1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
; REQUIRES: asserts
; RUN: opt -passes=loop-vectorize -force-vector-width=4 -force-vector-interleave=1 -debug-only=loop-vectorize -disable-output -S %s 2>&1 | FileCheck %s
define void @test_chained_first_order_recurrences_1(ptr %ptr) {
; CHECK-LABEL: 'test_chained_first_order_recurrences_1'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VTC:%.+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<1000> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.1> = phi ir<22>, ir<%for.1.next>
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.2> = phi ir<33>, vp<[[FOR1_SPLICE:%.+]]>
; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
; CHECK-NEXT: CLONE ir<%gep.ptr> = getelementptr inbounds ir<%ptr>, vp<[[STEPS]]>
; CHECK-NEXT: WIDEN ir<%for.1.next> = load ir<%gep.ptr>
; CHECK-NEXT: EMIT vp<[[FOR1_SPLICE]]> = first-order splice ir<%for.1> ir<%for.1.next>
; CHECK-NEXT: EMIT vp<[[FOR2_SPLICE:%.+]]> = first-order splice ir<%for.2> vp<[[FOR1_SPLICE]]>
; CHECK-NEXT: WIDEN ir<%add> = add vp<[[FOR1_SPLICE]]>, vp<[[FOR2_SPLICE]]>
; CHECK-NEXT: WIDEN store ir<%gep.ptr>, ir<%add>
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = VF * UF +(nuw) vp<[[CAN_IV]]>
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]> vp<[[VTC]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%for.1 = phi i16 [ 22, %entry ], [ %for.1.next, %loop ]
%for.2 = phi i16 [ 33, %entry ], [ %for.1, %loop ]
%iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
%iv.next = add nuw nsw i64 %iv, 1
%gep.ptr = getelementptr inbounds i16, ptr %ptr, i64 %iv
%for.1.next = load i16, ptr %gep.ptr, align 2
%add = add i16 %for.1, %for.2
store i16 %add, ptr %gep.ptr
%exitcond.not = icmp eq i64 %iv.next, 1000
br i1 %exitcond.not, label %exit, label %loop
exit:
ret void
}
define void @test_chained_first_order_recurrences_3(ptr %ptr) {
; CHECK-LABEL: 'test_chained_first_order_recurrences_3'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VTC:%.+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<1000> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.1> = phi ir<22>, ir<%for.1.next>
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.2> = phi ir<33>, vp<[[FOR1_SPLICE:%.+]]>
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.3> = phi ir<33>, vp<[[FOR2_SPLICE:%.+]]>
; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
; CHECK-NEXT: CLONE ir<%gep.ptr> = getelementptr inbounds ir<%ptr>, vp<[[STEPS]]>
; CHECK-NEXT: WIDEN ir<%for.1.next> = load ir<%gep.ptr>
; CHECK-NEXT: EMIT vp<[[FOR1_SPLICE]]> = first-order splice ir<%for.1> ir<%for.1.next>
; CHECK-NEXT: EMIT vp<[[FOR2_SPLICE]]> = first-order splice ir<%for.2> vp<[[FOR1_SPLICE]]>
; CHECK-NEXT: EMIT vp<[[FOR3_SPLICE:%.+]]> = first-order splice ir<%for.3> vp<[[FOR2_SPLICE]]>
; CHECK-NEXT: WIDEN ir<%add.1> = add vp<[[FOR1_SPLICE]]>, vp<[[FOR2_SPLICE]]>
; CHECK-NEXT: WIDEN ir<%add.2> = add ir<%add.1>, vp<[[FOR3_SPLICE]]>
; CHECK-NEXT: WIDEN store ir<%gep.ptr>, ir<%add.2>
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = VF * UF +(nuw) vp<[[CAN_IV]]>
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]> vp<[[VTC]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NOT: vector.body:
;
entry:
br label %loop
loop:
%for.1 = phi i16 [ 22, %entry ], [ %for.1.next, %loop ]
%for.2 = phi i16 [ 33, %entry ], [ %for.1, %loop ]
%for.3 = phi i16 [ 33, %entry ], [ %for.2, %loop ]
%iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
%iv.next = add nuw nsw i64 %iv, 1
%gep.ptr = getelementptr inbounds i16, ptr %ptr, i64 %iv
%for.1.next = load i16, ptr %gep.ptr, align 2
%add.1 = add i16 %for.1, %for.2
%add.2 = add i16 %add.1, %for.3
store i16 %add.2, ptr %gep.ptr
%exitcond.not = icmp eq i64 %iv.next, 1000
br i1 %exitcond.not, label %exit, label %loop
exit:
ret void
}
; This test has two FORs (for.x and for.y) where incoming value from the previous
; iteration (for.x.prev) of one FOR (for.y) depends on another FOR (for.x). Due to
; this dependency all uses of the former FOR (for.y) should be sunk after
; incoming value from the previous iteration (for.x.prev) of te latter FOR (for.y).
; That means side-effecting user (store i64 %for.y.i64, ptr %gep) of the latter
; FOR (for.y) should be moved which is not currently supported.
define i32 @test_chained_first_order_recurrences_4(ptr %base) {
; CHECK-LABEL: 'test_chained_first_order_recurrences_4'
; CHECK: No VPlan could be built for
entry:
br label %loop
ret:
ret i32 0
loop:
%iv = phi i64 [ %iv.next, %loop ], [ 0, %entry ]
%for.x = phi i64 [ %for.x.next, %loop ], [ 0, %entry ]
%for.y = phi i32 [ %for.x.prev, %loop ], [ 0, %entry ]
%iv.next = add i64 %iv, 1
%gep = getelementptr i64, ptr %base, i64 %iv
%for.x.prev = trunc i64 %for.x to i32
%for.y.i64 = sext i32 %for.y to i64
store i64 %for.y.i64, ptr %gep
%for.x.next = mul i64 0, 0
%icmp = icmp ugt i64 %iv, 4096
br i1 %icmp, label %ret, label %loop
}
|