1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
; NOTE: Assertions have been autogenerated by utils/update_mir_test_checks.py
; RUN: llc -o - -verify-machineinstrs -O0 -global-isel -stop-after=localizer %s | FileCheck %s
target datalayout = "e-m:o-i64:64-i128:128-n32:64-S128"
target triple = "arm64-apple-ios5.0.0"
@var1 = common global i32 0, align 4
@var2 = common global i32 0, align 4
@var3 = common global i32 0, align 4
@var4 = common global i32 0, align 4
; This is an ll test instead of MIR because -run-pass doesn't seem to support
; initializing the target TTI which we need for this test.
; Some of the instructions in entry block are dead after this pass so don't
; strictly need to be checked for.
define i32 @foo() {
; CHECK-LABEL: name: foo
; CHECK: bb.1.entry:
; CHECK-NEXT: successors: %bb.2(0x40000000), %bb.3(0x40000000)
; CHECK-NEXT: {{ $}}
; CHECK-NEXT: [[C:%[0-9]+]]:_(s32) = G_CONSTANT i32 2
; CHECK-NEXT: [[GV:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var2
; CHECK-NEXT: [[C1:%[0-9]+]]:_(s32) = G_CONSTANT i32 3
; CHECK-NEXT: [[GV1:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var3
; CHECK-NEXT: [[C2:%[0-9]+]]:_(s32) = G_CONSTANT i32 0
; CHECK-NEXT: [[GV2:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var1
; CHECK-NEXT: [[LOAD:%[0-9]+]]:_(s32) = G_LOAD [[GV2]](p0) :: (dereferenceable load (s32) from @var1)
; CHECK-NEXT: [[C3:%[0-9]+]]:_(s32) = G_CONSTANT i32 1
; CHECK-NEXT: [[ICMP:%[0-9]+]]:_(s1) = G_ICMP intpred(ne), [[LOAD]](s32), [[C3]]
; CHECK-NEXT: G_BRCOND [[ICMP]](s1), %bb.3
; CHECK-NEXT: G_BR %bb.2
; CHECK-NEXT: {{ $}}
; CHECK-NEXT: bb.2.if.then:
; CHECK-NEXT: successors: %bb.3(0x80000000)
; CHECK-NEXT: {{ $}}
; CHECK-NEXT: [[GV3:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var2
; CHECK-NEXT: [[C4:%[0-9]+]]:_(s32) = G_CONSTANT i32 2
; CHECK-NEXT: G_STORE [[C4]](s32), [[GV3]](p0) :: (store (s32) into @var2)
; CHECK-NEXT: [[C5:%[0-9]+]]:_(s32) = G_CONSTANT i32 3
; CHECK-NEXT: [[GV4:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var1
; CHECK-NEXT: G_STORE [[C5]](s32), [[GV4]](p0) :: (store (s32) into @var1)
; CHECK-NEXT: [[GV5:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var3
; CHECK-NEXT: G_STORE [[C4]](s32), [[GV5]](p0) :: (store (s32) into @var3)
; CHECK-NEXT: G_STORE [[C5]](s32), [[GV4]](p0) :: (store (s32) into @var1)
; CHECK-NEXT: G_BR %bb.3
; CHECK-NEXT: {{ $}}
; CHECK-NEXT: bb.3.if.end:
; CHECK-NEXT: [[C6:%[0-9]+]]:_(s32) = G_CONSTANT i32 0
; CHECK-NEXT: $w0 = COPY [[C6]](s32)
; CHECK-NEXT: RET_ReallyLR implicit $w0
entry:
%0 = load i32, ptr @var1, align 4
%cmp = icmp eq i32 %0, 1
br i1 %cmp, label %if.then, label %if.end
if.then:
store i32 2, ptr @var2, align 4
store i32 3, ptr @var1, align 4
store i32 2, ptr @var3, align 4
store i32 3, ptr @var1, align 4
br label %if.end
if.end:
ret i32 0
}
@tls_gv = common thread_local global i32 0, align 4
; This test checks that we don't try to localize TLS variables on Darwin.
; If the user happens to be inside a call sequence, we could end up rematerializing
; below a physreg write, clobbering it (TLS accesses on Darwin need a function call).
