1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
|
//===- SparseAnalysis.cpp - Sparse data-flow analysis ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/DataFlow/SparseAnalysis.h"
#include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h"
#include "mlir/Analysis/DataFlowFramework.h"
#include "mlir/Interfaces/CallInterfaces.h"
using namespace mlir;
using namespace mlir::dataflow;
//===----------------------------------------------------------------------===//
// AbstractSparseLattice
//===----------------------------------------------------------------------===//
void AbstractSparseLattice::onUpdate(DataFlowSolver *solver) const {
AnalysisState::onUpdate(solver);
// Push all users of the value to the queue.
for (Operation *user : point.get<Value>().getUsers())
for (DataFlowAnalysis *analysis : useDefSubscribers)
solver->enqueue({user, analysis});
}
//===----------------------------------------------------------------------===//
// AbstractSparseDataFlowAnalysis
//===----------------------------------------------------------------------===//
AbstractSparseDataFlowAnalysis::AbstractSparseDataFlowAnalysis(
DataFlowSolver &solver)
: DataFlowAnalysis(solver) {
registerPointKind<CFGEdge>();
}
LogicalResult AbstractSparseDataFlowAnalysis::initialize(Operation *top) {
// Mark the entry block arguments as having reached their pessimistic
// fixpoints.
for (Region ®ion : top->getRegions()) {
if (region.empty())
continue;
for (Value argument : region.front().getArguments())
setToEntryState(getLatticeElement(argument));
}
return initializeRecursively(top);
}
LogicalResult
AbstractSparseDataFlowAnalysis::initializeRecursively(Operation *op) {
// Initialize the analysis by visiting every owner of an SSA value (all
// operations and blocks).
visitOperation(op);
for (Region ®ion : op->getRegions()) {
for (Block &block : region) {
getOrCreate<Executable>(&block)->blockContentSubscribe(this);
visitBlock(&block);
for (Operation &op : block)
if (failed(initializeRecursively(&op)))
return failure();
}
}
return success();
}
LogicalResult AbstractSparseDataFlowAnalysis::visit(ProgramPoint point) {
if (Operation *op = llvm::dyn_cast_if_present<Operation *>(point))
visitOperation(op);
else if (Block *block = llvm::dyn_cast_if_present<Block *>(point))
visitBlock(block);
else
return failure();
return success();
}
void AbstractSparseDataFlowAnalysis::visitOperation(Operation *op) {
// Exit early on operations with no results.
if (op->getNumResults() == 0)
return;
// If the containing block is not executable, bail out.
if (!getOrCreate<Executable>(op->getBlock())->isLive())
return;
// Get the result lattices.
SmallVector<AbstractSparseLattice *> resultLattices;
resultLattices.reserve(op->getNumResults());
for (Value result : op->getResults()) {
AbstractSparseLattice *resultLattice = getLatticeElement(result);
resultLattices.push_back(resultLattice);
}
// The results of a region branch operation are determined by control-flow.
if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) {
return visitRegionSuccessors({branch}, branch,
/*successorIndex=*/std::nullopt,
resultLattices);
}
// The results of a call operation are determined by the callgraph.
if (auto call = dyn_cast<CallOpInterface>(op)) {
const auto *predecessors = getOrCreateFor<PredecessorState>(op, call);
// If not all return sites are known, then conservatively assume we can't
// reason about the data-flow.
if (!predecessors->allPredecessorsKnown())
return setAllToEntryStates(resultLattices);
for (Operation *predecessor : predecessors->getKnownPredecessors())
for (auto it : llvm::zip(predecessor->getOperands(), resultLattices))
join(std::get<1>(it), *getLatticeElementFor(op, std::get<0>(it)));
return;
}
// Grab the lattice elements of the operands.
