1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
|
//===-- RISCVRegisterInfo.td - RISC-V Register defs --------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Declarations that describe the RISC-V register files
//===----------------------------------------------------------------------===//
let Namespace = "RISCV" in {
class RISCVReg<bits<5> Enc, string n, list<string> alt = []> : Register<n> {
let HWEncoding{4-0} = Enc;
let AltNames = alt;
}
class RISCVRegWithSubRegs<bits<5> Enc, string n, list<Register> subregs,
list<string> alt = []>
: RegisterWithSubRegs<n, subregs> {
let HWEncoding{4-0} = Enc;
let AltNames = alt;
}
class RISCVReg16<bits<5> Enc, string n, list<string> alt = []> : Register<n> {
let HWEncoding{4-0} = Enc;
let AltNames = alt;
}
def sub_16 : SubRegIndex<16>;
class RISCVReg32<RISCVReg16 subreg>
: RISCVRegWithSubRegs<subreg.HWEncoding{4-0}, subreg.AsmName, [subreg],
subreg.AltNames> {
let SubRegIndices = [sub_16];
}
// Because RISCVReg64 register have AsmName and AltNames that alias with their
// 16/32-bit sub-register, RISCVAsmParser will need to coerce a register number
// from a RISCVReg16/RISCVReg32 to the equivalent RISCVReg64 when appropriate.
def sub_32 : SubRegIndex<32>;
class RISCVReg64<RISCVReg32 subreg>
: RISCVRegWithSubRegs<subreg.HWEncoding{4-0}, subreg.AsmName, [subreg],
subreg.AltNames> {
let SubRegIndices = [sub_32];
}
let FallbackRegAltNameIndex = NoRegAltName in
def ABIRegAltName : RegAltNameIndex;
def sub_vrm4_0 : SubRegIndex<256>;
def sub_vrm4_1 : SubRegIndex<256, 256>;
def sub_vrm2_0 : SubRegIndex<128>;
def sub_vrm2_1 : SubRegIndex<128, 128>;
def sub_vrm2_2 : ComposedSubRegIndex<sub_vrm4_1, sub_vrm2_0>;
def sub_vrm2_3 : ComposedSubRegIndex<sub_vrm4_1, sub_vrm2_1>;
def sub_vrm1_0 : SubRegIndex<64>;
def sub_vrm1_1 : SubRegIndex<64, 64>;
def sub_vrm1_2 : ComposedSubRegIndex<sub_vrm2_1, sub_vrm1_0>;
def sub_vrm1_3 : ComposedSubRegIndex<sub_vrm2_1, sub_vrm1_1>;
def sub_vrm1_4 : ComposedSubRegIndex<sub_vrm2_2, sub_vrm1_0>;
def sub_vrm1_5 : ComposedSubRegIndex<sub_vrm2_2, sub_vrm1_1>;
def sub_vrm1_6 : ComposedSubRegIndex<sub_vrm2_3, sub_vrm1_0>;
def sub_vrm1_7 : ComposedSubRegIndex<sub_vrm2_3, sub_vrm1_1>;
def sub_32_hi : SubRegIndex<32, 32>;
} // Namespace = "RISCV"
// Integer registers
// CostPerUse is set higher for registers that may not be compressible as they
// are not part of GPRC, the most restrictive register class used by the
// compressed instruction set. This will influence the greedy register
// allocator to reduce the use of registers that can't be encoded in 16 bit
// instructions.
