1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
|
//===- DeadCodeAnalysis.cpp - Dead code analysis --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h"
#include "mlir/Analysis/DataFlow/ConstantPropagationAnalysis.h"
#include "mlir/Analysis/DataFlowFramework.h"
#include "mlir/Interfaces/CallInterfaces.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include <optional>
using namespace mlir;
using namespace mlir::dataflow;
//===----------------------------------------------------------------------===//
// Executable
//===----------------------------------------------------------------------===//
ChangeResult Executable::setToLive() {
if (live)
return ChangeResult::NoChange;
live = true;
return ChangeResult::Change;
}
void Executable::print(raw_ostream &os) const {
os << (live ? "live" : "dead");
}
void Executable::onUpdate(DataFlowSolver *solver) const {
AnalysisState::onUpdate(solver);
if (auto *block = llvm::dyn_cast_if_present<Block *>(point)) {
// Re-invoke the analyses on the block itself.
for (DataFlowAnalysis *analysis : subscribers)
solver->enqueue({block, analysis});
// Re-invoke the analyses on all operations in the block.
for (DataFlowAnalysis *analysis : subscribers)
for (Operation &op : *block)
solver->enqueue({&op, analysis});
} else if (auto *programPoint = llvm::dyn_cast_if_present<GenericProgramPoint *>(point)) {
// Re-invoke the analysis on the successor block.
if (auto *edge = dyn_cast<CFGEdge>(programPoint)) {
for (DataFlowAnalysis *analysis : subscribers)
solver->enqueue({edge->getTo(), analysis});
}
}
}
//===----------------------------------------------------------------------===//
// PredecessorState
//===----------------------------------------------------------------------===//
void PredecessorState::print(raw_ostream &os) const {
if (allPredecessorsKnown())
os << "(all) ";
os << "predecessors:\n";
for (Operation *op : getKnownPredecessors())
os << " " << *op << "\n";
}
ChangeResult PredecessorState::join(Operation *predecessor) {
return knownPredecessors.insert(predecessor) ? ChangeResult::Change
: ChangeResult::NoChange;
}
ChangeResult PredecessorState::join(Operation *predecessor, ValueRange inputs) {
ChangeResult result = join(predecessor);
if (!inputs.empty()) {
ValueRange &curInputs = successorInputs[predecessor];
if (curInputs != inputs) {
curInputs = inputs;
result |= ChangeResult::Change;
}
}
return result;
}
//===----------------------------------------------------------------------===//
// CFGEdge
//===----------------------------------------------------------------------===//
Location CFGEdge::getLoc() const {
return FusedLoc::get(
getFrom()->getParent()->getContext(),
{getFrom()->getParent()->getLoc(), getTo()->getParent()->getLoc()});
}
void CFGEdge::print(raw_ostream &os) const {
getFrom()->print(os);
os << "\n -> \n";
getTo()->print(os);
}
//===----------------------------------------------------------------------===//
// DeadCodeAnalysis
//===----------------------------------------------------------------------===//
DeadCodeAnalysis::DeadCodeAnalysis(DataFlowSolver &solver)
: DataFlowAnalysis(solver) {
registerPointKind<CFGEdge>();
}
LogicalResult DeadCodeAnalysis::initialize(Operation *top) {
// Mark the top-level blocks as executable.
for (Region ®ion : top->getRegions()) {
if (region.empty())
continue;
auto *state = getOrCreate<Executable>(®ion.front());
propagateIfChanged(state, state->setToLive());
}
// Mark as overdefined the predecessors of symbol callables with potentially
// unknown predecessors.
initializeSymbolCallables(top);
return initializeRecursively(top);
}
void DeadCodeAnalysis::initializeSymbolCallables(Operation *top) {
analysisScope = top;
auto walkFn = [&](Operation *symTable, bool allUsesVisible) {
Region &symbolTableRegion = symTable->getRegion(0);
Block *symbolTableBlock = &symbolTableRegion.front();
bool foundSymbolCallable = false;
for (auto callable : symbolTableBlock->getOps<CallableOpInterface>()) {
Region *callableRegion = callable.getCallableRegion();
if (!callableRegion)
continue;
auto symbol = dyn_cast<SymbolOpInterface>(callable.getOperation());
if (!symbol)
continue;
// Public symbol callables or those for which we can't see all uses have
// potentially unknown callsites.
if (symbol.isPublic() || (!allUsesVisible && symbol.isNested())) {
auto *state = getOrCreate<PredecessorState>(callable);
propagateIfChanged(state, state->setHasUnknownPredecessors());
}
foundSymbolCallable = true;
}
// Exit early if no eligible symbol callables were found in the table.
if (!foundSymbolCallable)
return;
// Walk the symbol table to check for non-call uses of symbols.
std::optional<SymbolTable::UseRange> uses =
SymbolTable::getSymbolUses(&symbolTableRegion);
if (!uses) {
// If we couldn't gather the symbol uses, conservatively assume that
// we can't track information for any nested symbols.
return top->walk([&](CallableOpInterface callable) {
auto *state = getOrCreate<PredecessorState>(callable);
propagateIfChanged(state, state->setHasUnknownPredecessors());
});
}
for (const SymbolTable::SymbolUse &use : *uses) {
if (isa<CallOpInterface>(use.getUser()))
continue;
// If a callable symbol has a non-call use, then we can't be guaranteed to
// know all callsites.