SmallVector<const AbstractSparseLattice *> operandLattices;
operandLattices.reserve(op->getNumOperands());
for (Value operand : op->getOperands()) {
AbstractSparseLattice *operandLattice = getLatticeElement(operand);
operandLattice->useDefSubscribe(this);
operandLattices.push_back(operandLattice);
}
// Invoke the operation transfer function.
visitOperationImpl(op, operandLattices, resultLattices);
}
void AbstractSparseDataFlowAnalysis::visitBlock(Block *block) {
// Exit early on blocks with no arguments.
if (block->getNumArguments() == 0)
return;
// If the block is not executable, bail out.
if (!getOrCreate<Executable>(block)->isLive())
return;
// Get the argument lattices.
SmallVector<AbstractSparseLattice *> argLattices;
argLattices.reserve(block->getNumArguments());
for (BlockArgument argument : block->getArguments()) {
AbstractSparseLattice *argLattice = getLatticeElement(argument);
argLattices.push_back(argLattice);
}
// The argument lattices of entry blocks are set by region control-flow or the
// callgraph.
if (block->isEntryBlock()) {
// Check if this block is the entry block of a callable region.
auto callable = dyn_cast<CallableOpInterface>(block->getParentOp());
if (callable && callable.getCallableRegion() == block->getParent()) {
const auto *callsites = getOrCreateFor<PredecessorState>(block, callable);
// If not all callsites are known, conservatively mark all lattices as
// having reached their pessimistic fixpoints.
if (!callsites->allPredecessorsKnown())
return setAllToEntryStates(argLattices);
for (Operation *callsite : callsites->getKnownPredecessors()) {
auto call = cast<CallOpInterface>(callsite);
for (auto it : llvm::zip(call.getArgOperands(), argLattices))
join(std::get<1>(it), *getLatticeElementFor(block, std::get<0>(it)));
}
return;
}
// Check if the lattices can be determined from region control flow.
if (auto branch = dyn_cast<RegionBranchOpInterface>(block->getParentOp())) {
return visitRegionSuccessors(
block, branch, block->getParent()->getRegionNumber(), argLattices);
}
// Otherwise, we can't reason about the data-flow.
return visitNonControlFlowArgumentsImpl(block->getParentOp(),
RegionSuccessor(block->getParent()),
argLattices, /*firstIndex=*/0);
}
// Iterate over the predecessors of the non-entry block.
for (Block::pred_iterator it = block->pred_begin(), e = block->pred_end();
it != e; ++it) {
Block *predecessor = *it;
// If the edge from the predecessor block to the current block is not live,
// bail out.
auto *edgeExecutable =
getOrCreate<Executable>(getProgramPoint<CFGEdge>(predecessor, block));
edgeExecutable->blockContentSubscribe(this);
if (!edgeExecutable->isLive())
continue;
// Check if we can reason about the data-flow from the predecessor.
if (auto branch =
dyn_cast<BranchOpInterface>(predecessor->getTerminator())) {
SuccessorOperands operands =
branch.getSuccessorOperands(it.getSuccessorIndex());
for (auto [idx, lattice] : llvm::enumerate(argLattices)) {
if (Value operand = operands[idx]) {
join(lattice, *getLatticeElementFor(block, operand));
} else {
// Conservatively consider internally produced arguments as entry
// points.
setAllToEntryStates(lattice);
}
}
} else {
return setAllToEntryStates(argLattices);
}
}
}
void AbstractSparseDataFlowAnalysis::visitRegionSuccessors(
ProgramPoint point, RegionBranchOpInterface branch,
std::optional<unsigned> successorIndex,
ArrayRef<AbstractSparseLattice *> lattices) {
const auto *predecessors = getOrCreateFor<PredecessorState>(point, point);
assert(predecessors->allPredecessorsKnown() &&
"unexpected unresolved region successors");
for (Operation *op : predecessors->getKnownPredecessors()) {
// Get the incoming successor operands.
std::optional<OperandRange> operands;
// Check if the predecessor is the parent op.
if (op == branch) {
operands = branch.getSuccessorEntryOperands(successorIndex);
// Otherwise, try to deduce the operands from a region return-like op.
