1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
// RUN: llvm-tblgen -I %p/../../../include -gen-global-isel-combiner \
// RUN: -combiners=MyCombinerHelper -gicombiner-stop-after-build %s \
// RUN: -o %t.inc | FileCheck %s
//
// RUN: llvm-tblgen -I %p/../../../include -gen-global-isel-combiner \
// RUN: -combiners=MyCombinerHelper %s | \
// RUN: FileCheck --check-prefix=CODE %s
include "llvm/Target/Target.td"
include "llvm/Target/GlobalISel/Combine.td"
def MyTargetISA : InstrInfo;
def MyTarget : Target { let InstructionSet = MyTargetISA; }
def dummy;
def R0 : Register<"r0"> { let Namespace = "MyTarget"; }
def GPR32 : RegisterClass<"MyTarget", [i32], 32, (add R0)>;
class I<dag OOps, dag IOps, list<dag> Pat>
: Instruction {
let Namespace = "MyTarget";
let OutOperandList = OOps;
let InOperandList = IOps;
let Pattern = Pat;
}
def MOV : I<(outs GPR32:$dst), (ins GPR32:$src1), []>;
def ADD : I<(outs GPR32:$dst), (ins GPR32:$src1, GPR32:$src2), []>;
def SUB : I<(outs GPR32:$dst), (ins GPR32:$src1, GPR32:$src2), []>;
def MUL : I<(outs GPR32:$dst), (ins GPR32:$src1, GPR32:$src2), []>;
def TRUNC : I<(outs GPR32:$dst), (ins GPR32:$src1), []>;
def SEXT : I<(outs GPR32:$dst), (ins GPR32:$src1), []>;
def ZEXT : I<(outs GPR32:$dst), (ins GPR32:$src1), []>;
def ICMP : I<(outs GPR32:$dst), (ins GPR32:$tst, GPR32:$src1, GPR32:$src2), []>;
def HasFoo : Predicate<"Subtarget->hasFoo()">;
def HasAnswerToEverything : Predicate<"Subtarget->getAnswerToUniverse() == 42 && Subtarget->getAnswerToLife() == 42">;
def Rule0 : GICombineRule<
(defs root:$d),
(match (MUL $t, $s1, $s2),
(SUB $d, $t, $s3)),
(apply [{ APPLY }])>;
def Rule1 : GICombineRule<
(defs root:$d),
(match (MOV $s1, $s2),
(MOV $d, $s1)),
(apply [{ APPLY }])>;
def Rule2 : GICombineRule<
(defs root:$d),
(match (MOV $d, $s)),
(apply [{ APPLY }])>;
def Rule3 : GICombineRule<
(defs root:$d),
(match (MUL $t, $s1, $s2),
(ADD $d, $t, $s3), [{ A }]),
(apply [{ APPLY }])>;
def Rule4 : GICombineRule<
(defs root:$d),
(match (ADD $d, $s1, $s2)),
(apply [{ APPLY }])>;
let Predicates = [HasFoo] in
def Rule5 : GICombineRule<
(defs root:$d),
(match (SUB $d, $s1, $s2)),
(apply [{ APPLY }])>;
let Predicates = [HasFoo, HasAnswerToEverything] in
def Rule6 : GICombineRule<
(defs root:$d),
(match (SEXT $t, $s1),
(TRUNC $d, $t)),
(apply [{ APPLY }])>;
def Rule7 : GICombineRule<
(defs root:$d),
(match (ZEXT $t, $s1),
(TRUNC $d, $t)),
(apply [{ APPLY }])>;
// Rules 8&9 check that the partitions are formed correctly if
// - there is an edge different from Operand(1) -> Operand(0)
// - more than one leaf is ignored because the leaf does not
// care about the instruction
// - a single instruction has more operands than all others
// These conditions triggered a crash when emitting the
// resulting source code.