Operation *symbol = symbolTable.lookupSymbolIn(top, use.getSymbolRef());
auto *state = getOrCreate<PredecessorState>(symbol);
propagateIfChanged(state, state->setHasUnknownPredecessors());
}
};
SymbolTable::walkSymbolTables(top, /*allSymUsesVisible=*/!top->getBlock(),
walkFn);
}
/// Returns true if the operation is a returning terminator in region
/// control-flow or the terminator of a callable region.
static bool isRegionOrCallableReturn(Operation *op) {
return !op->getNumSuccessors() &&
isa<RegionBranchOpInterface, CallableOpInterface>(op->getParentOp()) &&
op->getBlock()->getTerminator() == op;
}
LogicalResult DeadCodeAnalysis::initializeRecursively(Operation *op) {
// Initialize the analysis by visiting every op with control-flow semantics.
if (op->getNumRegions() || op->getNumSuccessors() ||
isRegionOrCallableReturn(op) || isa<CallOpInterface>(op)) {
// When the liveness of the parent block changes, make sure to re-invoke the
// analysis on the op.
if (op->getBlock())
getOrCreate<Executable>(op->getBlock())->blockContentSubscribe(this);
// Visit the op.
if (failed(visit(op)))
return failure();
}
// Recurse on nested operations.
for (Region ®ion : op->getRegions())
for (Operation &op : region.getOps())
if (failed(initializeRecursively(&op)))
return failure();
return success();
}
void DeadCodeAnalysis::markEdgeLive(Block *from, Block *to) {
auto *state = getOrCreate<Executable>(to);
propagateIfChanged(state, state->setToLive());
auto *edgeState = getOrCreate<Executable>(getProgramPoint<CFGEdge>(from, to));
propagateIfChanged(edgeState, edgeState->setToLive());
}
void DeadCodeAnalysis::markEntryBlocksLive(Operation *op) {
for (Region ®ion : op->getRegions()) {
if (region.empty())
continue;
auto *state = getOrCreate<Executable>(®ion.front());
propagateIfChanged(state, state->setToLive());
}
}
LogicalResult DeadCodeAnalysis::visit(ProgramPoint point) {
if (point.is<Block *>())
return success();
auto *op = llvm::dyn_cast_if_present<Operation *>(point);
if (!op)
return emitError(point.getLoc(), "unknown program point kind");
// If the parent block is not executable, there is nothing to do.
if (!getOrCreate<Executable>(op->getBlock())->isLive())
return success();
// We have a live call op. Add this as a live predecessor of the callee.
if (auto call = dyn_cast<CallOpInterface>(op))
visitCallOperation(call);
// Visit the regions.
if (op->getNumRegions()) {
// Check if we can reason about the region control-flow.
if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) {
visitRegionBranchOperation(branch);
// Check if this is a callable operation.
} else if (auto callable = dyn_cast<CallableOpInterface>(op)) {
const auto *callsites = getOrCreateFor<PredecessorState>(op, callable);
// If the callsites could not be resolved or are known to be non-empty,
// mark the callable as executable.
if (!callsites->allPredecessorsKnown() ||
!callsites->getKnownPredecessors().empty())
markEntryBlocksLive(callable);
// Otherwise, conservatively mark all entry blocks as executable.
} else {
markEntryBlocksLive(op);
}
}
if (isRegionOrCallableReturn(op)) {
if (auto branch = dyn_cast<RegionBranchOpInterface>(op->getParentOp())) {
// Visit the exiting terminator of a region.
visitRegionTerminator(op, branch);
} else if (auto callable =
dyn_cast<CallableOpInterface>(op->getParentOp())) {
// Visit the exiting terminator of a callable.
visitCallableTerminator(op, callable);
}
}
// Visit the successors.
if (op->getNumSuccessors()) {
// Check if we can reason about the control-flow.
if (auto branch = dyn_cast<BranchOpInterface>(op)) {
visitBranchOperation(branch);
// Otherwise, conservatively mark all successors as exectuable.