} else {
if (isRegionReturnLike(op))
operands = getRegionBranchSuccessorOperands(op, successorIndex);
}
if (!operands) {
// We can't reason about the data-flow.
return setAllToEntryStates(lattices);
}
ValueRange inputs = predecessors->getSuccessorInputs(op);
assert(inputs.size() == operands->size() &&
"expected the same number of successor inputs as operands");
unsigned firstIndex = 0;
if (inputs.size() != lattices.size()) {
if (llvm::dyn_cast_if_present<Operation *>(point)) {
if (!inputs.empty())
firstIndex = cast<OpResult>(inputs.front()).getResultNumber();
visitNonControlFlowArgumentsImpl(
branch,
RegionSuccessor(
branch->getResults().slice(firstIndex, inputs.size())),
lattices, firstIndex);
} else {
if (!inputs.empty())
firstIndex = cast<BlockArgument>(inputs.front()).getArgNumber();
Region *region = point.get<Block *>()->getParent();
visitNonControlFlowArgumentsImpl(
branch,
RegionSuccessor(region, region->getArguments().slice(
firstIndex, inputs.size())),
lattices, firstIndex);
}
}
for (auto it : llvm::zip(*operands, lattices.drop_front(firstIndex)))
join(std::get<1>(it), *getLatticeElementFor(point, std::get<0>(it)));
}
}
const AbstractSparseLattice *
AbstractSparseDataFlowAnalysis::getLatticeElementFor(ProgramPoint point,
Value value) {
AbstractSparseLattice *state = getLatticeElement(value);
addDependency(state, point);
return state;
}
void AbstractSparseDataFlowAnalysis::setAllToEntryStates(
ArrayRef<AbstractSparseLattice *> lattices) {
for (AbstractSparseLattice *lattice : lattices)
setToEntryState(lattice);
}
void AbstractSparseDataFlowAnalysis::join(AbstractSparseLattice *lhs,
const AbstractSparseLattice &rhs) {
propagateIfChanged(lhs, lhs->join(rhs));
}
//===----------------------------------------------------------------------===//
// AbstractSparseBackwardDataFlowAnalysis
//===----------------------------------------------------------------------===//
AbstractSparseBackwardDataFlowAnalysis::AbstractSparseBackwardDataFlowAnalysis(
DataFlowSolver &solver, SymbolTableCollection &symbolTable)
: DataFlowAnalysis(solver), symbolTable(symbolTable) {
registerPointKind<CFGEdge>();
}
LogicalResult
AbstractSparseBackwardDataFlowAnalysis::initialize(Operation *top) {
return initializeRecursively(top);
}
LogicalResult
AbstractSparseBackwardDataFlowAnalysis::initializeRecursively(Operation *op) {
visitOperation(op);
for (Region ®ion : op->getRegions()) {
for (Block &block : region) {
getOrCreate<Executable>(&block)->blockContentSubscribe(this);
// Initialize ops in reverse order, so we can do as much initial
// propagation as possible without having to go through the
// solver queue.
for (auto it = block.rbegin(); it != block.rend(); it++)
if (failed(initializeRecursively(&*it)))
return failure();
}
}
return success();
}
LogicalResult
AbstractSparseBackwardDataFlowAnalysis::visit(ProgramPoint point) {
if (Operation *op = llvm::dyn_cast_if_present<Operation *>(point))
visitOperation(op);
else if (llvm::dyn_cast_if_present<Block *>(point))
// For backward dataflow, we don't have to do any work for the blocks
// themselves. CFG edges between blocks are processed by the BranchOp
// logic in `visitOperation`, and entry blocks for functions are tied
// to the CallOp arguments by visitOperation.
return success();
else
return failure();
return success();
}
SmallVector<AbstractSparseLattice *>
AbstractSparseBackwardDataFlowAnalysis::getLatticeElements(ValueRange values) {
SmallVector<AbstractSparseLattice *> resultLattices;
resultLattices.reserve(values.size());
for (Value result : values) {
AbstractSparseLattice *resultLattice = getLatticeElement(result);
resultLattices.push_back(resultLattice);
}
return resultLattices;
}
SmallVector<const AbstractSparseLattice *>
AbstractSparseBackwardDataFlowAnalysis::getLatticeElementsFor(
ProgramPoint point, ValueRange values) {
SmallVector<const AbstractSparseLattice *> resultLattices;
resultLattices.reserve(values.size());
for (Value result : values) {
const AbstractSparseLattice *resultLattice =
getLatticeElementFor(point, result);
resultLattices.push_back(resultLattice);
}
return resultLattices;
}
static MutableArrayRef<OpOperand> operandsToOpOperands(OperandRange &operands) {
return MutableArrayRef<OpOperand>(operands.getBase(), operands.size());
}
void AbstractSparseBackwardDataFlowAnalysis::visitOperation(Operation *op) {
// If we're in a dead block, bail out.
