)instruction;
uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
if (reg >= gpr_pc_riscv && reg <= gpr_x31_riscv)
tester->gpr.gpr[reg] = reg_value.GetAsUInt64();
if (reg >= fpr_f0_riscv && reg <= fpr_f31_riscv)
tester->fpr.fpr[reg - fpr_f0_riscv] = reg_value.GetAsUInt64();
if (reg == fpr_fcsr_riscv)
tester->fpr.fcsr = reg_value.GetAsUInt32();
return true;
}
static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
const Context &context, addr_t addr,
void *dst, size_t length) {
RISCVEmulatorTester *tester = (RISCVEmulatorTester *)instruction;
assert(addr + length < sizeof(tester->memory));
memcpy(dst, tester->memory + addr, length);
return length;
};
static size_t WriteMemoryCallback(EmulateInstruction *instruction,
void *baton, const Context &context,
addr_t addr, const void *dst,
size_t length) {
RISCVEmulatorTester *tester = (RISCVEmulatorTester *)instruction;
assert(addr + length < sizeof(tester->memory));
memcpy(tester->memory + addr, dst, length);
return length;
};
bool DecodeAndExecute(uint32_t inst, bool ignore_cond) {
return llvm::transformOptional(
Decode(inst),
[&](DecodeResult res) { return Execute(res, ignore_cond); })
.value_or(false);
}
void ClearAll() {
memset(&gpr, 0, sizeof(gpr));
memset(&fpr, 0, sizeof(fpr));
memset(memory, 0, sizeof(memory));
}
};
TEST_F(RISCVEmulatorTester, testJAL) {
addr_t old_pc = 0x114514;
WritePC(old_pc);
// jal x1, -6*4
uint32_t inst = 0b11111110100111111111000011101111;
ASSERT_TRUE(DecodeAndExecute(inst, false));
auto x1 = gpr.gpr[1];
auto pc = ReadPC();
ASSERT_TRUE(pc.has_value());
ASSERT_EQ(x1, old_pc + 4);
ASSERT_EQ(*pc, old_pc + (-6 * 4));
}
constexpr uint32_t EncodeIType(uint32_t opcode, uint32_t funct3, uint32_t rd,
uint32_t rs1, uint32_t imm) {
return imm << 20 | rs1 << 15 | funct3 << 12 | rd << 7 | opcode;
}
constexpr uint32_t EncodeJALR(uint32_t rd, uint32_t rs1, int32_t offset) {
return EncodeIType(0b1100111, 0, rd, rs1, uint32_t(offset));
}
TEST_F(RISCVEmulatorTester, testJALR) {
addr_t old_pc = 0x114514;
addr_t old_x2 = 0x1024;
WritePC(old_pc);
gpr.gpr[2] = old_x2;
// jalr x1, x2(-255)
uint32_t inst = EncodeJALR(1, 2, -255);
ASSERT_TRUE(DecodeAndExecute(inst, false));
auto x1 = gpr.gpr[1];
auto pc = ReadPC();
ASSERT_TRUE(pc.has_value());
ASSERT_EQ(x1, old_pc + 4);
// JALR always zeros the bottom bit of the target address.
ASSERT_EQ(*pc, (old_x2 + (-255)) & (~1));
}
constexpr uint32_t EncodeBType(uint32_t opcode, uint32_t funct3, uint32_t rs1,
uint32_t rs2, uint32_t imm) {
uint32_t bimm = (imm & (0b1 << 11)) >> 4 | (imm & (0b11110)) << 7 |
(imm & (0b111111 << 5)) << 20 | (imm & (0b1 << 12)) << 19;
return rs2 << 20 | rs1 << 15 | funct3 << 12 | opcode | bimm;
}
constexpr uint32_t BEQ(uint32_t rs1, uint32_t rs2, int32_t offset) {
return EncodeBType(0b1100011, 0b000, rs1, rs2, uint32_t(offset));
}
constexpr uint32_t BNE(uint32_t rs1, uint32_t rs2, int32_t offset) {
return EncodeBType(0b1100011, 0b001, rs1, rs2, uint32_t(offset));
}
constexpr uint32_t BLT(uint32_t rs1, uint32_t rs2, int32_t offset) {
