1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
//===- LocalAliasAnalysis.cpp - Local stateless alias Analysis for MLIR ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/AliasAnalysis/LocalAliasAnalysis.h"
#include "mlir/IR/FunctionInterfaces.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Interfaces/ViewLikeInterface.h"
#include <optional>
using namespace mlir;
//===----------------------------------------------------------------------===//
// Underlying Address Computation
//===----------------------------------------------------------------------===//
/// The maximum depth that will be searched when trying to find an underlying
/// value.
static constexpr unsigned maxUnderlyingValueSearchDepth = 10;
/// Given a value, collect all of the underlying values being addressed.
static void collectUnderlyingAddressValues(Value value, unsigned maxDepth,
DenseSet<Value> &visited,
SmallVectorImpl<Value> &output);
/// Given a successor (`region`) of a RegionBranchOpInterface, collect all of
/// the underlying values being addressed by one of the successor inputs. If the
/// provided `region` is null, as per `RegionBranchOpInterface` this represents
/// the parent operation.
static void collectUnderlyingAddressValues(RegionBranchOpInterface branch,
Region *region, Value inputValue,
unsigned inputIndex,
unsigned maxDepth,
DenseSet<Value> &visited,
SmallVectorImpl<Value> &output) {
// Given the index of a region of the branch (`predIndex`), or std::nullopt to
// represent the parent operation, try to return the index into the outputs of
// this region predecessor that correspond to the input values of `region`. If
// an index could not be found, std::nullopt is returned instead.
auto getOperandIndexIfPred =
[&](std::optional<unsigned> predIndex) -> std::optional<unsigned> {
SmallVector<RegionSuccessor, 2> successors;
branch.getSuccessorRegions(predIndex, successors);
for (RegionSuccessor &successor : successors) {
if (successor.getSuccessor() != region)
continue;
// Check that the successor inputs map to the given input value.
ValueRange inputs = successor.getSuccessorInputs();
if (inputs.empty()) {
output.push_back(inputValue);
break;
}
unsigned firstInputIndex, lastInputIndex;
if (region) {
firstInputIndex = cast<BlockArgument>(inputs[0]).getArgNumber();
lastInputIndex = cast<BlockArgument>(inputs.back()).getArgNumber();
} else {
firstInputIndex = cast<OpResult>(inputs[0]).getResultNumber();
lastInputIndex = cast<OpResult>(inputs.back()).getResultNumber();
}
if (firstInputIndex > inputIndex || lastInputIndex < inputIndex) {
output.push_back(inputValue);
break;
}
return inputIndex - firstInputIndex;
}
return std::nullopt;
};
// Check branches from the parent operation.
std::optional<unsigned> regionIndex;
if (region) {
// Determine the actual region number from the passed region.
regionIndex = region->getRegionNumber();
}
if (std::optional<unsigned> operandIndex =
getOperandIndexIfPred(/*predIndex=*/std::nullopt)) {
collectUnderlyingAddressValues(
branch.getSuccessorEntryOperands(regionIndex)[*operandIndex], maxDepth,
visited, output);
}
// Check branches from each child region.
Operation *op = branch.getOperation();
for (int i = 0, e = op->getNumRegions(); i != e; ++i) {
if (std::optional<unsigned> operandIndex = getOperandIndexIfPred(i)) {
for (Block &block : op->getRegion(i)) {
Operation *term = block.getTerminator();
// Try to determine possible region-branch successor operands for the
// current region.
auto successorOperands =
getRegionBranchSuccessorOperands(term, regionIndex);
if (successorOperands) {
collectUnderlyingAddressValues((*successorOperands)[*operandIndex],
maxDepth, visited, output);
} else if (term->getNumSuccessors()) {
// Otherwise, if this terminator may exit the region we can't make
// any assumptions about which values get passed.
output.push_back(inputValue);
return;
}
}
}
}
}
/// Given a result, collect all of the underlying values being addressed.
static void collectUnderlyingAddressValues(OpResult result, unsigned maxDepth,
DenseSet<Value> &visited,
SmallVectorImpl<Value> &output) {
Operation *op = result.getOwner();
// If this is a view, unwrap to the source.
if (ViewLikeOpInterface view = dyn_cast<ViewLikeOpInterface>(op))
return collectUnderlyingAddressValues(view.getViewSource(), maxDepth,
visited, output);
// Check to see if we can reason about the control flow of this op.
if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) {
return collectUnderlyingAddressValues(branch, /*region=*/nullptr, result,
result.getResultNumber(), maxDepth,
visited, output);
}
output.push_back(result);
}
/// Given a block argument, collect all of the underlying values being
/// addressed.
static void collectUnderlyingAddressValues(BlockArgument arg, unsigned maxDepth,
DenseSet<Value> &visited,
SmallVectorImpl<Value> &output) {
Block *block = arg.getOwner();
unsigned argNumber = arg.getArgNumber();
// Handle the case of a non-entry block.
if (!block->isEntryBlock()) {
for (auto it = block->pred_begin(), e = block->pred_end(); it != e; ++it) {
auto branch = dyn_cast<BranchOpInterface>((*it)->getTerminator());
if (!branch) {
// We can't analyze the control flow, so bail out early.
output.push_back(arg);
return;
}
// Try to get the operand passed for this argument.
unsigned index = it.getSuccessorIndex();
Value operand = branch.getSuccessorOperands(index)[argNumber];
if (!operand) {
// We can't analyze the control flow, so bail out early.
output.push_back(arg);
return;
}
collectUnderlyingAddressValues(operand, maxDepth, visited, output);
}
return;
}
// Otherwise, check to see if we can reason about the control flow of this op.