if (!getOrCreate<Executable>(op->getBlock())->isLive())
return;
SmallVector<AbstractSparseLattice *> operandLattices =
getLatticeElements(op->getOperands());
SmallVector<const AbstractSparseLattice *> resultLattices =
getLatticeElementsFor(op, op->getResults());
// Block arguments of region branch operations flow back into the operands
// of the parent op
if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) {
visitRegionSuccessors(branch, operandLattices);
return;
}
if (auto branch = dyn_cast<BranchOpInterface>(op)) {
// Block arguments of successor blocks flow back into our operands.
// We remember all operands not forwarded to any block in a BitVector.
// We can't just cut out a range here, since the non-forwarded ops might
// be non-contiguous (if there's more than one successor).
BitVector unaccounted(op->getNumOperands(), true);
for (auto [index, block] : llvm::enumerate(op->getSuccessors())) {
SuccessorOperands successorOperands = branch.getSuccessorOperands(index);
OperandRange forwarded = successorOperands.getForwardedOperands();
if (!forwarded.empty()) {
MutableArrayRef<OpOperand> operands = op->getOpOperands().slice(
forwarded.getBeginOperandIndex(), forwarded.size());
for (OpOperand &operand : operands) {
unaccounted.reset(operand.getOperandNumber());
if (std::optional<BlockArgument> blockArg =
detail::getBranchSuccessorArgument(
successorOperands, operand.getOperandNumber(), block)) {
meet(getLatticeElement(operand.get()),
*getLatticeElementFor(op, *blockArg));
}
}
}
}
// Operands not forwarded to successor blocks are typically parameters
// of the branch operation itself (for example the boolean for if/else).
for (int index : unaccounted.set_bits()) {
OpOperand &operand = op->getOpOperand(index);
visitBranchOperand(operand);
}
return;
}
// For function calls, connect the arguments of the entry blocks
// to the operands of the call op.
if (auto call = dyn_cast<CallOpInterface>(op)) {
Operation *callableOp = call.resolveCallable(&symbolTable);
if (auto callable = dyn_cast_or_null<CallableOpInterface>(callableOp)) {
Region *region = callable.getCallableRegion();
if (region && !region->empty()) {
Block &block = region->front();
for (auto [blockArg, operand] :
llvm::zip(block.getArguments(), operandLattices)) {
meet(operand, *getLatticeElementFor(op, blockArg));
}
}
return;
}
}
// The block arguments of the branched to region flow back into the
// operands of the yield operation.
if (auto terminator = dyn_cast<RegionBranchTerminatorOpInterface>(op)) {
if (auto branch = dyn_cast<RegionBranchOpInterface>(op->getParentOp())) {
SmallVector<RegionSuccessor> successors;
SmallVector<Attribute> operands(op->getNumOperands(), nullptr);
branch.getSuccessorRegions(op->getParentRegion()->getRegionNumber(),
operands, successors);
// All operands not forwarded to any successor. This set can be
// non-contiguous in the presence of multiple successors.
BitVector unaccounted(op->getNumOperands(), true);
for (const RegionSuccessor &successor : successors) {
ValueRange inputs = successor.getSuccessorInputs();
Region *region = successor.getSuccessor();
OperandRange operands =
region ? terminator.getSuccessorOperands(region->getRegionNumber())
: terminator.getSuccessorOperands({});
MutableArrayRef<OpOperand> opoperands = operandsToOpOperands(operands);
for (auto [opoperand, input] : llvm::zip(opoperands, inputs)) {
meet(getLatticeElement(opoperand.get()),
*getLatticeElementFor(op, input));
unaccounted.reset(
const_cast<OpOperand &>(opoperand).getOperandNumber());
}
}
// Visit operands of the branch op not forwarded to the next region.
