1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
//===- MappedFileRegionBumpPtr.cpp ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// A bump pointer allocator, backed by a memory-mapped file.
///
/// The effect we want is:
///
/// 1. If it doesn't exist, create the file with an initial size.
/// 2. Reserve virtual memory large enough for the max file size.
/// 3. Map the file into memory in the reserved region.
/// 4. Increase the file size and update the mapping when necessary.
///
/// However, updating the mapping is challenging when it needs to work portably,
/// and across multiple processes without locking for every read. Our current
/// implementation strategy is:
///
/// 1. Use \c ftruncate (\c sys::fs::resize_file) to grow the file to its max
/// size (typically several GB). Many modern filesystems will create a sparse
/// file, so that the trailing unused pages do not take space on disk.
/// 2. Call \c mmap (\c sys::fs::mapped_file_region)
/// 3. [Automatic as part of 2.]
/// 4. [Automatic as part of 2.]
///
/// Additionally, we attempt to resize the file to its actual data size when
/// closing the mapping, if this is the only concurrent instance. This is done
/// using file locks. Shrinking the file mitigates problems with having large
/// files: on filesystems without sparse files it avoids unnecessary space use;
/// it also avoids allocating the full size if another process copies the file,
/// which typically loses sparseness. These mitigations only work while the file
/// is not in use.
///
/// FIXME: we assume that all concurrent users of the file will use the same
/// value for Capacity. Otherwise a process with a larger capacity can write
/// data that is "out of bounds" for processes with smaller capacity. Currently
/// this is true in the CAS.
///
/// To support resizing, we use two separate file locks:
/// 1. We use a shared reader lock on a ".shared" file until destruction.
/// 2. We use a lock on the main file during initialization - shared to check
/// the status, upgraded to exclusive to resize/initialize the file.
///
/// Then during destruction we attempt to get exclusive access on (1), which
/// requires no concurrent readers. If so, we shrink the file. Using two
/// separate locks simplifies the implementation and enables it to work on
/// platforms (e.g. Windows) where a shared/reader lock prevents writing.
//===----------------------------------------------------------------------===//
#include "llvm/CAS/MappedFileRegionBumpPtr.h"
#include "OnDiskCommon.h"
#include "llvm/ADT/StringMap.h"
using namespace llvm;
using namespace llvm::cas;
using namespace llvm::cas::ondisk;
namespace {
struct FileLockRAII {
std::string Path;
int FD;
enum LockKind { Shared, Exclusive };
std::optional<LockKind> Locked;
FileLockRAII(std::string Path, int FD) : Path(std::move(Path)), FD(FD) {}
~FileLockRAII() { consumeError(unlock()); }
Error lock(LockKind LK) {
if (std::error_code EC = lockFileThreadSafe(FD, LK == Exclusive))
return createFileError(Path, EC);
Locked = LK;
return Error::success();
}
Error unlock() {
if (Locked) {
Locked = std::nullopt;
if (std::error_code EC = unlockFileThreadSafe(FD))
return createFileError(Path, EC);
}
return Error::success();
}
};
} // end anonymous namespace
Expected<MappedFileRegionBumpPtr> MappedFileRegionBumpPtr::create(
const Twine &Path, uint64_t Capacity, int64_t BumpPtrOffset,
function_ref<Error(MappedFileRegionBumpPtr &)> NewFileConstructor) {
MappedFileRegionBumpPtr Result;
Result.Path = Path.str();
// Open the main file.
int FD;
if (std::error_code EC = sys::fs::openFileForReadWrite(
Result.Path, FD, sys::fs::CD_OpenAlways, sys::fs::OF_None))
return createFileError(Path, EC);
Result.FD = FD;
// Open the shared lock file. See file comment for details of locking scheme.
SmallString<128> SharedLockPath(Result.Path);
SharedLockPath.append(".shared");
int SharedLockFD;
if (std::error_code EC = sys::fs::openFileForReadWrite(
SharedLockPath, SharedLockFD, sys::fs::CD_OpenAlways,
sys::fs::OF_None))
return createFileError(SharedLockPath, EC);
Result.SharedLockFD = SharedLockFD;
// Take shared/reader lock that will be held until we close the file; unlocked
// by destroyImpl.
if (std::error_code EC =
lockFileThreadSafe(SharedLockFD, /*Exclusive=*/false))
return createFileError(Path, EC);
// Take shared/reader lock for initialization.
