File: LivenessAnalysis.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (190 lines) | stat: -rw-r--r-- 7,770 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
//===- LivenessAnalysis.cpp - Liveness analysis ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include <mlir/Analysis/DataFlow/LivenessAnalysis.h>

#include <mlir/Analysis/DataFlow/ConstantPropagationAnalysis.h>
#include <mlir/Analysis/DataFlow/DeadCodeAnalysis.h>
#include <mlir/Analysis/DataFlow/SparseAnalysis.h>
#include <mlir/Analysis/DataFlowFramework.h>
#include <mlir/IR/Operation.h>
#include <mlir/IR/Value.h>
#include <mlir/Interfaces/SideEffectInterfaces.h>
#include <mlir/Support/LLVM.h>

using namespace mlir;
using namespace mlir::dataflow;

//===----------------------------------------------------------------------===//
// Liveness
//===----------------------------------------------------------------------===//

void Liveness::print(raw_ostream &os) const {
  os << (isLive ? "live" : "not live");
}

ChangeResult Liveness::markLive() {
  bool wasLive = isLive;
  isLive = true;
  return wasLive ? ChangeResult::NoChange : ChangeResult::Change;
}

ChangeResult Liveness::meet(const AbstractSparseLattice &other) {
  const auto *otherLiveness = reinterpret_cast<const Liveness *>(&other);
  return otherLiveness->isLive ? markLive() : ChangeResult::NoChange;
}

//===----------------------------------------------------------------------===//
// LivenessAnalysis
//===----------------------------------------------------------------------===//

/// For every value, liveness analysis determines whether or not it is "live".
///
/// A value is considered "live" iff it:
///   (1) has memory effects OR
///   (2) is returned by a public function OR
///   (3) is used to compute a value of type (1) or (2).
/// It is also to be noted that a value could be of multiple types (1/2/3) at
/// the same time.
///
/// A value "has memory effects" iff it:
///   (1.a) is an operand of an op with memory effects OR
///   (1.b) is a non-forwarded branch operand and a block where its op could
///   take the control has an op with memory effects.
///
/// A value `A` is said to be "used to compute" value `B` iff `B` cannot be
/// computed in the absence of `A`. Thus, in this implementation, we say that
/// value `A` is used to compute value `B` iff:
///   (3.a) `B` is a result of an op with operand `A` OR
///   (3.b) `A` is used to compute some value `C` and `C` is used to compute
///   `B`.

void LivenessAnalysis::visitOperation(Operation *op,
                                      ArrayRef<Liveness *> operands,
                                      ArrayRef<const Liveness *> results) {
  // This marks values of type (1.a) liveness as "live".
  if (!isMemoryEffectFree(op)) {
    for (auto *operand : operands)
      propagateIfChanged(operand, operand->markLive());
  }

  // This marks values of type (3) liveness as "live".
  bool foundLiveResult = false;
  for (const Liveness *r : results) {
    if (r->isLive && !foundLiveResult) {
      // It is assumed that each operand is used to compute each result of an
      // op. Thus, if at least one result is live, each operand is live.
      for (Liveness *operand : operands)
        meet(operand, *r);
      foundLiveResult = true;
    }
    addDependency(const_cast<Liveness *>(r), op);
  }
}

void LivenessAnalysis::visitBranchOperand(OpOperand &operand) {
  // We know (at the moment) and assume (for the future) that `operand` is a
  // non-forwarded branch operand of an op of type `RegionBranchOpInterface`,
  // `BranchOpInterface`, or `RegionBranchTerminatorOpInterface`.
  Operation *op = operand.getOwner();
  assert((isa<RegionBranchOpInterface>(op) || isa<BranchOpInterface>(op) ||
          isa<RegionBranchTerminatorOpInterface>(op)) &&
         "expected the op to be `RegionBranchOpInterface`, "
         "`BranchOpInterface`, or `RegionBranchTerminatorOpInterface`");

  // The lattices of the non-forwarded branch operands don't get updated like
  // the forwarded branch operands or the non-branch operands. Thus they need
  // to be handled separately. This is where we handle them.

  // This marks values of type (1.b) liveness as "live". A non-forwarded
  // branch operand will be live if a block where its op could take the control
  // has an op with memory effects.
  // Populating such blocks in `blocks`.
  SmallVector<Block *, 4> blocks;
  if (isa<RegionBranchOpInterface>(op)) {
    // When the op is a `RegionBranchOpInterface`, like an `scf.for` or an
    // `scf.index_switch` op, its branch operand controls the flow into this
    // op's regions.
    for (Region &region : op->getRegions()) {
      for (Block &block : region)
        blocks.push_back(&block);
    }
  } else if (isa<BranchOpInterface>(op)) {
    // When the op is a `BranchOpInterface`, like a `cf.cond_br` or a
    // `cf.switch` op, its branch operand controls the flow into this op's
    // successors.
    blocks = op->getSuccessors();
  } else {
    // When the op is a `RegionBranchTerminatorOpInterface`, like a
    // `scf.condition` op, its branch operand controls the flow into this op's
    // parent's (which is a `RegionBranchOpInterface`'s) regions.
    for (Region &region : op->getParentOp()->getRegions()) {
      for (Block &block : region)
        blocks.push_back(&block);
    }
  }
  bool foundMemoryEffectingOp = false;
  for (Block *block : blocks) {
    if (foundMemoryEffectingOp)
      break;
    for (Operation &nestedOp : *block) {
      if (!isMemoryEffectFree(&nestedOp)) {
        Liveness *operandLiveness = getLatticeElement(operand.get());
        propagateIfChanged(operandLiveness, operandLiveness->markLive());
        foundMemoryEffectingOp = true;
        break;
      }
    }
  }

  // Now that we have checked for memory-effecting ops in the blocks of concern,
  // we will simply visit the op with this non-forwarded operand to potentially
  // mark it "live" due to type (1.a/3) liveness.
  if (operand.getOperandNumber() > 0)
    return;
  SmallVector<Liveness *, 4> operandLiveness;
  operandLiveness.push_back(getLatticeElement(operand.get()));
  SmallVector<const Liveness *, 4> resultsLiveness;
  for (const Value result : op->getResults())
    resultsLiveness.push_back(getLatticeElement(result));
  visitOperation(op, operandLiveness, resultsLiveness);

  // We also visit the parent op with the parent's results and this operand if
  // `op` is a `RegionBranchTerminatorOpInterface` because its non-forwarded
  // operand depends on not only its memory effects/results but also on those of
  // its parent's.
  if (!isa<RegionBranchTerminatorOpInterface>(op))
    return;
  Operation *parentOp = op->getParentOp();
  SmallVector<const Liveness *, 4> parentResultsLiveness;
  for (const Value parentResult : parentOp->getResults())
    parentResultsLiveness.push_back(getLatticeElement(parentResult));
  visitOperation(parentOp, operandLiveness, parentResultsLiveness);
}

void LivenessAnalysis::setToExitState(Liveness *lattice) {
  // This marks values of type (2) liveness as "live".
  lattice->markLive();
}

//===----------------------------------------------------------------------===//
// RunLivenessAnalysis
//===----------------------------------------------------------------------===//

RunLivenessAnalysis::RunLivenessAnalysis(Operation *op) {
  SymbolTableCollection symbolTable;

  solver.load<DeadCodeAnalysis>();
  solver.load<SparseConstantPropagation>();
  solver.load<LivenessAnalysis>(symbolTable);
  (void)solver.initializeAndRun(op);
}

const Liveness *RunLivenessAnalysis::getLiveness(Value val) {
  return solver.lookupState<Liveness>(val);
}