return EncodeBType(0b1100011, 0b100, rs1, rs2, uint32_t(offset));
}
constexpr uint32_t BGE(uint32_t rs1, uint32_t rs2, int32_t offset) {
return EncodeBType(0b1100011, 0b101, rs1, rs2, uint32_t(offset));
}
constexpr uint32_t BLTU(uint32_t rs1, uint32_t rs2, int32_t offset) {
return EncodeBType(0b1100011, 0b110, rs1, rs2, uint32_t(offset));
}
constexpr uint32_t BGEU(uint32_t rs1, uint32_t rs2, int32_t offset) {
return EncodeBType(0b1100011, 0b111, rs1, rs2, uint32_t(offset));
}
using EncoderB = uint32_t (*)(uint32_t rs1, uint32_t rs2, int32_t offset);
static void testBranch(RISCVEmulatorTester *tester, EncoderB encoder,
bool branched, uint64_t rs1, uint64_t rs2) {
// prepare test registers
addr_t old_pc = 0x114514;
tester->WritePC(old_pc);
tester->gpr.gpr[1] = rs1;
tester->gpr.gpr[2] = rs2;
// b<cmp> x1, x2, (-256)
uint32_t inst = encoder(1, 2, -256);
ASSERT_TRUE(tester->DecodeAndExecute(inst, false));
auto pc = tester->ReadPC();
ASSERT_TRUE(pc.has_value());
ASSERT_EQ(*pc, old_pc + (branched ? (-256) : 0));
}
#define GEN_BRANCH_TEST(name, rs1, rs2_branched, rs2_continued) \
TEST_F(RISCVEmulatorTester, test##name##Branched) { \
testBranch(this, name, true, rs1, rs2_branched); \
} \
TEST_F(RISCVEmulatorTester, test##name##Continued) { \
testBranch(this, name, false, rs1, rs2_continued); \
}
static void CheckRD(RISCVEmulatorTester *tester, uint64_t rd, uint64_t value) {
ASSERT_EQ(tester->gpr.gpr[rd], value);
}
template <typename T>
static void CheckMem(RISCVEmulatorTester *tester, uint64_t addr,
uint64_t value) {
auto mem = tester->ReadMem<T>(addr);
ASSERT_TRUE(mem.has_value());
ASSERT_EQ(*mem, value);
}
using RS1 = uint64_t;
using RS2 = uint64_t;
using PC = uint64_t;
using RDComputer = std::function<uint64_t(RS1, RS2, PC)>;
static void TestInst(RISCVEmulatorTester *tester, DecodeResult inst,
bool has_rs2, RDComputer rd_val) {
addr_t old_pc = 0x114514;
tester->WritePC(old_pc);
uint32_t rd = DecodeRD(inst.inst);
uint32_t rs1 = DecodeRS1(inst.inst);
uint32_t rs2 = 0;
uint64_t rs1_val = 0x19;
uint64_t rs2_val = 0x81;
if (rs1)
tester->gpr.gpr[rs1] = rs1_val;
if (has_rs2) {
rs2 = DecodeRS2(inst.inst);
if (rs2) {
if (rs1 == rs2)
rs2_val = rs1_val;
tester->gpr.gpr[rs2] = rs2_val;
}
}
ASSERT_TRUE(tester->Execute(inst, false));
CheckRD(tester, rd, rd_val(rs1_val, rs2 ? rs2_val : 0, old_pc));
}
template <typename T>
static void TestAtomic(RISCVEmulatorTester *tester, uint64_t inst, T rs1_val,
T rs2_val, T rd_expected, T mem_expected) {
// Atomic inst must have rs1 and rs2
uint32_t rd = DecodeRD(inst);
uint32_t rs1 = DecodeRS1(inst);
uint32_t rs2 = DecodeRS2(inst);
// addr was stored in rs1
uint64_t atomic_addr = 0x100;
tester->gpr.gpr[rs1] = atomic_addr;
tester->gpr.gpr[rs2] = rs2_val;
// Write and check rs1_val in atomic_addr
ASSERT_TRUE(tester->WriteMem<T>(atomic_addr, rs1_val));
CheckMem<T>(tester, atomic_addr, rs1_val);
ASSERT_TRUE(tester->DecodeAndExecute(inst, false));
CheckRD(tester, rd, rd_expected);
CheckMem<T>(tester, atomic_addr, mem_expected);
}