let RegAltNameIndices = [ABIRegAltName] in {
let isConstant = true in
def X0 : RISCVReg<0, "x0", ["zero"]>, DwarfRegNum<[0]>;
let CostPerUse = [0, 1] in {
def X1 : RISCVReg<1, "x1", ["ra"]>, DwarfRegNum<[1]>;
def X2 : RISCVReg<2, "x2", ["sp"]>, DwarfRegNum<[2]>;
def X3 : RISCVReg<3, "x3", ["gp"]>, DwarfRegNum<[3]>;
def X4 : RISCVReg<4, "x4", ["tp"]>, DwarfRegNum<[4]>;
def X5 : RISCVReg<5, "x5", ["t0"]>, DwarfRegNum<[5]>;
def X6 : RISCVReg<6, "x6", ["t1"]>, DwarfRegNum<[6]>;
def X7 : RISCVReg<7, "x7", ["t2"]>, DwarfRegNum<[7]>;
}
def X8 : RISCVReg<8, "x8", ["s0", "fp"]>, DwarfRegNum<[8]>;
def X9 : RISCVReg<9, "x9", ["s1"]>, DwarfRegNum<[9]>;
def X10 : RISCVReg<10,"x10", ["a0"]>, DwarfRegNum<[10]>;
def X11 : RISCVReg<11,"x11", ["a1"]>, DwarfRegNum<[11]>;
def X12 : RISCVReg<12,"x12", ["a2"]>, DwarfRegNum<[12]>;
def X13 : RISCVReg<13,"x13", ["a3"]>, DwarfRegNum<[13]>;
def X14 : RISCVReg<14,"x14", ["a4"]>, DwarfRegNum<[14]>;
def X15 : RISCVReg<15,"x15", ["a5"]>, DwarfRegNum<[15]>;
let CostPerUse = [0, 1] in {
def X16 : RISCVReg<16,"x16", ["a6"]>, DwarfRegNum<[16]>;
def X17 : RISCVReg<17,"x17", ["a7"]>, DwarfRegNum<[17]>;
def X18 : RISCVReg<18,"x18", ["s2"]>, DwarfRegNum<[18]>;
def X19 : RISCVReg<19,"x19", ["s3"]>, DwarfRegNum<[19]>;
def X20 : RISCVReg<20,"x20", ["s4"]>, DwarfRegNum<[20]>;
def X21 : RISCVReg<21,"x21", ["s5"]>, DwarfRegNum<[21]>;
def X22 : RISCVReg<22,"x22", ["s6"]>, DwarfRegNum<[22]>;
def X23 : RISCVReg<23,"x23", ["s7"]>, DwarfRegNum<[23]>;
def X24 : RISCVReg<24,"x24", ["s8"]>, DwarfRegNum<[24]>;
def X25 : RISCVReg<25,"x25", ["s9"]>, DwarfRegNum<[25]>;
def X26 : RISCVReg<26,"x26", ["s10"]>, DwarfRegNum<[26]>;
def X27 : RISCVReg<27,"x27", ["s11"]>, DwarfRegNum<[27]>;
def X28 : RISCVReg<28,"x28", ["t3"]>, DwarfRegNum<[28]>;
def X29 : RISCVReg<29,"x29", ["t4"]>, DwarfRegNum<[29]>;
def X30 : RISCVReg<30,"x30", ["t5"]>, DwarfRegNum<[30]>;
def X31 : RISCVReg<31,"x31", ["t6"]>, DwarfRegNum<[31]>;
}
}
def XLenVT : ValueTypeByHwMode<[RV32, RV64],
[i32, i64]>;
// Allow f64 in GPR for ZDINX on RV64.
def XLenFVT : ValueTypeByHwMode<[RV64],
[f64]>;
def XLenRI : RegInfoByHwMode<
[RV32, RV64],
[RegInfo<32,32,32>, RegInfo<64,64,64>]>;
class GPRRegisterClass<dag regList>
: RegisterClass<"RISCV", [XLenVT, XLenFVT, i32], 32, regList> {
let RegInfos = XLenRI;
}
// The order of registers represents the preferred allocation sequence.
// Registers are listed in the order caller-save, callee-save, specials.
def GPR : GPRRegisterClass<(add (sequence "X%u", 10, 17),
(sequence "X%u", 5, 7),
(sequence "X%u", 28, 31),
(sequence "X%u", 8, 9),
(sequence "X%u", 18, 27),
(sequence "X%u", 0, 4))>;
def GPRX0 : GPRRegisterClass<(add X0)>;
def GPRNoX0 : GPRRegisterClass<(sub GPR, X0)>;
def GPRNoX0X2 : GPRRegisterClass<(sub GPR, X0, X2)>;
// Don't use X1 or X5 for JALR since that is a hint to pop the return address
// stack on some microarchitectures. Also remove the reserved registers X0, X2,
// X3, and X4 as it reduces the number of register classes that get synthesized
// by tablegen.
def GPRJALR : GPRRegisterClass<(sub GPR, (sequence "X%u", 0, 5))>;
def GPRC : GPRRegisterClass<(add (sequence "X%u", 10, 15),
(sequence "X%u", 8, 9))>;
// For indirect tail calls, we can't use callee-saved registers, as they are
// restored to the saved value before the tail call, which would clobber a call
// address. We shouldn't use x5 since that is a hint for to pop the return
// address stack on some microarchitectures.
