1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
//===- GenericCycleInfo.h - Info for Cycles in any IR ------*- C++ -*------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Find all cycles in a control-flow graph, including irreducible loops.
///
/// See docs/CycleTerminology.rst for a formal definition of cycles.
///
/// Briefly:
/// - A cycle is a generalization of a loop which can represent
/// irreducible control flow.
/// - Cycles identified in a program are implementation defined,
/// depending on the DFS traversal chosen.
/// - Cycles are well-nested, and form a forest with a parent-child
/// relationship.
/// - In any choice of DFS, every natural loop L is represented by a
/// unique cycle C which is a superset of L.
/// - In the absence of irreducible control flow, the cycles are
/// exactly the natural loops in the program.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_GENERICCYCLEINFO_H
#define LLVM_ADT_GENERICCYCLEINFO_H
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/GenericSSAContext.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
namespace llvm {
template <typename ContextT> class GenericCycleInfo;
template <typename ContextT> class GenericCycleInfoCompute;
/// A possibly irreducible generalization of a \ref Loop.
template <typename ContextT> class GenericCycle {
public:
using BlockT = typename ContextT::BlockT;
using FunctionT = typename ContextT::FunctionT;
template <typename> friend class GenericCycleInfo;
template <typename> friend class GenericCycleInfoCompute;
private:
/// The parent cycle. Is null for the root "cycle". Top-level cycles point
/// at the root.
GenericCycle *ParentCycle = nullptr;
/// The entry block(s) of the cycle. The header is the only entry if
/// this is a loop. Is empty for the root "cycle", to avoid
/// unnecessary memory use.
SmallVector<BlockT *, 1> Entries;
/// Child cycles, if any.
std::vector<std::unique_ptr<GenericCycle>> Children;
/// Basic blocks that are contained in the cycle, including entry blocks,
/// and including blocks that are part of a child cycle.
using BlockSetVectorT = SetVector<BlockT *, SmallVector<BlockT *, 8>,
DenseSet<const BlockT *>, 8>;
BlockSetVectorT Blocks;
/// Depth of the cycle in the tree. The root "cycle" is at depth 0.
///
/// \note Depths are not necessarily contiguous. However, child loops always
/// have strictly greater depth than their parents, and sibling loops
/// always have the same depth.
unsigned Depth = 0;
void clear() {
Entries.clear();
Children.clear();
Blocks.clear();
Depth = 0;
ParentCycle = nullptr;
}
void appendEntry(BlockT *Block) { Entries.push_back(Block); }
void appendBlock(BlockT *Block) { Blocks.insert(Block); }
GenericCycle(const GenericCycle &) = delete;
GenericCycle &operator=(const GenericCycle &) = delete;
GenericCycle(GenericCycle &&Rhs) = delete;
GenericCycle &operator=(GenericCycle &&Rhs) = delete;
public:
GenericCycle() = default;
/// \brief Whether the cycle is a natural loop.
bool isReducible() const { return Entries.size() == 1; }
BlockT *getHeader() const { return Entries[0]; }
const SmallVectorImpl<BlockT *> & getEntries() const {
return Entries;
}
/// \brief Return whether \p Block is an entry block of the cycle.
bool isEntry(const BlockT *Block) const {
return is_contained(Entries, Block);
}
/// \brief Return whether \p Block is contained in the cycle.
bool contains(const BlockT *Block) const { return Blocks.contains(Block); }
/// \brief Returns true iff this cycle contains \p C.
///
/// Note: Non-strict containment check, i.e. returns true if C is the
/// same cycle.
bool contains(const GenericCycle *C) const;
const GenericCycle *getParentCycle() const { return ParentCycle; }
GenericCycle *getParentCycle() { return ParentCycle; }
unsigned getDepth() const { return Depth; }
/// Return all of the successor blocks of this cycle.