TEST_F(RISCVEmulatorTester, TestAtomicSequence) {
this->WritePC(0x0);
*(uint32_t *)this->memory = 0x100427af; // lr.w a5,(s0)
*(uint32_t *)(this->memory + 4) = 0x00079663; // bnez a5,12
*(uint32_t *)(this->memory + 8) = 0x1ce426af; // sc.w.aq a3,a4,(s0)
*(uint32_t *)(this->memory + 12) = 0xfe069ae3; // bnez a3,-12
ASSERT_TRUE(this->DecodeAndExecute(*(uint32_t *)this->memory, false));
ASSERT_EQ(this->gpr.gpr[0], uint64_t(16));
}
struct TestDecode {
uint32_t inst;
RISCVInst inst_type;
};
TEST_F(RISCVEmulatorTester, TestCDecode) {
std::vector<TestDecode> tests = {
{0x0000, INVALID{0x0000}},
{0x0010, RESERVED{0x0010}},
// ADDI4SPN here, decode as ADDI
{0x0024, ADDI{Rd{9}, Rs{2}, 8}},
{0x2084, FLD{Rd{9}, Rs{9}, 0}},
{0x4488, LW{Rd{10}, Rs{9}, 8}},
{0x6488, LD{Rd{10}, Rs{9}, 8}},
{0xA084, FSD{Rs{9}, Rs{9}, 0}},
{0xC488, SW{Rs{9}, Rs{10}, 8}},
{0xE488, SD{Rs{9}, Rs{10}, 8}},
{0x1001, NOP{0x1001}},
{0x1085, ADDI{Rd{1}, Rs{1}, uint32_t(-31)}},
{0x2081, ADDIW{Rd{1}, Rs{1}, 0}},
// ADDI16SP here, decode as ADDI
{0x7101, ADDI{Rd{2}, Rs{2}, uint32_t(-512)}},
{0x4081, ADDI{Rd{1}, Rs{0}, 0}},
{0x7081, LUI{Rd{1}, uint32_t(-131072)}},
{0x8085, SRLI{Rd{9}, Rs{9}, 1}},
{0x8485, SRAI{Rd{9}, Rs{9}, 1}},
{0x8881, ANDI{Rd{9}, Rs{9}, 0}},
{0x8C85, SUB{Rd{9}, Rs{9}, Rs{9}}},
{0x8CA5, XOR{Rd{9}, Rs{9}, Rs{9}}},
{0x8CC5, OR{Rd{9}, Rs{9}, Rs{9}}},
{0x8CE5, AND{Rd{9}, Rs{9}, Rs{9}}},
{0x9C85, SUBW{Rd{9}, Rs{9}, Rs{9}}},
{0x9CA5, ADDW{Rd{9}, Rs{9}, Rs{9}}},
// C.J here, decoded as JAL
{0xA001, JAL{Rd{0}, 0}},
{0xC081, B{Rs{9}, Rs{0}, 0, 0b000}},
{0xE081, B{Rs{9}, Rs{0}, 0, 0b001}},
{0x1082, SLLI{Rd{1}, Rs{1}, 32}},
{0x1002, HINT{0x1002}},
// SLLI64 here, decoded as HINT if not in RV128
{0x0082, HINT{0x0082}},
// FLDSP here, decoded as FLD
{0x2082, FLD{Rd{1}, Rs{2}, 0}},
// LWSP here, decoded as LW
{0x4082, LW{Rd{1}, Rs{2}, 0}},
// LDSP here, decoded as LD
{0x6082, LD{Rd{1}, Rs{2}, 0}},
// C.JR here, decoded as JALR
{0x8082, JALR{Rd{0}, Rs{1}, 0}},
// C.MV here, decoded as ADD
{0x8086, ADD{Rd{1}, Rs{0}, Rs{1}}},
{0x9002, EBREAK{0x9002}},
{0x9082, JALR{Rd{1}, Rs{1}, 0}},
{0x9086, ADD{Rd{1}, Rs{1}, Rs{1}}},
// C.FSDSP here, decoded as FSD
{0xA006, FSD{Rs{2}, Rs{1}, 0}},
// C.SWSP here, decoded as SW
{0xC006, SW{Rs{2}, Rs{1}, 0}},
// C.SDSP here, decoded as SD
{0xE006, SD{Rs{2}, Rs{1}, 0}},
};
for (auto i : tests) {
auto decode = this->Decode(i.inst);
ASSERT_TRUE(decode.has_value());
ASSERT_EQ(decode->decoded, i.inst_type);
}
}
class RISCVEmulatorTester32 : public RISCVEmulatorTester {
public:
RISCVEmulatorTester32() : RISCVEmulatorTester("riscv32-unknown-linux-gnu") {}
};
TEST_F(RISCVEmulatorTester32, TestCDecodeRV32) {
std::vector<TestDecode> tests = {
{0x6002, FLW{Rd{0}, Rs{2}, 0}},
{0xE006, FSW{Rs{2}, Rs{1}, 0}},
{0x6000, FLW{Rd{8}, Rs{8}, 0}},
{0xE000, FSW{Rs{8}, Rs{8}, 0}},
{0x2084, FLD{Rd{9}, Rs{9}, 0}},
{0xA084, FSD{Rs{9}, Rs{9}, 0}},
{0x2082, FLD{Rd{1}, Rs{2}, 0}},
{0xA006, FSD{Rs{2}, Rs{1}, 0}},
};
for (auto i : tests) {
auto decode = this->Decode(i.inst);
ASSERT_TRUE(decode.has_value());