def GPRTC : GPRRegisterClass<(add (sequence "X%u", 6, 7),
(sequence "X%u", 10, 17),
(sequence "X%u", 28, 31))>;
def SP : GPRRegisterClass<(add X2)>;
// Saved Registers from s0 to s7, for C.MVA01S07 instruction in Zcmp extension
def SR07 : GPRRegisterClass<(add (sequence "X%u", 8, 9),
(sequence "X%u", 18, 23))>;
// Registers saveable by PUSH/POP instruction in Zcmp extension
def PGPR : RegisterClass<"RISCV", [XLenVT], 32, (add
(sequence "X%u", 8, 9),
(sequence "X%u", 18, 27),
X1
)> {
let RegInfos = XLenRI;
}
// Floating point registers
let RegAltNameIndices = [ABIRegAltName] in {
def F0_H : RISCVReg16<0, "f0", ["ft0"]>, DwarfRegNum<[32]>;
def F1_H : RISCVReg16<1, "f1", ["ft1"]>, DwarfRegNum<[33]>;
def F2_H : RISCVReg16<2, "f2", ["ft2"]>, DwarfRegNum<[34]>;
def F3_H : RISCVReg16<3, "f3", ["ft3"]>, DwarfRegNum<[35]>;
def F4_H : RISCVReg16<4, "f4", ["ft4"]>, DwarfRegNum<[36]>;
def F5_H : RISCVReg16<5, "f5", ["ft5"]>, DwarfRegNum<[37]>;
def F6_H : RISCVReg16<6, "f6", ["ft6"]>, DwarfRegNum<[38]>;
def F7_H : RISCVReg16<7, "f7", ["ft7"]>, DwarfRegNum<[39]>;
def F8_H : RISCVReg16<8, "f8", ["fs0"]>, DwarfRegNum<[40]>;
def F9_H : RISCVReg16<9, "f9", ["fs1"]>, DwarfRegNum<[41]>;
def F10_H : RISCVReg16<10,"f10", ["fa0"]>, DwarfRegNum<[42]>;
def F11_H : RISCVReg16<11,"f11", ["fa1"]>, DwarfRegNum<[43]>;
def F12_H : RISCVReg16<12,"f12", ["fa2"]>, DwarfRegNum<[44]>;
def F13_H : RISCVReg16<13,"f13", ["fa3"]>, DwarfRegNum<[45]>;
def F14_H : RISCVReg16<14,"f14", ["fa4"]>, DwarfRegNum<[46]>;
def F15_H : RISCVReg16<15,"f15", ["fa5"]>, DwarfRegNum<[47]>;
def F16_H : RISCVReg16<16,"f16", ["fa6"]>, DwarfRegNum<[48]>;
def F17_H : RISCVReg16<17,"f17", ["fa7"]>, DwarfRegNum<[49]>;
def F18_H : RISCVReg16<18,"f18", ["fs2"]>, DwarfRegNum<[50]>;
def F19_H : RISCVReg16<19,"f19", ["fs3"]>, DwarfRegNum<[51]>;
def F20_H : RISCVReg16<20,"f20", ["fs4"]>, DwarfRegNum<[52]>;
def F21_H : RISCVReg16<21,"f21", ["fs5"]>, DwarfRegNum<[53]>;
def F22_H : RISCVReg16<22,"f22", ["fs6"]>, DwarfRegNum<[54]>;
def F23_H : RISCVReg16<23,"f23", ["fs7"]>, DwarfRegNum<[55]>;
def F24_H : RISCVReg16<24,"f24", ["fs8"]>, DwarfRegNum<[56]>;
def F25_H : RISCVReg16<25,"f25", ["fs9"]>, DwarfRegNum<[57]>;
def F26_H : RISCVReg16<26,"f26", ["fs10"]>, DwarfRegNum<[58]>;
def F27_H : RISCVReg16<27,"f27", ["fs11"]>, DwarfRegNum<[59]>;
def F28_H : RISCVReg16<28,"f28", ["ft8"]>, DwarfRegNum<[60]>;
def F29_H : RISCVReg16<29,"f29", ["ft9"]>, DwarfRegNum<[61]>;
def F30_H : RISCVReg16<30,"f30", ["ft10"]>, DwarfRegNum<[62]>;
def F31_H : RISCVReg16<31,"f31", ["ft11"]>, DwarfRegNum<[63]>;
foreach Index = 0-31 in {
def F#Index#_F : RISCVReg32<!cast<RISCVReg16>("F"#Index#"_H")>,
DwarfRegNum<[!add(Index, 32)]>;
}
foreach Index = 0-31 in {
def F#Index#_D : RISCVReg64<!cast<RISCVReg32>("F"#Index#"_F")>,
DwarfRegNum<[!add(Index, 32)]>;
}
}
// The order of registers represents the preferred allocation sequence,
// meaning caller-save regs are listed before callee-save.