///
/// These are the blocks _outside of the current cycle_ which are
/// branched to.
void getExitBlocks(SmallVectorImpl<BlockT *> &TmpStorage) const;
/// Return the preheader block for this cycle. Pre-header is well-defined for
/// reducible cycle in docs/LoopTerminology.rst as: the only one entering
/// block and its only edge is to the entry block. Return null for irreducible
/// cycles.
BlockT *getCyclePreheader() const;
/// If the cycle has exactly one entry with exactly one predecessor, return
/// it, otherwise return nullptr.
BlockT *getCyclePredecessor() const;
/// Iteration over child cycles.
//@{
using const_child_iterator_base =
typename std::vector<std::unique_ptr<GenericCycle>>::const_iterator;
struct const_child_iterator
: iterator_adaptor_base<const_child_iterator, const_child_iterator_base> {
using Base =
iterator_adaptor_base<const_child_iterator, const_child_iterator_base>;
const_child_iterator() = default;
explicit const_child_iterator(const_child_iterator_base I) : Base(I) {}
const const_child_iterator_base &wrapped() { return Base::wrapped(); }
GenericCycle *operator*() const { return Base::I->get(); }
};
const_child_iterator child_begin() const {
return const_child_iterator{Children.begin()};
}
const_child_iterator child_end() const {
return const_child_iterator{Children.end()};
}
size_t getNumChildren() const { return Children.size(); }
iterator_range<const_child_iterator> children() const {
return llvm::make_range(const_child_iterator{Children.begin()},
const_child_iterator{Children.end()});
}
//@}
/// Iteration over blocks in the cycle (including entry blocks).
//@{
using const_block_iterator = typename BlockSetVectorT::const_iterator;
const_block_iterator block_begin() const {
return const_block_iterator{Blocks.begin()};
}
const_block_iterator block_end() const {
return const_block_iterator{Blocks.end()};
}
size_t getNumBlocks() const { return Blocks.size(); }
iterator_range<const_block_iterator> blocks() const {
return llvm::make_range(block_begin(), block_end());
}
//@}
/// Iteration over entry blocks.
//@{
using const_entry_iterator =
typename SmallVectorImpl<BlockT *>::const_iterator;
size_t getNumEntries() const { return Entries.size(); }
iterator_range<const_entry_iterator> entries() const {
return llvm::make_range(Entries.begin(), Entries.end());
}
//@}
Printable printEntries(const ContextT &Ctx) const {
return Printable([this, &Ctx](raw_ostream &Out) {
bool First = true;
for (auto *Entry : Entries) {
if (!First)
Out << ' ';
First = false;
Out << Ctx.print(Entry);
}
});
}
Printable print(const ContextT &Ctx) const {
return Printable([this, &Ctx](raw_ostream &Out) {
Out << "depth=" << Depth << ": entries(" << printEntries(Ctx) << ')';
for (auto *Block : Blocks) {
if (isEntry(Block))
continue;
Out << ' ' << Ctx.print(Block);
}
});
}
};
/// \brief Cycle information for a function.
template <typename ContextT> class GenericCycleInfo {
public:
using BlockT = typename ContextT::BlockT;
using CycleT = GenericCycle<ContextT>;
using FunctionT = typename ContextT::FunctionT;
template <typename> friend class GenericCycle;
template <typename> friend class GenericCycleInfoCompute;
private:
ContextT Context;
/// Map basic blocks to their inner-most containing cycle.
DenseMap<BlockT *, CycleT *> BlockMap;
/// Map basic blocks to their top level containing cycle.
DenseMap<BlockT *, CycleT *> BlockMapTopLevel;
/// Top-level cycles discovered by any DFS.
///
/// Note: The implementation treats the nullptr as the parent of
/// every top-level cycle. See \ref contains for an example.
std::vector<std::unique_ptr<CycleT>> TopLevelCycles;
/// Move \p Child to \p NewParent by manipulating Children vectors.