ASSERT_EQ(decode->decoded, i.inst_type);
}
}
// GEN_BRANCH_TEST(opcode, imm1, imm2, imm3):
// It should branch for instruction `opcode imm1, imm2`
// It should do nothing for instruction `opcode imm1, imm3`
GEN_BRANCH_TEST(BEQ, 1, 1, 0)
GEN_BRANCH_TEST(BNE, 1, 0, 1)
GEN_BRANCH_TEST(BLT, -2, 1, -3)
GEN_BRANCH_TEST(BGE, -2, -3, 1)
GEN_BRANCH_TEST(BLTU, -2, -1, 1)
GEN_BRANCH_TEST(BGEU, -2, 1, -1)
struct TestData {
uint32_t inst;
std::string name;
bool has_rs2;
RDComputer rd_val;
};
TEST_F(RISCVEmulatorTester, TestDecodeAndExcute) {
std::vector<TestData> tests = {
// RV32I & RV64I Tests
{0x00010113, "ADDI", false, [](RS1 rs1, RS2, PC) { return rs1 + 0; }},
{0x00023517, "AUIPC", false, [](RS1, RS2, PC pc) { return pc + 143360; }},
{0x0006079b, "ADDIW", false, [](RS1 rs1, RS2, PC) { return rs1 + 0; }},
{0x00110837, "LUI", false, [](RS1, RS2, PC pc) { return 1114112; }},
{0x00147513, "ANDI", false, [](RS1 rs1, RS2, PC) { return rs1 & 1; }},
{0x00153513, "SLTIU", false, [](RS1 rs1, RS2, PC) { return 0; }},
{0x00256513, "ORI", false, [](RS1 rs1, RS2, PC) { return rs1 | 2; }},
{0x00451a13, "SLLI", false, [](RS1 rs1, RS2, PC) { return rs1 << 4; }},
{0x00455693, "SRLI", false, [](RS1 rs1, RS2, PC) { return rs1 >> 4; }},
{0x00a035b3, "SLTU", true, [](RS1 rs1, RS2 rs2, PC) { return rs2 != 0; }},
{0x00b50633, "ADD", true, [](RS1 rs1, RS2 rs2, PC) { return rs1 + rs2; }},
{0x40d507b3, "SUB", true, [](RS1 rs1, RS2 rs2, PC) { return rs1 - rs2; }},
// RV32M & RV64M Tests
{0x02f787b3, "MUL", true, [](RS1 rs1, RS2 rs2, PC) { return rs1 * rs2; }},
{0x2F797B3, "MULH", true, [](RS1 rs1, RS2 rs2, PC) { return 0; }},
{0x2F7A7B3, "MULHSU", true, [](RS1 rs1, RS2 rs2, PC) { return 0; }},
{0x2F7B7B3, "MULHU", true, [](RS1 rs1, RS2 rs2, PC) { return 0; }},
{0x02f747b3, "DIV", true, [](RS1 rs1, RS2 rs2, PC) { return rs1 / rs2; }},
{0x02f757b3, "DIVU", true,
[](RS1 rs1, RS2 rs2, PC) { return rs1 / rs2; }},
{0x02f767b3, "REM", true, [](RS1 rs1, RS2 rs2, PC) { return rs1 % rs2; }},
{0x02f777b3, "REMU", true,
[](RS1 rs1, RS2 rs2, PC) { return rs1 % rs2; }},
{0x02f787bb, "MULW", true,
[](RS1 rs1, RS2 rs2, PC) { return rs1 * rs2; }},
{0x02f747bb, "DIVW", true,
[](RS1 rs1, RS2 rs2, PC) { return rs1 / rs2; }},
{0x02f757bb, "DIVUW", true,
[](RS1 rs1, RS2 rs2, PC) { return rs1 / rs2; }},
{0x02f767bb, "REMW", true,
[](RS1 rs1, RS2 rs2, PC) { return rs1 % rs2; }},
{0x02f777bb, "REMUW", true,
[](RS1 rs1, RS2 rs2, PC) { return rs1 % rs2; }},
};
for (auto i : tests) {
auto decode = this->Decode(i.inst);
ASSERT_TRUE(decode.has_value());
std::string name = decode->pattern.name;
ASSERT_EQ(name, i.name);
TestInst(this, *decode, i.has_rs2, i.rd_val);
}
}
TEST_F(RISCVEmulatorTester, TestAMOSWAP) {
TestAtomic<uint32_t>(this, 0x8F7282F, 0x1, 0x2, 0x1, 0x2);
TestAtomic<uint64_t>(this, 0x8F7382F, 0x1, 0x2, 0x1, 0x2);
}
TEST_F(RISCVEmulatorTester, TestAMOADD) {
TestAtomic<uint32_t>(this, 0xF7282F, 0x1, 0x2, 0x1, 0x3);
TestAtomic<uint64_t>(this, 0xF7382F, 0x1, 0x2, 0x1, 0x3);
}
TEST_F(RISCVEmulatorTester, TestAMOXOR) {