Region *region = block->getParent();
Operation *op = region->getParentOp();
if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) {
return collectUnderlyingAddressValues(branch, region, arg, argNumber,
maxDepth, visited, output);
}
// We can't reason about the underlying address of this argument.
output.push_back(arg);
}
/// Given a value, collect all of the underlying values being addressed.
static void collectUnderlyingAddressValues(Value value, unsigned maxDepth,
DenseSet<Value> &visited,
SmallVectorImpl<Value> &output) {
// Check that we don't infinitely recurse.
if (!visited.insert(value).second)
return;
if (maxDepth == 0) {
output.push_back(value);
return;
}
--maxDepth;
if (BlockArgument arg = dyn_cast<BlockArgument>(value))
return collectUnderlyingAddressValues(arg, maxDepth, visited, output);
collectUnderlyingAddressValues(cast<OpResult>(value), maxDepth, visited,
output);
}
/// Given a value, collect all of the underlying values being addressed.
static void collectUnderlyingAddressValues(Value value,
SmallVectorImpl<Value> &output) {
DenseSet<Value> visited;
collectUnderlyingAddressValues(value, maxUnderlyingValueSearchDepth, visited,
output);
}
//===----------------------------------------------------------------------===//
// LocalAliasAnalysis: alias
//===----------------------------------------------------------------------===//
/// Given a value, try to get an allocation effect attached to it. If
/// successful, `allocEffect` is populated with the effect. If an effect was
/// found, `allocScopeOp` is also specified if a parent operation of `value`
/// could be identified that bounds the scope of the allocated value; i.e. if
/// non-null it specifies the parent operation that the allocation does not
/// escape. If no scope is found, `allocScopeOp` is set to nullptr.
static LogicalResult
getAllocEffectFor(Value value,
std::optional<MemoryEffects::EffectInstance> &effect,
Operation *&allocScopeOp) {
// Try to get a memory effect interface for the parent operation.
Operation *op;
if (BlockArgument arg = dyn_cast<BlockArgument>(value))
op = arg.getOwner()->getParentOp();
else
op = cast<OpResult>(value).getOwner();
MemoryEffectOpInterface interface = dyn_cast<MemoryEffectOpInterface>(op);
if (!interface)
return failure();
// Try to find an allocation effect on the resource.
if (!(effect = interface.getEffectOnValue<MemoryEffects::Allocate>(value)))
return failure();
// If we found an allocation effect, try to find a scope for the allocation.
// If the resource of this allocation is automatically scoped, find the parent
// operation that bounds the allocation scope.
if (llvm::isa<SideEffects::AutomaticAllocationScopeResource>(
effect->getResource())) {
allocScopeOp = op->getParentWithTrait<OpTrait::AutomaticAllocationScope>();
return success();
}
// TODO: Here we could look at the users to see if the resource is either
// freed on all paths within the region, or is just not captured by anything.
// For now assume allocation scope to the function scope (we don't care if
// pointer escape outside function).
allocScopeOp = op->getParentOfType<FunctionOpInterface>();
return success();
}
/// Given the two values, return their aliasing behavior.
AliasResult LocalAliasAnalysis::aliasImpl(Value lhs, Value rhs) {
if (lhs == rhs)
return AliasResult::MustAlias;
Operation *lhsAllocScope = nullptr, *rhsAllocScope = nullptr;
std::optional<MemoryEffects::EffectInstance> lhsAlloc, rhsAlloc;
// Handle the case where lhs is a constant.