// We start by allocating argument registers in reverse order since they are
// compressible.
def FPR16 : RegisterClass<"RISCV", [f16, bf16], 16, (add
(sequence "F%u_H", 15, 10), // fa5-fa0
(sequence "F%u_H", 0, 7), // ft0-f7
(sequence "F%u_H", 16, 17), // fa6-fa7
(sequence "F%u_H", 28, 31), // ft8-ft11
(sequence "F%u_H", 8, 9), // fs0-fs1
(sequence "F%u_H", 18, 27) // fs2-fs11
)>;
def FPR32 : RegisterClass<"RISCV", [f32], 32, (add
(sequence "F%u_F", 15, 10),
(sequence "F%u_F", 0, 7),
(sequence "F%u_F", 16, 17),
(sequence "F%u_F", 28, 31),
(sequence "F%u_F", 8, 9),
(sequence "F%u_F", 18, 27)
)>;
def FPR32C : RegisterClass<"RISCV", [f32], 32, (add
(sequence "F%u_F", 15, 10),
(sequence "F%u_F", 8, 9)
)>;
// The order of registers represents the preferred allocation sequence,
// meaning caller-save regs are listed before callee-save.
def FPR64 : RegisterClass<"RISCV", [f64], 64, (add
(sequence "F%u_D", 15, 10),
(sequence "F%u_D", 0, 7),
(sequence "F%u_D", 16, 17),
(sequence "F%u_D", 28, 31),
(sequence "F%u_D", 8, 9),
(sequence "F%u_D", 18, 27)
)>;
def FPR64C : RegisterClass<"RISCV", [f64], 64, (add
(sequence "F%u_D", 15, 10),
(sequence "F%u_D", 8, 9)
)>;
// Vector type mapping to LLVM types.
//
// The V vector extension requires that VLEN >= 128 and <= 65536.
// Additionally, the only supported ELEN values are 32 and 64,
// thus `vscale` can be defined as VLEN/64,
// allowing the same types with either ELEN value.
//
// MF8 MF4 MF2 M1 M2 M4 M8
// i64* N/A N/A N/A nxv1i64 nxv2i64 nxv4i64 nxv8i64
// i32 N/A N/A nxv1i32 nxv2i32 nxv4i32 nxv8i32 nxv16i32
// i16 N/A nxv1i16 nxv2i16 nxv4i16 nxv8i16 nxv16i16 nxv32i16
// i8 nxv1i8 nxv2i8 nxv4i8 nxv8i8 nxv16i8 nxv32i8 nxv64i8
// double* N/A N/A N/A nxv1f64 nxv2f64 nxv4f64 nxv8f64
// float N/A N/A nxv1f32 nxv2f32 nxv4f32 nxv8f32 nxv16f32
// half N/A nxv1f16 nxv2f16 nxv4f16 nxv8f16 nxv16f16 nxv32f16
// * ELEN=64
defvar vint8mf8_t = nxv1i8;
defvar vint8mf4_t = nxv2i8;
defvar vint8mf2_t = nxv4i8;
defvar vint8m1_t = nxv8i8;
defvar vint8m2_t = nxv16i8;
defvar vint8m4_t = nxv32i8;
defvar vint8m8_t = nxv64i8;
defvar vint16mf4_t = nxv1i16;
defvar vint16mf2_t = nxv2i16;
defvar vint16m1_t = nxv4i16;
defvar vint16m2_t = nxv8i16;
defvar vint16m4_t = nxv16i16;
defvar vint16m8_t = nxv32i16;
defvar vint32mf2_t = nxv1i32;
defvar vint32m1_t = nxv2i32;
defvar vint32m2_t = nxv4i32;
defvar vint32m4_t = nxv8i32;
defvar vint32m8_t = nxv16i32;
defvar vint64m1_t = nxv1i64;
defvar vint64m2_t = nxv2i64;
defvar vint64m4_t = nxv4i64;
defvar vint64m8_t = nxv8i64;
defvar vfloat16mf4_t = nxv1f16;
defvar vfloat16mf2_t = nxv2f16;
defvar vfloat16m1_t = nxv4f16;
defvar vfloat16m2_t = nxv8f16;