TestAtomic<uint32_t>(this, 0x20F7282F, 0x1, 0x2, 0x1, 0x3);
TestAtomic<uint32_t>(this, 0x20F7382F, 0x1, 0x2, 0x1, 0x3);
}
TEST_F(RISCVEmulatorTester, TestAMOAND) {
TestAtomic<uint32_t>(this, 0x60F7282F, 0x1, 0x2, 0x1, 0x0);
TestAtomic<uint64_t>(this, 0x60F7382F, 0x1, 0x2, 0x1, 0x0);
}
TEST_F(RISCVEmulatorTester, TestAMOOR) {
TestAtomic<uint32_t>(this, 0x40F7282F, 0x1, 0x2, 0x1, 0x3);
TestAtomic<uint32_t>(this, 0x40F7382F, 0x1, 0x2, 0x1, 0x3);
}
TEST_F(RISCVEmulatorTester, TestAMOMIN) {
TestAtomic<uint32_t>(this, 0x80F7282F, 0x1, 0x2, 0x1, 0x1);
TestAtomic<uint64_t>(this, 0x80F7382F, 0x1, 0x2, 0x1, 0x1);
}
TEST_F(RISCVEmulatorTester, TestAMOMAX) {
TestAtomic<uint32_t>(this, 0xA0F7282F, 0x1, 0x2, 0x1, 0x2);
TestAtomic<uint64_t>(this, 0xA0F7382F, 0x1, 0x2, 0x1, 0x2);
}
TEST_F(RISCVEmulatorTester, TestAMOMINU) {
TestAtomic<uint32_t>(this, 0xC0F7282F, 0x1, 0x2, 0x1, 0x1);
TestAtomic<uint64_t>(this, 0xC0F7382F, 0x1, 0x2, 0x1, 0x1);
}
TEST_F(RISCVEmulatorTester, TestAMOMAXU) {
TestAtomic<uint32_t>(this, 0xE0F7282F, 0x1, 0x2, 0x1, 0x2);
TestAtomic<uint64_t>(this, 0xE0F7382F, 0x1, 0x2, 0x1, 0x2);
}
template <typename T> struct F_D_CalInst {
uint32_t inst;
std::string name;
T rs1_val;
T rs2_val;
T rd_val;
};
using FloatCalInst = F_D_CalInst<float>;
using DoubleCalInst = F_D_CalInst<double>;
template <typename T>
static void TestF_D_CalInst(RISCVEmulatorTester *tester, DecodeResult inst,
T rs1_val, T rs2_val, T rd_exp) {
std::vector<std::string> CMPs = {"FEQ_S", "FLT_S", "FLE_S",
"FEQ_D", "FLT_D", "FLE_D"};
std::vector<std::string> FMAs = {"FMADD_S", "FMSUB_S", "FNMSUB_S",
"FNMADD_S", "FMADD_D", "FMSUB_D",
"FNMSUB_D", "FNMADD_D"};
uint32_t rd = DecodeRD(inst.inst);
uint32_t rs1 = DecodeRS1(inst.inst);
uint32_t rs2 = DecodeRS2(inst.inst);
APFloat ap_rs1_val(rs1_val);
APFloat ap_rs2_val(rs2_val);
APFloat ap_rs3_val(0.0f);
static_assert(std::is_same_v<T, float> || std::is_same_v<T, double>,
"T should be float or double");
if constexpr (std::is_same_v<T, float>)
ap_rs3_val = APFloat(0.5f);
if constexpr (std::is_same_v<T, double>)
ap_rs3_val = APFloat(0.5);
if (rs1)
tester->fpr.fpr[rs1] = ap_rs1_val.bitcastToAPInt().getZExtValue();
if (rs2)
tester->fpr.fpr[rs2] = ap_rs2_val.bitcastToAPInt().getZExtValue();
for (auto i : FMAs) {
if (inst.pattern.name == i) {
uint32_t rs3 = DecodeRS3(inst.inst);
tester->fpr.fpr[rs3] = ap_rs3_val.bitcastToAPInt().getZExtValue();
}
}
ASSERT_TRUE(tester->Execute(inst, false));
for (auto i : CMPs) {
if (inst.pattern.name == i) {
ASSERT_EQ(tester->gpr.gpr[rd], rd_exp);
return;
}
}
if constexpr (std::is_same_v<T, float>) {
APInt apInt(32, tester->fpr.fpr[rd]);
APFloat rd_val(apInt.bitsToFloat());
ASSERT_EQ(rd_val.convertToFloat(), rd_exp);
}
if constexpr (std::is_same_v<T, double>) {
APInt apInt(64, tester->fpr.fpr[rd]);
APFloat rd_val(apInt.bitsToDouble());
ASSERT_EQ(rd_val.convertToDouble(), rd_exp);
}
}
TEST_F(RISCVEmulatorTester, TestFloatInst) {
std::vector<FloatCalInst> tests = {
{0x21F253, "FADD_S", 0.5f, 0.5f, 1.0f},