def Rule8 : GICombineRule<
(defs root:$d),
(match (ICMP $ic, $cc, $s2, $s3),
(ZEXT $z, $ic),
(MUL $d, $t, $z),
[{ MATCH }]),
(apply [{ APPLY }])>;
def Rule9 : GICombineRule<
(defs root:$d),
(match (MUL $d, $t, $z)),
(apply [{ APPLY }])>;
def MyCombinerHelper: GICombinerHelper<"GenMyCombinerHelper", [
Rule0,
Rule1,
Rule2,
Rule3,
Rule4,
Rule5,
Rule6,
Rule7,
Rule8,
Rule9
]>;
// CHECK-LABEL: digraph "matchtree" {
// CHECK-DAG: Node[[N0:(0x)?[0-9a-fA-F]+]] [shape=record,label="{MI[0].getOpcode()|5 partitions|Rule0,Rule1,Rule2,Rule3,Rule4,Rule5,Rule6,Rule7,Rule8,Rule9}"]
// CHECK-DAG: Node[[N1:(0x)?[0-9a-fA-F]+]] [shape=record,label="{MI[1] = getVRegDef(MI[0].getOperand(1))|2 partitions|Rule0,Rule5}"]
// CHECK-DAG: Node[[N2:(0x)?[0-9a-fA-F]+]] [shape=record,label="{MI[1].getOpcode()|2 partitions|Rule0,Rule5}"]
// CHECK-DAG: Node[[N3:(0x)?[0-9a-fA-F]+]] [shape=record,label="{No partitioner|Rule0}"]
// CHECK-DAG: Node[[N4:(0x)?[0-9a-fA-F]+]] [shape=record,label="{No partitioner|Rule5}"]
// CHECK-DAG: Node[[N5:(0x)?[0-9a-fA-F]+]] [shape=record,label="{No partitioner|Rule5}"]
// CHECK-DAG: Node[[N6:(0x)?[0-9a-fA-F]+]] [shape=record,label="{MI[1] = getVRegDef(MI[0].getOperand(1))|2 partitions|Rule1,Rule2}"]
// CHECK-DAG: Node[[N7:(0x)?[0-9a-fA-F]+]] [shape=record,label="{MI[1].getOpcode()|2 partitions|Rule1,Rule2}"]
// CHECK-DAG: Node[[N8:(0x)?[0-9a-fA-F]+]] [shape=record,label="{No partitioner|Rule1}"]
// CHECK-DAG: Node[[N9:(0x)?[0-9a-fA-F]+]] [shape=record,label="{No partitioner|Rule2}"]
// CHECK-DAG: Node[[N10:(0x)?[0-9a-fA-F]+]] [shape=record,label="{No partitioner|Rule2}"]
// CHECK-DAG: Node[[N11:(0x)?[0-9a-fA-F]+]] [shape=record,label="{MI[1] = getVRegDef(MI[0].getOperand(1))|2 partitions|Rule3,Rule4}"]
// CHECK-DAG: Node[[N12:(0x)?[0-9a-fA-F]+]] [shape=record,label="{MI[1].getOpcode()|2 partitions|Rule3,Rule4}"]
// CHECK-DAG: Node[[N13:(0x)?[0-9a-fA-F]+]] [shape=record,label="{No partitioner|Rule3,Rule4}",color=red]
// CHECK-DAG: Node[[N14:(0x)?[0-9a-fA-F]+]] [shape=record,label="{No partitioner|Rule4}"]
// CHECK-DAG: Node[[N15:(0x)?[0-9a-fA-F]+]] [shape=record,label="{No partitioner|Rule4}"]
// CHECK-DAG: Node[[N16:(0x)?[0-9a-fA-F]+]] [shape=record,label="{MI[1] = getVRegDef(MI[0].getOperand(1))|1 partitions|Rule6,Rule7}"]
// CHECK-DAG: Node[[N17:(0x)?[0-9a-fA-F]+]] [shape=record,label="{MI[1].getOpcode()|2 partitions|Rule6,Rule7}"]
// CHECK-DAG: Node[[N18:(0x)?[0-9a-fA-F]+]] [shape=record,label="{No partitioner|Rule6}"]
// CHECK-DAG: Node[[N19:(0x)?[0-9a-fA-F]+]] [shape=record,label="{No partitioner|Rule7}"]
// CHECK-DAG: Node[[N20:(0x)?[0-9a-fA-F]+]] [shape=record,label="{MI[1] = getVRegDef(MI[0].getOperand(2))|2 partitions|Rule8,Rule9}"]
// CHECK-DAG: Node[[N21:(0x)?[0-9a-fA-F]+]] [shape=record,label="{MI[1].getOpcode()|2 partitions|Rule8,Rule9}"]
// CHECK-DAG: Node[[N22:(0x)?[0-9a-fA-F]+]] [shape=record,label="{MI[2] = getVRegDef(MI[1].getOperand(1))|1 partitions|Rule8,Rule9}"]
// CHECK-DAG: Node[[N23:(0x)?[0-9a-fA-F]+]] [shape=record,label="{MI[2].getOpcode()|2 partitions|Rule8,Rule9}"]
// CHECK-DAG: Node[[N24:(0x)?[0-9a-fA-F]+]] [shape=record,label="{No partitioner|Rule8,Rule9}",color=red]
// CHECK-DAG: Node[[N25:(0x)?[0-9a-fA-F]+]] [shape=record,label="{No partitioner|Rule9}"]
// CHECK-DAG: Node[[N26:(0x)?[0-9a-fA-F]+]] [shape=record,label="{No partitioner|Rule9}"]
// CHECK-DAG: Node[[N27:(0x)?[0-9a-fA-F]+]] [shape=record,label="{No partitioner|Rule9}"]
// The most important partitioner is on the first opcode:
// CHECK-DAG: Node[[N0]] -> Node[[N1]] [label="#0 MyTarget::SUB"]
// CHECK-DAG: Node[[N0]] -> Node[[N6]] [label="#1 MyTarget::MOV"]
// CHECK-DAG: Node[[N0]] -> Node[[N11]] [label="#2 MyTarget::ADD"]
// CHECK-DAG: Node[[N0]] -> Node[[N16]] [label="#3 MyTarget::TRUNC"]
// CHECK-DAG: Node[[N0]] -> Node[[N20]] [label="#4 MyTarget::MUL"]
// For, MI[0].getOpcode() == SUB, then has to determine whether it has a reg
// operand and follow that link. If it can't then Rule5 is the only choice as
// that rule is not constrained to a reg.
