1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
|
# Chapter 7: Adding a Composite Type to Toy
[TOC]
In the [previous chapter](Ch-6.md), we demonstrated an end-to-end compilation
flow from our Toy front-end to LLVM IR. In this chapter, we will extend the Toy
language to support a new composite `struct` type.
## Defining a `struct` in Toy
The first thing we need to define is the interface of this type in our `toy`
source language. The general syntax of a `struct` type in Toy is as follows:
```toy
# A struct is defined by using the `struct` keyword followed by a name.
struct MyStruct {
# Inside of the struct is a list of variable declarations without initializers
# or shapes, which may also be other previously defined structs.
var a;
var b;
}
```
Structs may now be used in functions as variables or parameters by using the
name of the struct instead of `var`. The members of the struct are accessed via
a `.` access operator. Values of `struct` type may be initialized with a
composite initializer, or a comma-separated list of other initializers
surrounded by `{}`. An example is shown below:
```toy
struct Struct {
var a;
var b;
}
# User defined generic function may operate on struct types as well.
def multiply_transpose(Struct value) {
# We can access the elements of a struct via the '.' operator.
return transpose(value.a) * transpose(value.b);
}
def main() {
# We initialize struct values using a composite initializer.
Struct value = {[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]};
# We pass these arguments to functions like we do with variables.
var c = multiply_transpose(value);
print(c);
}
```
## Defining a `struct` in MLIR
In MLIR, we will also need a representation for our struct types. MLIR does not
provide a type that does exactly what we need, so we will need to define our
own. We will simply define our `struct` as an unnamed container of a set of
element types. The name of the `struct` and its elements are only useful for the
AST of our `toy` compiler, so we don't need to encode it in the MLIR
representation.
### Defining the Type Class
#### Defining the Type Class
As mentioned in [chapter 2](Ch-2.md), [`Type`](../../LangRef.md/#type-system)
objects in MLIR are value-typed and rely on having an internal storage object
that holds the actual data for the type. The `Type` class in itself acts as a
simple wrapper around an internal `TypeStorage` object that is uniqued within an
instance of an `MLIRContext`. When constructing a `Type`, we are internally just
constructing and uniquing an instance of a storage class.
When defining a new `Type` that contains parametric data (e.g. the `struct`
type, which requires additional information to hold the element types), we will
need to provide a derived storage class. The `singleton` types that don't have
any additional data (e.g. the [`index` type](../../Dialects/Builtin.md/#indextype)) don't
require a storage class and use the default `TypeStorage`.
##### Defining the Storage Class
Type storage objects contain all of the data necessary to construct and unique a
type instance. Derived storage classes must inherit from the base
`mlir::TypeStorage` and provide a set of aliases and hooks that will be used by
the `MLIRContext` for uniquing. Below is the definition of the storage instance
for our `struct` type, with each of the necessary requirements detailed inline:
```c++
/// This class represents the internal storage of the Toy `StructType`.
struct StructTypeStorage : public mlir::TypeStorage {
/// The `KeyTy` is a required type that provides an interface for the storage
/// instance. This type will be used when uniquing an instance of the type
/// storage. For our struct type, we will unique each instance structurally on
/// the elements that it contains.
using KeyTy = llvm::ArrayRef<mlir::Type>;
/// A constructor for the type storage instance.
StructTypeStorage(llvm::ArrayRef<mlir::Type> elementTypes)
: elementTypes(elementTypes) {}
/// Define the comparison function for the key type with the current storage
/// instance. This is used when constructing a new instance to ensure that we
/// haven't already uniqued an instance of the given key.
bool operator==(const KeyTy &key) const { return key == elementTypes; }
/// Define a hash function for the key type. This is used when uniquing
/// instances of the storage.
/// Note: This method isn't necessary as both llvm::ArrayRef and mlir::Type
/// have hash functions available, so we could just omit this entirely.
static llvm::hash_code hashKey(const KeyTy &key) {
return llvm::hash_value(key);
}
/// Define a construction function for the key type from a set of parameters.
/// These parameters will be provided when constructing the storage instance
/// itself, see the `StructType::get` method further below.
/// Note: This method isn't necessary because KeyTy can be directly
/// constructed with the given parameters.
static KeyTy getKey(llvm::ArrayRef<mlir::Type> elementTypes) {
return KeyTy(elementTypes);
}
/// Define a construction method for creating a new instance of this storage.