{0x821F253, "FSUB_S", 1.0f, 0.5f, 0.5f},
{0x1021F253, "FMUL_S", 0.5f, 0.5f, 0.25f},
{0x1821F253, "FDIV_S", 0.1f, 0.1f, 1.0f},
{0x20218253, "FSGNJ_S", 0.5f, 0.2f, 0.5f},
{0x20219253, "FSGNJN_S", 0.5f, -1.0f, 0.5f},
{0x2021A253, "FSGNJX_S", -0.5f, -0.5f, 0.5f},
{0x2021A253, "FSGNJX_S", -0.5f, 0.5f, -0.5f},
{0x28218253, "FMIN_S", -0.5f, 0.5f, -0.5f},
{0x28218253, "FMIN_S", -0.5f, -0.6f, -0.6f},
{0x28218253, "FMIN_S", 0.5f, 0.6f, 0.5f},
{0x28219253, "FMAX_S", -0.5f, -0.6f, -0.5f},
{0x28219253, "FMAX_S", 0.5f, 0.6f, 0.6f},
{0x28219253, "FMAX_S", 0.5f, -0.6f, 0.5f},
{0xA021A253, "FEQ_S", 0.5f, 0.5f, 1},
{0xA021A253, "FEQ_S", 0.5f, -0.5f, 0},
{0xA021A253, "FEQ_S", -0.5f, 0.5f, 0},
{0xA021A253, "FEQ_S", 0.4f, 0.5f, 0},
{0xA0219253, "FLT_S", 0.4f, 0.5f, 1},
{0xA0219253, "FLT_S", 0.5f, 0.5f, 0},
{0xA0218253, "FLE_S", 0.4f, 0.5f, 1},
{0xA0218253, "FLE_S", 0.5f, 0.5f, 1},
{0x4021F243, "FMADD_S", 0.5f, 0.5f, 0.75f},
{0x4021F247, "FMSUB_S", 0.5f, 0.5f, -0.25f},
{0x4021F24B, "FNMSUB_S", 0.5f, 0.5f, 0.25f},
{0x4021F24F, "FNMADD_S", 0.5f, 0.5f, -0.75f},
};
for (auto i : tests) {
auto decode = this->Decode(i.inst);
ASSERT_TRUE(decode.has_value());
std::string name = decode->pattern.name;
ASSERT_EQ(name, i.name);
TestF_D_CalInst(this, *decode, i.rs1_val, i.rs2_val, i.rd_val);
}
}
TEST_F(RISCVEmulatorTester, TestDoubleInst) {
std::vector<DoubleCalInst> tests = {
{0x221F253, "FADD_D", 0.5, 0.5, 1.0},
{0xA21F253, "FSUB_D", 1.0, 0.5, 0.5},
{0x1221F253, "FMUL_D", 0.5, 0.5, 0.25},
{0x1A21F253, "FDIV_D", 0.1, 0.1, 1.0},
{0x22218253, "FSGNJ_D", 0.5, 0.2, 0.5},
{0x22219253, "FSGNJN_D", 0.5, -1.0, 0.5},
{0x2221A253, "FSGNJX_D", -0.5, -0.5, 0.5},
{0x2221A253, "FSGNJX_D", -0.5, 0.5, -0.5},
{0x2A218253, "FMIN_D", -0.5, 0.5, -0.5},
{0x2A218253, "FMIN_D", -0.5, -0.6, -0.6},
{0x2A218253, "FMIN_D", 0.5, 0.6, 0.5},
{0x2A219253, "FMAX_D", -0.5, -0.6, -0.5},
{0x2A219253, "FMAX_D", 0.5, 0.6, 0.6},
{0x2A219253, "FMAX_D", 0.5, -0.6, 0.5},
{0xA221A253, "FEQ_D", 0.5, 0.5, 1},
{0xA221A253, "FEQ_D", 0.5, -0.5, 0},
{0xA221A253, "FEQ_D", -0.5, 0.5, 0},
{0xA221A253, "FEQ_D", 0.4, 0.5, 0},
{0xA2219253, "FLT_D", 0.4, 0.5, 1},
{0xA2219253, "FLT_D", 0.5, 0.5, 0},
{0xA2218253, "FLE_D", 0.4, 0.5, 1},
{0xA2218253, "FLE_D", 0.5, 0.5, 1},
{0x4221F243, "FMADD_D", 0.5, 0.5, 0.75},
{0x4221F247, "FMSUB_D", 0.5, 0.5, -0.25},
{0x4221F24B, "FNMSUB_D", 0.5, 0.5, 0.25},
{0x4221F24F, "FNMADD_D", 0.5, 0.5, -0.75},
};
for (auto i : tests) {
auto decode = this->Decode(i.inst);
ASSERT_TRUE(decode.has_value());
std::string name = decode->pattern.name;
ASSERT_EQ(name, i.name);
TestF_D_CalInst(this, *decode, i.rs1_val, i.rs2_val, i.rd_val);
}
}
template <typename T>
static void TestInverse(RISCVEmulatorTester *tester, uint32_t f_reg,
uint32_t x_reg, DecodeResult f2i, DecodeResult i2f,
APFloat apf_val) {
uint64_t exp_x;
if constexpr (std::is_same_v<T, float>)
exp_x = uint64_t(apf_val.convertToFloat());
if constexpr (std::is_same_v<T, double>)
exp_x = uint64_t(apf_val.convertToDouble());
T exp_f = T(exp_x);
// convert float/double to int.