// CHECK-DAG: Node[[N1]] -> Node[[N2]] [label="#0 true"]
// CHECK-DAG: Node[[N1]] -> Node[[N5]] [label="#1 false"]
// For, MI[0].getOpcode() == SUB && MI[0].getOperand(1).isReg(), if MI[1] is a
// MUL then it must be either Rule0 or Rule5. Rule0 is fully tested so Rule5 is
// unreachable. If it's not MUL then it must be Rule5.
// CHECK-DAG: Node[[N2]] -> Node[[N3]] [label="#0 MyTarget::MUL"]
// CHECK-DAG: Node[[N2]] -> Node[[N4]] [label="#1 * or nullptr"]
// CHECK-DAG: Node[[N6]] -> Node[[N7]] [label="#0 true"]
// CHECK-DAG: Node[[N6]] -> Node[[N10]] [label="#1 false"]
// CHECK-DAG: Node[[N7]] -> Node[[N8]] [label="#0 MyTarget::MOV"]
// CHECK-DAG: Node[[N7]] -> Node[[N9]] [label="#1 * or nullptr"]
// CHECK-DAG: Node[[N11]] -> Node[[N12]] [label="#0 true"]
// CHECK-DAG: Node[[N11]] -> Node[[N15]] [label="#1 false"]
// CHECK-DAG: Node[[N12]] -> Node[[N13]] [label="#0 MyTarget::MUL"]
// CHECK-DAG: Node[[N12]] -> Node[[N14]] [label="#1 * or nullptr"]
// CHECK-DAG: Node[[N16]] -> Node[[N17]] [label="#0 true"]
// CHECK-DAG: Node[[N17]] -> Node[[N18]] [label="#0 MyTarget::SEXT"]
// CHECK-DAG: Node[[N17]] -> Node[[N19]] [label="#1 MyTarget::ZEXT"]
// Follow the links for MI[0].getOpcode() == MUL.
// CHECK-DAG: Node[[N20]] -> Node[[N21]] [label="#0 true"]
// CHECK-DAG: Node[[N20]] -> Node[[N27]] [label="#1 false"]
// CHECK-DAG: Node[[N21]] -> Node[[N22]] [label="#0 MyTarget::ZEXT"]
// CHECK-DAG: Node[[N21]] -> Node[[N26]] [label="#1 * or nullptr"]
// CHECK-DAG: Node[[N22]] -> Node[[N23]] [label="#0 true"]
// CHECK-DAG: Node[[N23]] -> Node[[N24]] [label="#0 MyTarget::ICMP"]
// CHECK-DAG: Node[[N23]] -> Node[[N25]] [label="#1 * or nullptr"]
// CHECK-LABEL: {{^}$}}
// Check the generated source code.
// CODE-LABEL: GenMyCombinerHelper::tryCombineAll
// Check the first partition. The numbers correspond to the labels above.
// CODE: switch (MIs[0]->getOpcode()) {
// CODE-NEXT: case MyTarget::SUB: Partition = 0; break;
// CODE-NEXT: case MyTarget::MOV: Partition = 1; break;
// CODE-NEXT: case MyTarget::ADD: Partition = 2; break;
// CODE-NEXT: case MyTarget::TRUNC: Partition = 3; break;
// CODE-NEXT: case MyTarget::MUL: Partition = 4; break;
// CODE-NEXT: }
// Check that the correct partition is choosen if operand 1 is a register.