/// This method takes an instance of a storage allocator, and an instance of a
/// `KeyTy`. The given allocator must be used for *all* necessary dynamic
/// allocations used to create the type storage and its internal.
static StructTypeStorage *construct(mlir::TypeStorageAllocator &allocator,
const KeyTy &key) {
// Copy the elements from the provided `KeyTy` into the allocator.
llvm::ArrayRef<mlir::Type> elementTypes = allocator.copyInto(key);
// Allocate the storage instance and construct it.
return new (allocator.allocate<StructTypeStorage>())
StructTypeStorage(elementTypes);
}
/// The following field contains the element types of the struct.
llvm::ArrayRef<mlir::Type> elementTypes;
};
```
##### Defining the Type Class
With the storage class defined, we can add the definition for the user-visible
`StructType` class. This is the class that we will actually interface with.
```c++
/// This class defines the Toy struct type. It represents a collection of
/// element types. All derived types in MLIR must inherit from the CRTP class
/// 'Type::TypeBase'. It takes as template parameters the concrete type
/// (StructType), the base class to use (Type), and the storage class
/// (StructTypeStorage).
class StructType : public mlir::Type::TypeBase<StructType, mlir::Type,
StructTypeStorage> {
public:
/// Inherit some necessary constructors from 'TypeBase'.
using Base::Base;
/// Create an instance of a `StructType` with the given element types. There
/// *must* be at least one element type.
static StructType get(llvm::ArrayRef<mlir::Type> elementTypes) {
assert(!elementTypes.empty() && "expected at least 1 element type");
// Call into a helper 'get' method in 'TypeBase' to get a uniqued instance
// of this type. The first parameter is the context to unique in. The
// parameters after are forwarded to the storage instance.
mlir::MLIRContext *ctx = elementTypes.front().getContext();
return Base::get(ctx, elementTypes);
}
/// Returns the element types of this struct type.
llvm::ArrayRef<mlir::Type> getElementTypes() {
// 'getImpl' returns a pointer to the internal storage instance.
return getImpl()->elementTypes;
}
/// Returns the number of element type held by this struct.
size_t getNumElementTypes() { return getElementTypes().size(); }
};
```
We register this type in the `ToyDialect` initializer in a similar way to how we
did with operations:
```c++
void ToyDialect::initialize() {
addTypes<StructType>();
}
```
(An important note here is that when registering a type, the definition of the
storage class must be visible.)
With this we can now use our `StructType` when generating MLIR from Toy. See
examples/toy/Ch7/mlir/MLIRGen.cpp for more details.
### Exposing to ODS
After defining a new type, we should make the ODS framework aware of our Type so
that we can use it in the operation definitions and auto-generate utilities
within the Dialect. A simple example is shown below:
```tablegen
// Provide a definition for the Toy StructType for use in ODS. This allows for
// using StructType in a similar way to Tensor or MemRef. We use `DialectType`
// to demarcate the StructType as belonging to the Toy dialect.
def Toy_StructType :
DialectType<Toy_Dialect, CPred<"$_self.isa<StructType>()">,
"Toy struct type">;
// Provide a definition of the types that are used within the Toy dialect.
def Toy_Type : AnyTypeOf<[F64Tensor, Toy_StructType]>;
```
### Parsing and Printing
At this point we can use our `StructType` during MLIR generation and
transformation, but we can't output or parse `.mlir`. For this we need to add
support for parsing and printing instances of the `StructType`. This can be done
by overriding the `parseType` and `printType` methods on the `ToyDialect`.
Declarations for these methods are automatically provided when the type is
exposed to ODS as detailed in the previous section.
```c++
class ToyDialect : public mlir::Dialect {
public:
/// Parse an instance of a type registered to the toy dialect.
mlir::Type parseType(mlir::DialectAsmParser &parser) const override;
/// Print an instance of a type registered to the toy dialect.
void printType(mlir::Type type,
mlir::DialectAsmPrinter &printer) const override;
};
```
These methods take an instance of a high-level parser or printer that allows for
easily implementing the necessary functionality. Before going into the
implementation, let's think about the syntax that we want for the `struct` type
in the printed IR. As described in the
[MLIR language reference](../../LangRef.md/#dialect-types), dialect types are
generally represented as: `! dialect-namespace < type-data >`, with a pretty
form available under certain circumstances. The responsibility of our `Toy`
parser and printer is to provide the `type-data` bits. We will define our
`StructType` as having the following form:
```
struct-type ::= `struct` `<` type (`,` type)* `>`
```
#### Parsing
An implementation of the parser is shown below:
```c++
/// Parse an instance of a type registered to the toy dialect.