///
/// Note: This is an incomplete operation that does not update the depth of
/// the subtree.
void moveTopLevelCycleToNewParent(CycleT *NewParent, CycleT *Child);
public:
GenericCycleInfo() = default;
GenericCycleInfo(GenericCycleInfo &&) = default;
GenericCycleInfo &operator=(GenericCycleInfo &&) = default;
void clear();
void compute(FunctionT &F);
FunctionT *getFunction() const { return Context.getFunction(); }
const ContextT &getSSAContext() const { return Context; }
CycleT *getCycle(const BlockT *Block) const;
unsigned getCycleDepth(const BlockT *Block) const;
CycleT *getTopLevelParentCycle(BlockT *Block);
/// Methods for debug and self-test.
//@{
#ifndef NDEBUG
bool validateTree() const;
#endif
void print(raw_ostream &Out) const;
void dump() const { print(dbgs()); }
Printable print(const CycleT *Cycle) { return Cycle->print(Context); }
//@}
/// Iteration over top-level cycles.
//@{
using const_toplevel_iterator_base =
typename std::vector<std::unique_ptr<CycleT>>::const_iterator;
struct const_toplevel_iterator
: iterator_adaptor_base<const_toplevel_iterator,
const_toplevel_iterator_base> {
using Base = iterator_adaptor_base<const_toplevel_iterator,
const_toplevel_iterator_base>;
const_toplevel_iterator() = default;
explicit const_toplevel_iterator(const_toplevel_iterator_base I)
: Base(I) {}
const const_toplevel_iterator_base &wrapped() { return Base::wrapped(); }
CycleT *operator*() const { return Base::I->get(); }
};
const_toplevel_iterator toplevel_begin() const {
return const_toplevel_iterator{TopLevelCycles.begin()};
}
const_toplevel_iterator toplevel_end() const {
return const_toplevel_iterator{TopLevelCycles.end()};
}
iterator_range<const_toplevel_iterator> toplevel_cycles() const {
return llvm::make_range(const_toplevel_iterator{TopLevelCycles.begin()},
const_toplevel_iterator{TopLevelCycles.end()});
}
//@}
};
/// \brief GraphTraits for iterating over a sub-tree of the CycleT tree.
template <typename CycleRefT, typename ChildIteratorT> struct CycleGraphTraits {
using NodeRef = CycleRefT;
using nodes_iterator = ChildIteratorT;
using ChildIteratorType = nodes_iterator;
static NodeRef getEntryNode(NodeRef Graph) { return Graph; }
static ChildIteratorType child_begin(NodeRef Ref) {
return Ref->child_begin();
}
static ChildIteratorType child_end(NodeRef Ref) { return Ref->child_end(); }
// Not implemented:
// static nodes_iterator nodes_begin(GraphType *G)
// static nodes_iterator nodes_end (GraphType *G)
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
// typedef EdgeRef - Type of Edge token in the graph, which should
// be cheap to copy.
// typedef ChildEdgeIteratorType - Type used to iterate over children edges in
// graph, dereference to a EdgeRef.
// static ChildEdgeIteratorType child_edge_begin(NodeRef)
// static ChildEdgeIteratorType child_edge_end(NodeRef)
// Return iterators that point to the beginning and ending of the
// edge list for the given callgraph node.
//
// static NodeRef edge_dest(EdgeRef)
// Return the destination node of an edge.
// static unsigned size (GraphType *G)
// Return total number of nodes in the graph
};
template <typename BlockT>
struct GraphTraits<const GenericCycle<BlockT> *>
: CycleGraphTraits<const GenericCycle<BlockT> *,
typename GenericCycle<BlockT>::const_child_iterator> {};
template <typename BlockT>
struct GraphTraits<GenericCycle<BlockT> *>
: CycleGraphTraits<GenericCycle<BlockT> *,
typename GenericCycle<BlockT>::const_child_iterator> {};
} // namespace llvm
#endif // LLVM_ADT_GENERICCYCLEINFO_H
|