defvar vfloat16m4_t = nxv16f16;
defvar vfloat16m8_t = nxv32f16;
defvar vfloat32mf2_t = nxv1f32;
defvar vfloat32m1_t = nxv2f32;
defvar vfloat32m2_t = nxv4f32;
defvar vfloat32m4_t = nxv8f32;
defvar vfloat32m8_t = nxv16f32;
defvar vfloat64m1_t = nxv1f64;
defvar vfloat64m2_t = nxv2f64;
defvar vfloat64m4_t = nxv4f64;
defvar vfloat64m8_t = nxv8f64;
defvar vbool1_t = nxv64i1;
defvar vbool2_t = nxv32i1;
defvar vbool4_t = nxv16i1;
defvar vbool8_t = nxv8i1;
defvar vbool16_t = nxv4i1;
defvar vbool32_t = nxv2i1;
defvar vbool64_t = nxv1i1;
// There is no need to define register classes for fractional LMUL.
defvar LMULList = [1, 2, 4, 8];
//===----------------------------------------------------------------------===//
// Utility classes for segment load/store.
//===----------------------------------------------------------------------===//
// The set of legal NF for LMUL = lmul.
// LMUL == 1, NF = 2, 3, 4, 5, 6, 7, 8
// LMUL == 2, NF = 2, 3, 4
// LMUL == 4, NF = 2
class NFList<int lmul> {
list<int> L = !cond(!eq(lmul, 1): [2, 3, 4, 5, 6, 7, 8],
!eq(lmul, 2): [2, 3, 4],
!eq(lmul, 4): [2],
!eq(lmul, 8): []);
}
// Generate [start, end) SubRegIndex list.
class SubRegSet<int nf, int lmul> {
list<SubRegIndex> L = !foldl([]<SubRegIndex>,
[0, 1, 2, 3, 4, 5, 6, 7],
AccList, i,
!listconcat(AccList,
!if(!lt(i, nf),
[!cast<SubRegIndex>("sub_vrm" # lmul # "_" # i)],
[])));
}
// Collect the valid indexes into 'R' under NF and LMUL values from TUPLE_INDEX.
// When NF = 2, the valid TUPLE_INDEX is 0 and 1.
// For example, when LMUL = 4, the potential valid indexes is
// [8, 12, 16, 20, 24, 28, 4]. However, not all these indexes are valid under
// NF = 2. For example, 28 is not valid under LMUL = 4, NF = 2 and TUPLE_INDEX = 0.
// The filter is
// (tuple_index + i) x lmul <= (tuple_index x lmul) + 32 - (nf x lmul)
//
// Use START = 0, LMUL = 4 and NF = 2 as the example,
// i x 4 <= 24
// The class will return [8, 12, 16, 20, 24, 4].
// Use START = 1, LMUL = 4 and NF = 2 as the example,
// (1 + i) x 4 <= 28
// The class will return [12, 16, 20, 24, 28, 8].
//
class IndexSet<int tuple_index, int nf, int lmul, bit isV0 = false> {
list<int> R =
!foldl([]<int>,
!if(isV0, [0],
!cond(
!eq(lmul, 1):
[8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
1, 2, 3, 4, 5, 6, 7],
!eq(lmul, 2):
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3],
!eq(lmul, 4):
[2, 3, 4, 5, 6, 7, 1])),
L, i,
!listconcat(L,
!if(!le(!mul(!add(i, tuple_index), lmul),
!sub(!add(32, !mul(tuple_index, lmul)), !mul(nf, lmul))),
[!mul(!add(i, tuple_index), lmul)], [])));
}
// This class returns a list of vector register collections.