Attribute lhsAttr, rhsAttr;
if (matchPattern(lhs, m_Constant(&lhsAttr))) {
// TODO: This is overly conservative. Two matching constants don't
// necessarily map to the same address. For example, if the two values
// correspond to different symbols that both represent a definition.
if (matchPattern(rhs, m_Constant(&rhsAttr)))
return AliasResult::MayAlias;
// Try to find an alloc effect on rhs. If an effect was found we can't
// alias, otherwise we might.
return succeeded(getAllocEffectFor(rhs, rhsAlloc, rhsAllocScope))
? AliasResult::NoAlias
: AliasResult::MayAlias;
}
// Handle the case where rhs is a constant.
if (matchPattern(rhs, m_Constant(&rhsAttr))) {
// Try to find an alloc effect on lhs. If an effect was found we can't
// alias, otherwise we might.
return succeeded(getAllocEffectFor(lhs, lhsAlloc, lhsAllocScope))
? AliasResult::NoAlias
: AliasResult::MayAlias;
}
// Otherwise, neither of the values are constant so check to see if either has
// an allocation effect.
bool lhsHasAlloc = succeeded(getAllocEffectFor(lhs, lhsAlloc, lhsAllocScope));
bool rhsHasAlloc = succeeded(getAllocEffectFor(rhs, rhsAlloc, rhsAllocScope));
if (lhsHasAlloc == rhsHasAlloc) {
// If both values have an allocation effect we know they don't alias, and if
// neither have an effect we can't make an assumptions.
return lhsHasAlloc ? AliasResult::NoAlias : AliasResult::MayAlias;
}
// When we reach this point we have one value with a known allocation effect,
// and one without. Move the one with the effect to the lhs to make the next
// checks simpler.
if (rhsHasAlloc) {
std::swap(lhs, rhs);
lhsAlloc = rhsAlloc;
lhsAllocScope = rhsAllocScope;
}
// If the effect has a scoped allocation region, check to see if the
// non-effect value is defined above that scope.
if (lhsAllocScope) {
// If the parent operation of rhs is an ancestor of the allocation scope, or
// if rhs is an entry block argument of the allocation scope we know the two
// values can't alias.
Operation *rhsParentOp = rhs.getParentRegion()->getParentOp();
if (rhsParentOp->isProperAncestor(lhsAllocScope))
return AliasResult::NoAlias;
if (rhsParentOp == lhsAllocScope) {
BlockArgument rhsArg = dyn_cast<BlockArgument>(rhs);
if (rhsArg && rhs.getParentBlock()->isEntryBlock())
return AliasResult::NoAlias;
}
}
// If we couldn't reason about the relationship between the two values,
// conservatively assume they might alias.
return AliasResult::MayAlias;
}
/// Given the two values, return their aliasing behavior.
AliasResult LocalAliasAnalysis::alias(Value lhs, Value rhs) {
if (lhs == rhs)
return AliasResult::MustAlias;
// Get the underlying values being addressed.
SmallVector<Value, 8> lhsValues, rhsValues;
collectUnderlyingAddressValues(lhs, lhsValues);
collectUnderlyingAddressValues(rhs, rhsValues);
// If we failed to collect for either of the values somehow, conservatively
// assume they may alias.
if (lhsValues.empty() || rhsValues.empty())
return AliasResult::MayAlias;
// Check the alias results against each of the underlying values.
std::optional<AliasResult> result;
for (Value lhsVal : lhsValues) {
for (Value rhsVal : rhsValues) {
AliasResult nextResult = aliasImpl(lhsVal, rhsVal);
result = result ? result->merge(nextResult) : nextResult;
}
}
// We should always have a valid result here.
return *result;
}
//===----------------------------------------------------------------------===//
// LocalAliasAnalysis: getModRef
//===----------------------------------------------------------------------===//
ModRefResult LocalAliasAnalysis::getModRef(Operation *op, Value location) {
// Check to see if this operation relies on nested side effects.
if (op->hasTrait<OpTrait::HasRecursiveMemoryEffects>()) {
// TODO: To check recursive operations we need to check all of the nested
// operations, which can result in a quadratic number of queries. We should
// introduce some caching of some kind to help alleviate this, especially as
// this caching could be used in other areas of the codebase (e.g. when
// checking `wouldOpBeTriviallyDead`).
return ModRefResult::getModAndRef();
}
// Otherwise, check to see if this operation has a memory effect interface.
MemoryEffectOpInterface interface = dyn_cast<MemoryEffectOpInterface>(op);
if (!interface)
return ModRefResult::getModAndRef();
// Build a ModRefResult by merging the behavior of the effects of this
// operation.
SmallVector<MemoryEffects::EffectInstance> effects;
interface.getEffects(effects);
ModRefResult result = ModRefResult::getNoModRef();
for (const MemoryEffects::EffectInstance &effect : effects) {
if (isa<MemoryEffects::Allocate, MemoryEffects::Free>(effect.getEffect()))
continue;
// Check for an alias between the effect and our memory location.
// TODO: Add support for checking an alias with a symbol reference.
AliasResult aliasResult = AliasResult::MayAlias;
if (Value effectValue = effect.getValue())
aliasResult = alias(effectValue, location);
// If we don't alias, ignore this effect.
if (aliasResult.isNo())
continue;
// Merge in the corresponding mod or ref for this effect.
if (isa<MemoryEffects::Read>(effect.getEffect())) {
result = result.merge(ModRefResult::getRef());
} else {
assert(isa<MemoryEffects::Write>(effect.getEffect()));
result = result.merge(ModRefResult::getMod());
}
if (result.isModAndRef())
break;
}
return result;
}
|