; For now, we check we don't localize at all. We could in theory make sure that
; we don't localize into the middle of a call sequence instead.
define i32 @darwin_tls() {
; CHECK-LABEL: name: darwin_tls
; CHECK: bb.1.entry:
; CHECK-NEXT: successors: %bb.2(0x40000000), %bb.3(0x40000000)
; CHECK-NEXT: {{ $}}
; CHECK-NEXT: [[GV:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @tls_gv
; CHECK-NEXT: [[GV1:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var2
; CHECK-NEXT: [[C:%[0-9]+]]:_(s32) = G_CONSTANT i32 0
; CHECK-NEXT: [[GV2:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var1
; CHECK-NEXT: [[LOAD:%[0-9]+]]:_(s32) = G_LOAD [[GV2]](p0) :: (dereferenceable load (s32) from @var1)
; CHECK-NEXT: [[C1:%[0-9]+]]:_(s32) = G_CONSTANT i32 1
; CHECK-NEXT: [[ICMP:%[0-9]+]]:_(s1) = G_ICMP intpred(ne), [[LOAD]](s32), [[C1]]
; CHECK-NEXT: G_BRCOND [[ICMP]](s1), %bb.3
; CHECK-NEXT: G_BR %bb.2
; CHECK-NEXT: {{ $}}
; CHECK-NEXT: bb.2.if.then:
; CHECK-NEXT: successors: %bb.3(0x80000000)
; CHECK-NEXT: {{ $}}
; CHECK-NEXT: [[LOAD1:%[0-9]+]]:_(s32) = G_LOAD [[GV]](p0) :: (dereferenceable load (s32) from @tls_gv)
; CHECK-NEXT: [[GV3:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var2
; CHECK-NEXT: G_STORE [[LOAD1]](s32), [[GV3]](p0) :: (store (s32) into @var2)
; CHECK-NEXT: G_BR %bb.3
; CHECK-NEXT: {{ $}}
; CHECK-NEXT: bb.3.if.end:
; CHECK-NEXT: [[C2:%[0-9]+]]:_(s32) = G_CONSTANT i32 0
; CHECK-NEXT: $w0 = COPY [[C2]](s32)
; CHECK-NEXT: RET_ReallyLR implicit $w0
entry:
%0 = load i32, ptr @var1, align 4
%cmp = icmp eq i32 %0, 1
br i1 %cmp, label %if.then, label %if.end
if.then:
%tls = load i32, ptr @tls_gv, align 4
store i32 %tls, ptr @var2, align 4
br label %if.end
if.end:
ret i32 0
}
define i32 @imm_cost_too_large_cost_of_2() {
; CHECK-LABEL: name: imm_cost_too_large_cost_of_2
; CHECK: bb.1.entry:
; CHECK-NEXT: successors: %bb.2(0x40000000), %bb.4(0x40000000)
; CHECK-NEXT: {{ $}}
; CHECK-NEXT: [[GV:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var2
; CHECK-NEXT: [[GV1:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var3
; CHECK-NEXT: [[C:%[0-9]+]]:_(s32) = G_CONSTANT i32 0
; CHECK-NEXT: [[GV2:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var1
; CHECK-NEXT: [[LOAD:%[0-9]+]]:_(s32) = G_LOAD [[GV2]](p0) :: (dereferenceable load (s32) from @var1)
; CHECK-NEXT: [[C1:%[0-9]+]]:_(s32) = G_CONSTANT i32 -2228259
; CHECK-NEXT: [[OPAQUE:%[0-9]+]]:_(s32) = G_CONSTANT_FOLD_BARRIER [[C1]]
; CHECK-NEXT: [[C2:%[0-9]+]]:_(s32) = G_CONSTANT i32 1
; CHECK-NEXT: [[ICMP:%[0-9]+]]:_(s1) = G_ICMP intpred(ne), [[LOAD]](s32), [[C2]]
; CHECK-NEXT: G_BRCOND [[ICMP]](s1), %bb.4
; CHECK-NEXT: G_BR %bb.2
; CHECK-NEXT: {{ $}}
; CHECK-NEXT: bb.2.if.then:
; CHECK-NEXT: successors: %bb.3(0x80000000)
; CHECK-NEXT: {{ $}}
; CHECK-NEXT: [[GV3:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var2
; CHECK-NEXT: G_STORE [[OPAQUE]](s32), [[GV3]](p0) :: (store (s32) into @var2)
; CHECK-NEXT: G_BR %bb.3
; CHECK-NEXT: {{ $}}
; CHECK-NEXT: bb.3.if.then2:
; CHECK-NEXT: successors: %bb.4(0x80000000)
; CHECK-NEXT: {{ $}}
; CHECK-NEXT: [[GV4:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var1