// For example, for NF = 2 and LMUL = 4,
// it will return
// ([ V8M4, V12M4, V16M4, V20M4, V24M4, V4M4],
// [V12M4, V16M4, V20M4, V24M4, V28M4, V8M4])
//
class VRegList<list<dag> LIn, int start, int nf, int lmul, bit isV0> {
list<dag> L =
!if(!ge(start, nf),
LIn,
!listconcat(
[!dag(add,
!foreach(i, IndexSet<start, nf, lmul, isV0>.R,
!cast<Register>("V" # i # !cond(!eq(lmul, 2): "M2",
!eq(lmul, 4): "M4",
true: ""))),
!listsplat("",
!size(IndexSet<start, nf, lmul, isV0>.R)))],
VRegList<LIn, !add(start, 1), nf, lmul, isV0>.L));
}
// Vector registers
foreach Index = 0-31 in {
def V#Index : RISCVReg<Index, "v"#Index>, DwarfRegNum<[!add(Index, 96)]>;
}
foreach Index = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
24, 26, 28, 30] in {
def V#Index#M2 : RISCVRegWithSubRegs<Index, "v"#Index,
[!cast<Register>("V"#Index),
!cast<Register>("V"#!add(Index, 1))]>,
DwarfRegAlias<!cast<Register>("V"#Index)> {
let SubRegIndices = [sub_vrm1_0, sub_vrm1_1];
}
}
foreach Index = [0, 4, 8, 12, 16, 20, 24, 28] in {
def V#Index#M4 : RISCVRegWithSubRegs<Index, "v"#Index,
[!cast<Register>("V"#Index#"M2"),
!cast<Register>("V"#!add(Index, 2)#"M2")]>,
DwarfRegAlias<!cast<Register>("V"#Index)> {
let SubRegIndices = [sub_vrm2_0, sub_vrm2_1];
}
}
foreach Index = [0, 8, 16, 24] in {
def V#Index#M8 : RISCVRegWithSubRegs<Index, "v"#Index,
[!cast<Register>("V"#Index#"M4"),
!cast<Register>("V"#!add(Index, 4)#"M4")]>,
DwarfRegAlias<!cast<Register>("V"#Index)> {
let SubRegIndices = [sub_vrm4_0, sub_vrm4_1];
}
}
def VTYPE : RISCVReg<0, "vtype">;
def VL : RISCVReg<0, "vl">;
def VXSAT : RISCVReg<0, "vxsat">;
def VXRM : RISCVReg<0, "vxrm">;
let isConstant = true in
def VLENB : RISCVReg<0, "vlenb">,
DwarfRegNum<[!add(4096, SysRegVLENB.Encoding)]>;
def VCSR : RegisterClass<"RISCV", [XLenVT], 32,
(add VTYPE, VL, VLENB)> {
let RegInfos = XLenRI;
}
foreach m = [1, 2, 4] in {
foreach n = NFList<m>.L in {
def "VN" # n # "M" # m # "NoV0": RegisterTuples<
SubRegSet<n, m>.L,
VRegList<[], 0, n, m, false>.L>;
def "VN" # n # "M" # m # "V0" : RegisterTuples<
SubRegSet<n, m>.L,
VRegList<[], 0, n, m, true>.L>;
}
}
class VReg<list<ValueType> regTypes, dag regList, int Vlmul>
: RegisterClass<"RISCV",
regTypes,
64, // The maximum supported ELEN is 64.