// CODE: if (Partition == 0 /* MyTarget::SUB */) {
// CODE-NEXT: Partition = -1;
// CODE-NEXT: if (MIs.size() <= 1) MIs.resize(2);
// CODE-NEXT: MIs[1] = nullptr;
// CODE-NEXT: if (MIs[0]->getOperand(1).isReg())
// CODE-NEXT: MIs[1] = MRI.getVRegDef(MIs[0]->getOperand(1).getReg());
// CODE-NEXT: if (MIs[1] == nullptr) Partition = 1;
// CODE-NEXT: if (MIs[1] != nullptr) Partition = 0;
// Check that the MUL opcode is tested.
// CODE: if (Partition == 0 /* true */) {
// CODE-NEXT: Partition = -1;
// CODE-NEXT: switch (MIs[1]->getOpcode()) {
// CODE-NEXT: case MyTarget::MUL: Partition = 0; break;
// CODE-NEXT: default: Partition = 1; break;
// CODE-NEXT: }
// Check that action for MUL is executed.
// CODE: if (Partition == 0 /* MyTarget::MUL */) {
// CODE-NEXT: // Leaf name: Rule0
// CODE-NEXT: // Rule: Rule0
// CODE-NEXT: if (!RuleConfig->isRuleDisabled(0)) {
// CODE-NEXT: if (1
// CODE-NEXT:) {
// CODE-NEXT: LLVM_DEBUG(dbgs() << "Applying rule 'Rule0'\n");
// CODE-NEXT: APPLY
// CODE-NEXT: return true;
// CODE-NEXT: }
// CODE-NEXT: }
// CODE-NEXT: llvm_unreachable("Combine rule elision was incorrect");
// CODE-NEXT: return false;
// CODE-NEXT: }
// Check that the other rule involving SUB (Rule5) is run otherwise.
// CODE-NEXT: if (Partition == 1 /* * or nullptr */) {
// CODE-NEXT: // Leaf name: Rule5
// CODE-NEXT: // Rule: Rule5
// CODE-NEXT: if (!RuleConfig->isRuleDisabled(5)) {
// CODE-NEXT: if (1
// CODE-NEXT: && (
// CODE-NEXT: // Predicate: HasFoo
// CODE-NEXT: Subtarget->hasFoo()
// CODE-NEXT: )
// CODE-NEXT:) {
// CODE-NEXT: LLVM_DEBUG(dbgs() << "Applying rule 'Rule5'\n");
// CODE-NEXT: APPLY
// CODE-NEXT: return true;
// CODE-NEXT: }
// CODE-NEXT: }
// CODE-NEXT: llvm_unreachable("Combine rule elision was incorrect");
// CODE-NEXT: return false;
// CODE-NEXT: }
// CODE-NEXT: }
// Check that Rule5 is run if operand 1 is not MUL.
// CODE-NEXT: if (Partition == 1 /* false */) {
// CODE-NEXT: // Leaf name: Rule5
// CODE-NEXT: // Rule: Rule5
// CODE-NEXT: if (!RuleConfig->isRuleDisabled(5)) {
// CODE-NEXT: if (1
// CODE-NEXT: && (
// CODE-NEXT: // Predicate: HasFoo
// CODE-NEXT: Subtarget->hasFoo()
// CODE-NEXT: )
// CODE-NEXT: ) {
// CODE-NEXT: LLVM_DEBUG(dbgs() << "Applying rule 'Rule5'\n");
// CODE-NEXT: APPLY
// CODE-NEXT: return true;
// CODE-NEXT: }
// CODE-NEXT: }
// CODE-NEXT: llvm_unreachable("Combine rule elision was incorrect");
// CODE-NEXT: return false;
// CODE-NEXT: }
// CODE-NEXT: }
// Check multiple predicates are correctly emitted
// CODE: // Leaf name: Rule6
// CODE-NEXT: // Rule: Rule6
// CODE-NEXT: if (!RuleConfig->isRuleDisabled(6)) {
// CODE-NEXT: if (1
// CODE-NEXT: && (
// CODE-NEXT: // Predicate: HasFoo
// CODE-NEXT: Subtarget->hasFoo()
// CODE-NEXT: )
// CODE-NEXT: && (
// CODE-NEXT: // Predicate: HasAnswerToEverything
// CODE-NEXT: Subtarget->getAnswerToUniverse() == 42 && Subtarget->getAnswerToLife() == 42
// CODE-NEXT: )
// CODE-NEXT: ) {
// CODE-NEXT: LLVM_DEBUG(dbgs() << "Applying rule 'Rule6'\n");
// CODE-NEXT: APPLY
// CODE-NEXT: return true;
// CODE-NEXT: }
// CODE-NEXT: }
|