} else {
for (Block *successor : op->getSuccessors())
markEdgeLive(op->getBlock(), successor);
}
}
return success();
}
void DeadCodeAnalysis::visitCallOperation(CallOpInterface call) {
Operation *callableOp = call.resolveCallable(&symbolTable);
// A call to a externally-defined callable has unknown predecessors.
const auto isExternalCallable = [this](Operation *op) {
// A callable outside the analysis scope is an external callable.
if (!analysisScope->isAncestor(op))
return true;
// Otherwise, check if the callable region is defined.
if (auto callable = dyn_cast<CallableOpInterface>(op))
return !callable.getCallableRegion();
return false;
};
// TODO: Add support for non-symbol callables when necessary. If the
// callable has non-call uses we would mark as having reached pessimistic
// fixpoint, otherwise allow for propagating the return values out.
if (isa_and_nonnull<SymbolOpInterface>(callableOp) &&
!isExternalCallable(callableOp)) {
// Add the live callsite.
auto *callsites = getOrCreate<PredecessorState>(callableOp);
propagateIfChanged(callsites, callsites->join(call));
} else {
// Mark this call op's predecessors as overdefined.
auto *predecessors = getOrCreate<PredecessorState>(call);
propagateIfChanged(predecessors, predecessors->setHasUnknownPredecessors());
}
}
/// Get the constant values of the operands of an operation. If any of the
/// constant value lattices are uninitialized, return std::nullopt to indicate
/// the analysis should bail out.
static std::optional<SmallVector<Attribute>> getOperandValuesImpl(
Operation *op,
function_ref<const Lattice<ConstantValue> *(Value)> getLattice) {
SmallVector<Attribute> operands;
operands.reserve(op->getNumOperands());
for (Value operand : op->getOperands()) {
const Lattice<ConstantValue> *cv = getLattice(operand);
// If any of the operands' values are uninitialized, bail out.
if (cv->getValue().isUninitialized())
return {};
operands.push_back(cv->getValue().getConstantValue());
}
return operands;
}
std::optional<SmallVector<Attribute>>
DeadCodeAnalysis::getOperandValues(Operation *op) {
return getOperandValuesImpl(op, [&](Value value) {
auto *lattice = getOrCreate<Lattice<ConstantValue>>(value);
lattice->useDefSubscribe(this);
return lattice;
});
}
void DeadCodeAnalysis::visitBranchOperation(BranchOpInterface branch) {
// Try to deduce a single successor for the branch.
std::optional<SmallVector<Attribute>> operands = getOperandValues(branch);
if (!operands)
return;
if (Block *successor = branch.getSuccessorForOperands(*operands)) {
markEdgeLive(branch->getBlock(), successor);
} else {
// Otherwise, mark all successors as executable and outgoing edges.
for (Block *successor : branch->getSuccessors())
markEdgeLive(branch->getBlock(), successor);
}
}
void DeadCodeAnalysis::visitRegionBranchOperation(
RegionBranchOpInterface branch) {
// Try to deduce which regions are executable.
std::optional<SmallVector<Attribute>> operands = getOperandValues(branch);
if (!operands)
return;
SmallVector<RegionSuccessor> successors;
branch.getSuccessorRegions(/*index=*/{}, *operands, successors);
for (const RegionSuccessor &successor : successors) {
// The successor can be either an entry block or the parent operation.
ProgramPoint point = successor.getSuccessor()
? &successor.getSuccessor()->front()
: ProgramPoint(branch);
// Mark the entry block as executable.
auto *state = getOrCreate<Executable>(point);
propagateIfChanged(state, state->setToLive());
// Add the parent op as a predecessor.
auto *predecessors = getOrCreate<PredecessorState>(point);
propagateIfChanged(
predecessors,
predecessors->join(branch, successor.getSuccessorInputs()));
}
}
void DeadCodeAnalysis::visitRegionTerminator(Operation *op,
RegionBranchOpInterface branch) {
std::optional<SmallVector<Attribute>> operands = getOperandValues(op);
if (!operands)
return;
SmallVector<RegionSuccessor> successors;
branch.getSuccessorRegions(op->getParentRegion()->getRegionNumber(),
*operands, successors);
// Mark successor region entry blocks as executable and add this op to the
// list of predecessors.
for (const RegionSuccessor &successor : successors) {
PredecessorState *predecessors;
if (Region *region = successor.getSuccessor()) {
auto *state = getOrCreate<Executable>(®ion->front());
propagateIfChanged(state, state->setToLive());
predecessors = getOrCreate<PredecessorState>(®ion->front());
} else {
// Add this terminator as a predecessor to the parent op.
predecessors = getOrCreate<PredecessorState>(branch);
}
propagateIfChanged(predecessors,
predecessors->join(op, successor.getSuccessorInputs()));
}
}
void DeadCodeAnalysis::visitCallableTerminator(Operation *op,
CallableOpInterface callable) {
// If there are no exiting values, we have nothing to do.
if (op->getNumOperands() == 0)
return;
// Add as predecessors to all callsites this return op.
auto *callsites = getOrCreateFor<PredecessorState>(op, callable);
bool canResolve = op->hasTrait<OpTrait::ReturnLike>();
for (Operation *predecessor : callsites->getKnownPredecessors()) {
assert(isa<CallOpInterface>(predecessor));
auto *predecessors = getOrCreate<PredecessorState>(predecessor);
if (canResolve) {
propagateIfChanged(predecessors, predecessors->join(op));
} else {
// If the terminator is not a return-like, then conservatively assume we
// can't resolve the predecessor.
propagateIfChanged(predecessors,
predecessors->setHasUnknownPredecessors());
}
}
}
|