FileLockRAII InitLock(Result.Path, FD);
if (Error E = InitLock.lock(FileLockRAII::Shared))
return std::move(E);
sys::fs::file_t File = sys::fs::convertFDToNativeFile(FD);
sys::fs::file_status Status;
if (std::error_code EC = sys::fs::status(File, Status))
return createFileError(Result.Path, EC);
if (Status.getSize() < Capacity) {
// Lock the file exclusively so only one process will do the initialization.
if (Error E = InitLock.unlock())
return std::move(E);
if (Error E = InitLock.lock(FileLockRAII::Exclusive))
return std::move(E);
// Retrieve the current size now that we have exclusive access.
if (std::error_code EC = sys::fs::status(File, Status))
return createFileError(Result.Path, EC);
}
// At this point either the file is still under-sized, or we have the size for
// the completely initialized file.
if (Status.getSize() < Capacity) {
// We are initializing the file; it may be empty, or may have been shrunk
// during a previous close.
// FIXME: Detect a case where someone opened it with a smaller capacity.
// FIXME: On Windows we should use FSCTL_SET_SPARSE and FSCTL_SET_ZERO_DATA
// to make this a sparse region, if supported.
if (std::error_code EC = sys::fs::resize_file(FD, Capacity))
return createFileError(Result.Path, EC);
} else {
// Someone else initialized it.
Capacity = Status.getSize();
}
// Create the mapped region.
{
std::error_code EC;
sys::fs::mapped_file_region Map(
File, sys::fs::mapped_file_region::readwrite, Capacity, 0, EC);
if (EC)
return createFileError(Result.Path, EC);
Result.Region = std::move(Map);
}
if (Status.getSize() == 0) {
// We are creating a new file; run the constructor.
if (Error E = NewFileConstructor(Result))
return std::move(E);
} else {
Result.initializeBumpPtr(BumpPtrOffset);
}
return Result;
}
void MappedFileRegionBumpPtr::destroyImpl() {
if (!FD)
return;
// Drop the shared lock indicating we are no longer accessing the file.
if (SharedLockFD)
(void)unlockFileThreadSafe(*SharedLockFD);
// Attempt to truncate the file if we can get exclusive access. Ignore any
// errors.
if (BumpPtr) {
assert(SharedLockFD && "Must have shared lock file open");
if (tryLockFileThreadSafe(*SharedLockFD) == std::error_code()) {
assert(size() <= capacity());
(void)sys::fs::resize_file(*FD, size());
(void)unlockFileThreadSafe(*SharedLockFD);
}
}
auto Close = [](std::optional<int> &FD) {
if (FD) {
sys::fs::file_t File = sys::fs::convertFDToNativeFile(*FD);
sys::fs::closeFile(File);
FD = std::nullopt;
}
};
// Close the file and shared lock.
Close(FD);
Close(SharedLockFD);
}
void MappedFileRegionBumpPtr::initializeBumpPtr(int64_t BumpPtrOffset) {
assert(capacity() < (uint64_t)INT64_MAX && "capacity must fit in int64_t");
int64_t BumpPtrEndOffset = BumpPtrOffset + sizeof(decltype(*BumpPtr));
assert(BumpPtrEndOffset <= (int64_t)capacity() &&
"Expected end offset to be pre-allocated");
assert(isAligned(Align::Of<decltype(*BumpPtr)>(), BumpPtrOffset) &&
"Expected end offset to be aligned");
BumpPtr = reinterpret_cast<decltype(BumpPtr)>(data() + BumpPtrOffset);
int64_t ExistingValue = 0;
if (!BumpPtr->compare_exchange_strong(ExistingValue, BumpPtrEndOffset))
assert(ExistingValue >= BumpPtrEndOffset &&
"Expected 0, or past the end of the BumpPtr itself");
}
int64_t MappedFileRegionBumpPtr::allocateOffset(uint64_t AllocSize) {
AllocSize = alignTo(AllocSize, getAlign());
int64_t OldEnd = BumpPtr->fetch_add(AllocSize);
int64_t NewEnd = OldEnd + AllocSize;
if (LLVM_UNLIKELY(NewEnd > (int64_t)capacity())) {
// Try to return the allocation.
(void)BumpPtr->compare_exchange_strong(OldEnd, NewEnd);
report_fatal_error(
errorCodeToError(std::make_error_code(std::errc::not_enough_memory)));
}
return OldEnd;
}
|