regList> {
int VLMul = Vlmul;
int Size = !mul(Vlmul, 64);
}
defvar VMaskVTs = [vbool1_t, vbool2_t, vbool4_t, vbool8_t, vbool16_t,
vbool32_t, vbool64_t];
defvar VM1VTs = [vint8m1_t, vint16m1_t, vint32m1_t, vint64m1_t,
vfloat16m1_t, vfloat32m1_t, vfloat64m1_t,
vint8mf2_t, vint8mf4_t, vint8mf8_t,
vint16mf2_t, vint16mf4_t, vint32mf2_t,
vfloat16mf4_t, vfloat16mf2_t, vfloat32mf2_t];
defvar VM2VTs = [vint8m2_t, vint16m2_t, vint32m2_t, vint64m2_t,
vfloat16m2_t, vfloat32m2_t, vfloat64m2_t];
defvar VM4VTs = [vint8m4_t, vint16m4_t, vint32m4_t, vint64m4_t,
vfloat16m4_t, vfloat32m4_t, vfloat64m4_t];
defvar VM8VTs = [vint8m8_t, vint16m8_t, vint32m8_t, vint64m8_t,
vfloat16m8_t, vfloat32m8_t, vfloat64m8_t];
def VR : VReg<!listconcat(VM1VTs, VMaskVTs),
(add (sequence "V%u", 8, 31),
(sequence "V%u", 0, 7)), 1>;
def VRNoV0 : VReg<!listconcat(VM1VTs, VMaskVTs),
(add (sequence "V%u", 8, 31),
(sequence "V%u", 1, 7)), 1>;
def VRM2 : VReg<VM2VTs, (add (sequence "V%uM2", 8, 31, 2),
(sequence "V%uM2", 0, 7, 2)), 2>;
def VRM2NoV0 : VReg<VM2VTs, (add (sequence "V%uM2", 8, 31, 2),
(sequence "V%uM2", 2, 7, 2)), 2>;
def VRM4 : VReg<VM4VTs,
(add V8M4, V12M4, V16M4, V20M4, V24M4, V28M4, V0M4, V4M4), 4>;
def VRM4NoV0 : VReg<VM4VTs,
(add V8M4, V12M4, V16M4, V20M4, V24M4, V28M4, V4M4), 4>;
def VRM8 : VReg<VM8VTs, (add V8M8, V16M8, V24M8, V0M8), 8>;
def VRM8NoV0 : VReg<VM8VTs, (add V8M8, V16M8, V24M8), 8>;
def VMV0 : RegisterClass<"RISCV", VMaskVTs, 64, (add V0)> {
let Size = 64;
}
let RegInfos = XLenRI in {
def GPRF16 : RegisterClass<"RISCV", [f16], 16, (add GPR)>;
def GPRF32 : RegisterClass<"RISCV", [f32], 32, (add GPR)>;
} // RegInfos = XLenRI
// Dummy zero register for use in the register pair containing X0 (as X1 is
// not read to or written when the X0 register pair is used).
def DUMMY_REG_PAIR_WITH_X0 : RISCVReg<0, "0">;
// Must add DUMMY_REG_PAIR_WITH_X0 to a separate register class to prevent the
// register's existence from changing codegen (due to the regPressureSetLimit
// for the GPR register class being altered).
def GPRAll : GPRRegisterClass<(add GPR, DUMMY_REG_PAIR_WITH_X0)>;
let RegAltNameIndices = [ABIRegAltName] in {
def X0_PD : RISCVRegWithSubRegs<0, X0.AsmName,
[X0, DUMMY_REG_PAIR_WITH_X0],
X0.AltNames> {
let SubRegIndices = [sub_32, sub_32_hi];
let CoveredBySubRegs = 1;
}
foreach I = 1-15 in {
defvar Index = !shl(I, 1);
defvar Reg = !cast<Register>("X"#Index);
defvar RegP1 = !cast<Register>("X"#!add(Index,1));
def X#Index#_PD : RISCVRegWithSubRegs<Index, Reg.AsmName,
[Reg, RegP1],
Reg.AltNames> {
let SubRegIndices = [sub_32, sub_32_hi];
let CoveredBySubRegs = 1;
}
}
}
let RegInfos = RegInfoByHwMode<[RV64], [RegInfo<64, 64, 64>]> in
def GPRPF64 : RegisterClass<"RISCV", [f64], 64, (add
X10_PD, X12_PD, X14_PD, X16_PD,
X6_PD,
X28_PD, X30_PD,
X8_PD,
X18_PD, X20_PD, X22_PD, X24_PD, X26_PD,
X0_PD, X2_PD, X4_PD
)>;
// The register class is added for inline assembly for vector mask types.
def VM : VReg<VMaskVTs,
(add (sequence "V%u", 8, 31),
(sequence "V%u", 0, 7)), 1>;
foreach m = LMULList in {
foreach nf = NFList<m>.L in {
def "VRN" # nf # "M" # m # "NoV0": VReg<[untyped],
(add !cast<RegisterTuples>("VN" # nf # "M" # m # "NoV0")),
!mul(nf, m)>;
def "VRN" # nf # "M" # m: VReg<[untyped],
(add !cast<RegisterTuples>("VN" # nf # "M" # m # "NoV0"),
!cast<RegisterTuples>("VN" # nf # "M" # m # "V0")),
!mul(nf, m)>;
}
}
// Special registers
def FFLAGS : RISCVReg<0, "fflags">;
def FRM : RISCVReg<0, "frm">;
|