mlir::Type ToyDialect::parseType(mlir::DialectAsmParser &parser) const {
// Parse a struct type in the following form:
// struct-type ::= `struct` `<` type (`,` type)* `>`
// NOTE: All MLIR parser function return a ParseResult. This is a
// specialization of LogicalResult that auto-converts to a `true` boolean
// value on failure to allow for chaining, but may be used with explicit
// `mlir::failed/mlir::succeeded` as desired.
// Parse: `struct` `<`
if (parser.parseKeyword("struct") || parser.parseLess())
return Type();
// Parse the element types of the struct.
SmallVector<mlir::Type, 1> elementTypes;
do {
// Parse the current element type.
SMLoc typeLoc = parser.getCurrentLocation();
mlir::Type elementType;
if (parser.parseType(elementType))
return nullptr;
// Check that the type is either a TensorType or another StructType.
if (!elementType.isa<mlir::TensorType, StructType>()) {
parser.emitError(typeLoc, "element type for a struct must either "
"be a TensorType or a StructType, got: ")
<< elementType;
return Type();
}
elementTypes.push_back(elementType);
// Parse the optional: `,`
} while (succeeded(parser.parseOptionalComma()));
// Parse: `>`
if (parser.parseGreater())
return Type();
return StructType::get(elementTypes);
}
```
#### Printing
An implementation of the printer is shown below:
```c++
/// Print an instance of a type registered to the toy dialect.
void ToyDialect::printType(mlir::Type type,
mlir::DialectAsmPrinter &printer) const {
// Currently the only toy type is a struct type.
StructType structType = type.cast<StructType>();
// Print the struct type according to the parser format.
printer << "struct<";
llvm::interleaveComma(structType.getElementTypes(), printer);
printer << '>';
}
```
Before moving on, let's look at a quick of example showcasing the functionality
we have now:
```toy
struct Struct {
var a;
var b;
}
def multiply_transpose(Struct value) {
}
```
Which generates the following:
```mlir
module {
toy.func @multiply_transpose(%arg0: !toy.struct<tensor<*xf64>, tensor<*xf64>>) {
toy.return
}
}
```
### Operating on `StructType`
Now that the `struct` type has been defined, and we can round-trip it through
the IR. The next step is to add support for using it within our operations.
#### Updating Existing Operations
A few of our existing operations, e.g. `ReturnOp`, will need to be updated to
handle `Toy_StructType`.
```tablegen
def ReturnOp : Toy_Op<"return", [Terminator, HasParent<"FuncOp">]> {
...
let arguments = (ins Variadic<Toy_Type>:$input);
...
}
```
#### Adding New `Toy` Operations
In addition to the existing operations, we will be adding a few new operations
that will provide more specific handling of `structs`.
##### `toy.struct_constant`
This new operation materializes a constant value for a struct. In our current
modeling, we just use an [array attribute](../../Dialects/Builtin.md/#arrayattr)
that contains a set of constant values for each of the `struct` elements.
```mlir
%0 = toy.struct_constant [
dense<[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]> : tensor<2x3xf64>
] : !toy.struct<tensor<*xf64>>
```
##### `toy.struct_access`
This new operation materializes the Nth element of a `struct` value.
```mlir
// Using %0 from above
%1 = toy.struct_access %0[0] : !toy.struct<tensor<*xf64>> -> tensor<*xf64>
```
With these operations, we can revisit our original example:
```toy
struct Struct {
var a;
var b;
}
# User defined generic function may operate on struct types as well.
def multiply_transpose(Struct value) {
# We can access the elements of a struct via the '.' operator.
return transpose(value.a) * transpose(value.b);