// (Like e.g. the boolean of `scf.conditional`)
for (int index : unaccounted.set_bits()) {
visitBranchOperand(op->getOpOperand(index));
}
return;
}
}
// yield-like ops usually don't implement `RegionBranchTerminatorOpInterface`,
// since they behave like a return in the sense that they forward to the
// results of some other (here: the parent) op.
if (op->hasTrait<OpTrait::ReturnLike>()) {
if (auto branch = dyn_cast<RegionBranchOpInterface>(op->getParentOp())) {
OperandRange operands = op->getOperands();
ResultRange results = op->getParentOp()->getResults();
assert(results.size() == operands.size() &&
"Can't derive arg mapping for yield-like op.");
for (auto [operand, result] : llvm::zip(operands, results))
meet(getLatticeElement(operand), *getLatticeElementFor(op, result));
return;
}
// Going backwards, the operands of the return are derived from the
// results of all CallOps calling this CallableOp.
if (auto callable = dyn_cast<CallableOpInterface>(op->getParentOp())) {
const PredecessorState *callsites =
getOrCreateFor<PredecessorState>(op, callable);
if (callsites->allPredecessorsKnown()) {
for (Operation *call : callsites->getKnownPredecessors()) {
SmallVector<const AbstractSparseLattice *> callResultLattices =
getLatticeElementsFor(op, call->getResults());
for (auto [op, result] :
llvm::zip(operandLattices, callResultLattices))
meet(op, *result);
}
} else {
// If we don't know all the callers, we can't know where the
// returned values go. Note that, in particular, this will trigger
// for the return ops of any public functions.
setAllToExitStates(operandLattices);
}
return;
}
}
visitOperationImpl(op, operandLattices, resultLattices);
}
void AbstractSparseBackwardDataFlowAnalysis::visitRegionSuccessors(
RegionBranchOpInterface branch,
ArrayRef<AbstractSparseLattice *> operandLattices) {
Operation *op = branch.getOperation();
SmallVector<RegionSuccessor> successors;
SmallVector<Attribute> operands(op->getNumOperands(), nullptr);
branch.getSuccessorRegions(/*index=*/{}, operands, successors);
// All operands not forwarded to any successor. This set can be non-contiguous
// in the presence of multiple successors.
BitVector unaccounted(op->getNumOperands(), true);
for (RegionSuccessor &successor : successors) {
Region *region = successor.getSuccessor();
OperandRange operands =
region ? branch.getSuccessorEntryOperands(region->getRegionNumber())
: branch.getSuccessorEntryOperands({});
MutableArrayRef<OpOperand> opoperands = operandsToOpOperands(operands);
ValueRange inputs = successor.getSuccessorInputs();
for (auto [operand, input] : llvm::zip(opoperands, inputs)) {
meet(getLatticeElement(operand.get()), *getLatticeElementFor(op, input));
unaccounted.reset(operand.getOperandNumber());
}
}
// All operands not forwarded to regions are typically parameters of the
// branch operation itself (for example the boolean for if/else).
for (int index : unaccounted.set_bits()) {
visitBranchOperand(op->getOpOperand(index));
}
}
const AbstractSparseLattice *
AbstractSparseBackwardDataFlowAnalysis::getLatticeElementFor(ProgramPoint point,
Value value) {
AbstractSparseLattice *state = getLatticeElement(value);
addDependency(state, point);
return state;
}
void AbstractSparseBackwardDataFlowAnalysis::setAllToExitStates(
ArrayRef<AbstractSparseLattice *> lattices) {
for (AbstractSparseLattice *lattice : lattices)
setToExitState(lattice);
}
void AbstractSparseBackwardDataFlowAnalysis::meet(
AbstractSparseLattice *lhs, const AbstractSparseLattice &rhs) {
propagateIfChanged(lhs, lhs->meet(rhs));
}
|