tester->fpr.fpr[f_reg] = apf_val.bitcastToAPInt().getZExtValue();
ASSERT_TRUE(tester->Execute(f2i, false));
ASSERT_EQ(tester->gpr.gpr[x_reg], exp_x);
// then convert int to float/double back.
ASSERT_TRUE(tester->Execute(i2f, false));
ASSERT_EQ(tester->fpr.fpr[f_reg],
APFloat(exp_f).bitcastToAPInt().getZExtValue());
}
struct FCVTInst {
uint32_t f2i;
uint32_t i2f;
APFloat data;
bool isDouble;
};
TEST_F(RISCVEmulatorTester, TestFCVT) {
std::vector<FCVTInst> tests{
// FCVT_W_S and FCVT_S_W
{0xC000F0D3, 0xD000F0D3, APFloat(12.0f), false},
// FCVT_WU_S and FCVT_S_WU
{0xC010F0D3, 0xD010F0D3, APFloat(12.0f), false},
// FCVT_L_S and FCVT_S_L
{0xC020F0D3, 0xD020F0D3, APFloat(12.0f), false},
// FCVT_LU_S and FCVT_S_LU
{0xC030F0D3, 0xD030F0D3, APFloat(12.0f), false},
// FCVT_W_D and FCVT_D_W
{0xC200F0D3, 0xD200F0D3, APFloat(12.0), true},
// FCVT_WU_D and FCVT_D_WU
{0xC210F0D3, 0xD210F0D3, APFloat(12.0), true},
// FCVT_L_D and FCVT_D_L
{0xC220F0D3, 0xD220F0D3, APFloat(12.0), true},
// FCVT_LU_D and FCVT_D_LU
{0xC230F0D3, 0xD230F0D3, APFloat(12.0), true},
};
for (auto i : tests) {
auto f2i = this->Decode(i.f2i);
auto i2f = this->Decode(i.i2f);
ASSERT_TRUE(f2i.has_value());
ASSERT_TRUE(i2f.has_value());
uint32_t f_reg = DecodeRS1((*f2i).inst);
uint32_t x_reg = DecodeRS1((*i2f).inst);
if (i.isDouble)
TestInverse<double>(this, f_reg, x_reg, *f2i, *i2f, i.data);
else
TestInverse<float>(this, f_reg, x_reg, *f2i, *i2f, i.data);
}
}
TEST_F(RISCVEmulatorTester, TestFDInverse) {
// FCVT_S_D
auto d2f = this->Decode(0x4010F0D3);
// FCVT_S_D
auto f2d = this->Decode(0x4200F0D3);
ASSERT_TRUE(d2f.has_value());
ASSERT_TRUE(f2d.has_value());
auto data = APFloat(12.0);
uint32_t reg = DecodeRS1((*d2f).inst);
float exp_f = 12.0f;
double exp_d = 12.0;
// double to float
this->fpr.fpr[reg] = data.bitcastToAPInt().getZExtValue();
ASSERT_TRUE(this->Execute(*d2f, false));
ASSERT_EQ(this->fpr.fpr[reg], APFloat(exp_f).bitcastToAPInt().getZExtValue());
// float to double
ASSERT_TRUE(this->Execute(*f2d, false));
ASSERT_EQ(this->fpr.fpr[reg], APFloat(exp_d).bitcastToAPInt().getZExtValue());
}
TEST_F(RISCVEmulatorTester, TestFloatLSInst) {
uint32_t FLWInst = 0x1A207; // imm = 0
uint32_t FSWInst = 0x21A827; // imm = 16
APFloat apf(12.0f);
uint64_t bits = apf.bitcastToAPInt().getZExtValue();
*(uint64_t *)this->memory = bits;
auto decode = this->Decode(FLWInst);
ASSERT_TRUE(decode.has_value());
std::string name = decode->pattern.name;
ASSERT_EQ(name, "FLW");
ASSERT_TRUE(this->Execute(*decode, false));
ASSERT_EQ(this->fpr.fpr[DecodeRD(FLWInst)], bits);
this->fpr.fpr[DecodeRS2(FSWInst)] = bits;
decode = this->Decode(FSWInst);
ASSERT_TRUE(decode.has_value());