}
def main() {
# We initialize struct values using a composite initializer.
Struct value = {[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]};
# We pass these arguments to functions like we do with variables.
var c = multiply_transpose(value);
print(c);
}
```
and finally get a full MLIR module:
```mlir
module {
toy.func @multiply_transpose(%arg0: !toy.struct<tensor<*xf64>, tensor<*xf64>>) -> tensor<*xf64> {
%0 = toy.struct_access %arg0[0] : !toy.struct<tensor<*xf64>, tensor<*xf64>> -> tensor<*xf64>
%1 = toy.transpose(%0 : tensor<*xf64>) to tensor<*xf64>
%2 = toy.struct_access %arg0[1] : !toy.struct<tensor<*xf64>, tensor<*xf64>> -> tensor<*xf64>
%3 = toy.transpose(%2 : tensor<*xf64>) to tensor<*xf64>
%4 = toy.mul %1, %3 : tensor<*xf64>
toy.return %4 : tensor<*xf64>
}
toy.func @main() {
%0 = toy.struct_constant [
dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>,
dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>
] : !toy.struct<tensor<*xf64>, tensor<*xf64>>
%1 = toy.generic_call @multiply_transpose(%0) : (!toy.struct<tensor<*xf64>, tensor<*xf64>>) -> tensor<*xf64>
toy.print %1 : tensor<*xf64>
toy.return
}
}
```
#### Optimizing Operations on `StructType`
Now that we have a few operations operating on `StructType`, we also have many
new constant folding opportunities.
After inlining, the MLIR module in the previous section looks something like:
```mlir
module {
toy.func @main() {
%0 = toy.struct_constant [
dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>,
dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>
] : !toy.struct<tensor<*xf64>, tensor<*xf64>>
%1 = toy.struct_access %0[0] : !toy.struct<tensor<*xf64>, tensor<*xf64>> -> tensor<*xf64>
%2 = toy.transpose(%1 : tensor<*xf64>) to tensor<*xf64>
%3 = toy.struct_access %0[1] : !toy.struct<tensor<*xf64>, tensor<*xf64>> -> tensor<*xf64>
%4 = toy.transpose(%3 : tensor<*xf64>) to tensor<*xf64>
%5 = toy.mul %2, %4 : tensor<*xf64>
toy.print %5 : tensor<*xf64>
toy.return
}
}
```
We have several `toy.struct_access` operations that access into a
`toy.struct_constant`. As detailed in [chapter 3](Ch-3.md) (FoldConstantReshape),
we can add folders for these `toy` operations by setting the `hasFolder` bit
on the operation definition and providing a definition of the `*Op::fold`
method.
```c++
/// Fold constants.
OpFoldResult ConstantOp::fold(FoldAdaptor adaptor) { return value(); }
/// Fold struct constants.
OpFoldResult StructConstantOp::fold(FoldAdaptor adaptor) {
return value();
}
/// Fold simple struct access operations that access into a constant.
OpFoldResult StructAccessOp::fold(FoldAdaptor adaptor) {
auto structAttr = adaptor.getInput().dyn_cast_or_null<mlir::ArrayAttr>();
if (!structAttr)
return nullptr;
size_t elementIndex = index().getZExtValue();
return structAttr[elementIndex];
}
```
To ensure that MLIR generates the proper constant operations when folding our
`Toy` operations, i.e. `ConstantOp` for `TensorType` and `StructConstant` for
`StructType`, we will need to provide an override for the dialect hook
`materializeConstant`. This allows for generic MLIR operations to create
constants for the `Toy` dialect when necessary.
```c++
mlir::Operation *ToyDialect::materializeConstant(mlir::OpBuilder &builder,
mlir::Attribute value,
mlir::Type type,
mlir::Location loc) {
if (type.isa<StructType>())
return builder.create<StructConstantOp>(loc, type,
value.cast<mlir::ArrayAttr>());
return builder.create<ConstantOp>(loc, type,
value.cast<mlir::DenseElementsAttr>());
}
```
With this, we can now generate code that can be generated to LLVM without any
changes to our pipeline.
```mlir
module {
toy.func @main() {
%0 = toy.constant dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>
%1 = toy.transpose(%0 : tensor<2x3xf64>) to tensor<3x2xf64>
%2 = toy.mul %1, %1 : tensor<3x2xf64>
toy.print %2 : tensor<3x2xf64>
toy.return
}
}
```
You can build `toyc-ch7` and try yourself: `toyc-ch7
test/Examples/Toy/Ch7/struct-codegen.toy -emit=mlir`. More details on defining
custom types can be found in
[DefiningAttributesAndTypes](../../DefiningDialects/AttributesAndTypes.md).
|