; CHECK-NEXT: G_STORE [[OPAQUE]](s32), [[GV4]](p0) :: (store (s32) into @var1)
; CHECK-NEXT: G_BR %bb.4
; CHECK-NEXT: {{ $}}
; CHECK-NEXT: bb.4.if.end:
; CHECK-NEXT: [[GV5:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var3
; CHECK-NEXT: G_STORE [[OPAQUE]](s32), [[GV5]](p0) :: (store (s32) into @var3)
; CHECK-NEXT: [[C3:%[0-9]+]]:_(s32) = G_CONSTANT i32 0
; CHECK-NEXT: $w0 = COPY [[C3]](s32)
; CHECK-NEXT: RET_ReallyLR implicit $w0
entry:
%0 = load i32, ptr @var1, align 4
%cst1 = bitcast i32 -2228259 to i32
%cmp = icmp eq i32 %0, 1
br i1 %cmp, label %if.then, label %if.end
if.then:
store i32 %cst1, ptr @var2
br label %if.then2
if.then2:
store i32 %cst1, ptr @var1
br label %if.end
if.end:
store i32 %cst1, ptr @var3
ret i32 0
}
define i64 @imm_cost_too_large_cost_of_4() {
; CHECK-LABEL: name: imm_cost_too_large_cost_of_4
; CHECK: bb.1.entry:
; CHECK-NEXT: successors: %bb.2(0x40000000), %bb.4(0x40000000)
; CHECK-NEXT: {{ $}}
; CHECK-NEXT: [[GV:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var2_64
; CHECK-NEXT: [[GV1:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var3_64
; CHECK-NEXT: [[C:%[0-9]+]]:_(s64) = G_CONSTANT i64 0
; CHECK-NEXT: [[GV2:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var1_64
; CHECK-NEXT: [[LOAD:%[0-9]+]]:_(s64) = G_LOAD [[GV2]](p0) :: (dereferenceable load (s64) from @var1_64, align 4)
; CHECK-NEXT: [[C1:%[0-9]+]]:_(s64) = G_CONSTANT i64 -2228259
; CHECK-NEXT: [[OPAQUE:%[0-9]+]]:_(s64) = G_CONSTANT_FOLD_BARRIER [[C1]]
; CHECK-NEXT: [[C2:%[0-9]+]]:_(s64) = G_CONSTANT i64 1
; CHECK-NEXT: [[ICMP:%[0-9]+]]:_(s1) = G_ICMP intpred(ne), [[LOAD]](s64), [[C2]]
; CHECK-NEXT: G_BRCOND [[ICMP]](s1), %bb.4
; CHECK-NEXT: G_BR %bb.2
; CHECK-NEXT: {{ $}}
; CHECK-NEXT: bb.2.if.then:
; CHECK-NEXT: successors: %bb.3(0x80000000)
; CHECK-NEXT: {{ $}}
; CHECK-NEXT: [[GV3:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var2_64
; CHECK-NEXT: G_STORE [[OPAQUE]](s64), [[GV3]](p0) :: (store (s64) into @var2_64)
; CHECK-NEXT: G_BR %bb.3
; CHECK-NEXT: {{ $}}
; CHECK-NEXT: bb.3.if.then2:
; CHECK-NEXT: successors: %bb.4(0x80000000)
; CHECK-NEXT: {{ $}}
; CHECK-NEXT: [[GV4:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var1_64
; CHECK-NEXT: G_STORE [[OPAQUE]](s64), [[GV4]](p0) :: (store (s64) into @var1_64)
; CHECK-NEXT: G_BR %bb.4
; CHECK-NEXT: {{ $}}
; CHECK-NEXT: bb.4.if.end:
; CHECK-NEXT: [[GV5:%[0-9]+]]:_(p0) = G_GLOBAL_VALUE @var3_64
; CHECK-NEXT: G_STORE [[OPAQUE]](s64), [[GV5]](p0) :: (store (s64) into @var3_64)
; CHECK-NEXT: [[C3:%[0-9]+]]:_(s64) = G_CONSTANT i64 0
; CHECK-NEXT: $x0 = COPY [[C3]](s64)
; CHECK-NEXT: RET_ReallyLR implicit $x0
entry:
%0 = load i64, ptr @var1_64, align 4
%cst1 = bitcast i64 -2228259 to i64
%cmp = icmp eq i64 %0, 1
br i1 %cmp, label %if.then, label %if.end
if.then:
store i64 %cst1, ptr @var2_64
br label %if.then2
if.then2:
store i64 %cst1, ptr @var1_64
br label %if.end
if.end:
store i64 %cst1, ptr @var3_64
ret i64 0
}
@var1_64 = common global i64 0, align 4
@var2_64 = common global i64 0, align 4
@var3_64 = common global i64 0, align 4
|