name = decode->pattern.name;
ASSERT_EQ(name, "FSW");
ASSERT_TRUE(this->Execute(*decode, false));
ASSERT_EQ(*(uint32_t *)(this->memory + 16), bits);
}
TEST_F(RISCVEmulatorTester, TestDoubleLSInst) {
uint32_t FLDInst = 0x1B207; // imm = 0
uint32_t FSDInst = 0x21B827; // imm = 16
APFloat apf(12.0);
uint64_t bits = apf.bitcastToAPInt().getZExtValue();
*(uint64_t *)this->memory = bits;
auto decode = this->Decode(FLDInst);
ASSERT_TRUE(decode.has_value());
std::string name = decode->pattern.name;
ASSERT_EQ(name, "FLD");
ASSERT_TRUE(this->Execute(*decode, false));
ASSERT_EQ(this->fpr.fpr[DecodeRD(FLDInst)], bits);
this->fpr.fpr[DecodeRS2(FSDInst)] = bits;
decode = this->Decode(FSDInst);
ASSERT_TRUE(decode.has_value());
name = decode->pattern.name;
ASSERT_EQ(name, "FSD");
ASSERT_TRUE(this->Execute(*decode, false));
ASSERT_EQ(*(uint64_t *)(this->memory + 16), bits);
}
TEST_F(RISCVEmulatorTester, TestFMV_X_WInst) {
auto FMV_X_WInst = 0xE0018253;
APFloat apf(12.0f);
auto exp_bits = apf.bitcastToAPInt().getZExtValue();
this->fpr.fpr[DecodeRS1(FMV_X_WInst)] = NanBoxing(exp_bits);
auto decode = this->Decode(FMV_X_WInst);
ASSERT_TRUE(decode.has_value());
std::string name = decode->pattern.name;
ASSERT_EQ(name, "FMV_X_W");
ASSERT_TRUE(this->Execute(*decode, false));
ASSERT_EQ(this->gpr.gpr[DecodeRD(FMV_X_WInst)], exp_bits);
}
TEST_F(RISCVEmulatorTester, TestFMV_X_DInst) {
auto FMV_X_DInst = 0xE2018253;
APFloat apf(12.0);
auto exp_bits = apf.bitcastToAPInt().getZExtValue();
this->fpr.fpr[DecodeRS1(FMV_X_DInst)] = exp_bits;
auto decode = this->Decode(FMV_X_DInst);
ASSERT_TRUE(decode.has_value());
std::string name = decode->pattern.name;
ASSERT_EQ(name, "FMV_X_D");
ASSERT_TRUE(this->Execute(*decode, false));
ASSERT_EQ(this->gpr.gpr[DecodeRD(FMV_X_DInst)], exp_bits);
}
TEST_F(RISCVEmulatorTester, TestFMV_W_XInst) {
auto FMV_W_XInst = 0xF0018253;
APFloat apf(12.0f);
uint64_t exp_bits = NanUnBoxing(apf.bitcastToAPInt().getZExtValue());
this->gpr.gpr[DecodeRS1(FMV_W_XInst)] = exp_bits;
auto decode = this->Decode(FMV_W_XInst);
ASSERT_TRUE(decode.has_value());
std::string name = decode->pattern.name;
ASSERT_EQ(name, "FMV_W_X");
ASSERT_TRUE(this->Execute(*decode, false));
ASSERT_EQ(this->fpr.fpr[DecodeRD(FMV_W_XInst)], exp_bits);
}
TEST_F(RISCVEmulatorTester, TestFMV_D_XInst) {
auto FMV_D_XInst = 0xF2018253;
APFloat apf(12.0);
uint64_t bits = apf.bitcastToAPInt().getZExtValue();
this->gpr.gpr[DecodeRS1(FMV_D_XInst)] = bits;
auto decode = this->Decode(FMV_D_XInst);
ASSERT_TRUE(decode.has_value());
std::string name = decode->pattern.name;
ASSERT_EQ(name, "FMV_D_X");
ASSERT_TRUE(this->Execute(*decode, false));
ASSERT_EQ(this->fpr.fpr[DecodeRD(FMV_D_XInst)], bits);
}
|