1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
|
//===- IntegerRelation.cpp - MLIR IntegerRelation Class ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A class to represent an relation over integer tuples. A relation is
// represented as a constraint system over a space of tuples of integer valued
// variables supporting symbolic variables and existential quantification.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/IntegerRelation.h"
#include "mlir/Analysis/Presburger/LinearTransform.h"
#include "mlir/Analysis/Presburger/PWMAFunction.h"
#include "mlir/Analysis/Presburger/PresburgerRelation.h"
#include "mlir/Analysis/Presburger/Simplex.h"
#include "mlir/Analysis/Presburger/Utils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/Debug.h"
#include <numeric>
#include <optional>
#define DEBUG_TYPE "presburger"
using namespace mlir;
using namespace presburger;
using llvm::SmallDenseMap;
using llvm::SmallDenseSet;
std::unique_ptr<IntegerRelation> IntegerRelation::clone() const {
return std::make_unique<IntegerRelation>(*this);
}
std::unique_ptr<IntegerPolyhedron> IntegerPolyhedron::clone() const {
return std::make_unique<IntegerPolyhedron>(*this);
}
void IntegerRelation::setSpace(const PresburgerSpace &oSpace) {
assert(space.getNumVars() == oSpace.getNumVars() && "invalid space!");
space = oSpace;
}
void IntegerRelation::setSpaceExceptLocals(const PresburgerSpace &oSpace) {
assert(oSpace.getNumLocalVars() == 0 && "no locals should be present!");
assert(oSpace.getNumVars() <= getNumVars() && "invalid space!");
unsigned newNumLocals = getNumVars() - oSpace.getNumVars();
space = oSpace;
space.insertVar(VarKind::Local, 0, newNumLocals);
}
void IntegerRelation::append(const IntegerRelation &other) {
assert(space.isEqual(other.getSpace()) && "Spaces must be equal.");
inequalities.reserveRows(inequalities.getNumRows() +
other.getNumInequalities());
equalities.reserveRows(equalities.getNumRows() + other.getNumEqualities());
for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) {
addInequality(other.getInequality(r));
}
for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) {
addEquality(other.getEquality(r));
}
}
IntegerRelation IntegerRelation::intersect(IntegerRelation other) const {
IntegerRelation result = *this;
result.mergeLocalVars(other);
result.append(other);
return result;
}
bool IntegerRelation::isEqual(const IntegerRelation &other) const {
assert(space.isCompatible(other.getSpace()) && "Spaces must be compatible.");
return PresburgerRelation(*this).isEqual(PresburgerRelation(other));
}
bool IntegerRelation::isSubsetOf(const IntegerRelation &other) const {
assert(space.isCompatible(other.getSpace()) && "Spaces must be compatible.");
return PresburgerRelation(*this).isSubsetOf(PresburgerRelation(other));
}
MaybeOptimum<SmallVector<Fraction, 8>>
IntegerRelation::findRationalLexMin() const {
assert(getNumSymbolVars() == 0 && "Symbols are not supported!");
MaybeOptimum<SmallVector<Fraction, 8>> maybeLexMin =
LexSimplex(*this).findRationalLexMin();
if (!maybeLexMin.isBounded())
return maybeLexMin;
// The Simplex returns the lexmin over all the variables including locals. But
// locals are not actually part of the space and should not be returned in the
// result. Since the locals are placed last in the list of variables, they
// will be minimized last in the lexmin. So simply truncating out the locals
// from the end of the answer gives the desired lexmin over the dimensions.
assert(maybeLexMin->size() == getNumVars() &&
"Incorrect number of vars in lexMin!");
maybeLexMin->resize(getNumDimAndSymbolVars());
return maybeLexMin;
}
MaybeOptimum<SmallVector<MPInt, 8>> IntegerRelation::findIntegerLexMin() const {
assert(getNumSymbolVars() == 0 && "Symbols are not supported!");
MaybeOptimum<SmallVector<MPInt, 8>> maybeLexMin =
LexSimplex(*this).findIntegerLexMin();
if (!maybeLexMin.isBounded())
return maybeLexMin.getKind();
// The Simplex returns the lexmin over all the variables including locals. But
// locals are not actually part of the space and should not be returned in the
// result. Since the locals are placed last in the list of variables, they
// will be minimized last in the lexmin. So simply truncating out the locals
// from the end of the answer gives the desired lexmin over the dimensions.
assert(maybeLexMin->size() == getNumVars() &&
"Incorrect number of vars in lexMin!");
maybeLexMin->resize(getNumDimAndSymbolVars());
return maybeLexMin;
}
static bool rangeIsZero(ArrayRef<MPInt> range) {
return llvm::all_of(range, [](const MPInt &x) { return x == 0; });
}
static void removeConstraintsInvolvingVarRange(IntegerRelation &poly,
unsigned begin, unsigned count) {
// We loop until i > 0 and index into i - 1 to avoid sign issues.
//
// We iterate backwards so that whether we remove constraint i - 1 or not, the
// next constraint to be tested is always i - 2.
for (unsigned i = poly.getNumEqualities(); i > 0; i--)
if (!rangeIsZero(poly.getEquality(i - 1).slice(begin, count)))
poly.removeEquality(i - 1);
for (unsigned i = poly.getNumInequalities(); i > 0; i--)
if (!rangeIsZero(poly.getInequality(i - 1).slice(begin, count)))
poly.removeInequality(i - 1);
}
IntegerRelation::CountsSnapshot IntegerRelation::getCounts() const {
return {getSpace(), getNumInequalities(), getNumEqualities()};
}
void IntegerRelation::truncateVarKind(VarKind kind, unsigned num) {
unsigned curNum = getNumVarKind(kind);
assert(num <= curNum && "Can't truncate to more vars!");
removeVarRange(kind, num, curNum);
}
void IntegerRelation::truncateVarKind(VarKind kind,
const CountsSnapshot &counts) {
truncateVarKind(kind, counts.getSpace().getNumVarKind(kind));
}
void IntegerRelation::truncate(const CountsSnapshot &counts) {
truncateVarKind(VarKind::Domain, counts);
truncateVarKind(VarKind::Range, counts);
truncateVarKind(VarKind::Symbol, counts);
truncateVarKind(VarKind::Local, counts);
removeInequalityRange(counts.getNumIneqs(), getNumInequalities());
removeEqualityRange(counts.getNumEqs(), getNumEqualities());
}
PresburgerRelation IntegerRelation::computeReprWithOnlyDivLocals() const {
// If there are no locals, we're done.
if (getNumLocalVars() == 0)
return PresburgerRelation(*this);
// Move all the non-div locals to the end, as the current API to
// SymbolicLexMin requires these to form a contiguous range.
//
// Take a copy so we can perform mutations.
IntegerRelation copy = *this;
std::vector<MaybeLocalRepr> reprs(getNumLocalVars());
copy.getLocalReprs(&reprs);
// Iterate through all the locals. The last `numNonDivLocals` are the locals
// that have been scanned already and do not have division representations.
unsigned numNonDivLocals = 0;
unsigned offset = copy.getVarKindOffset(VarKind::Local);
for (unsigned i = 0, e = copy.getNumLocalVars(); i < e - numNonDivLocals;) {
if (!reprs[i]) {
// Whenever we come across a local that does not have a division
// representation, we swap it to the `numNonDivLocals`-th last position
// and increment `numNonDivLocal`s. `reprs` also needs to be swapped.
copy.swapVar(offset + i, offset + e - numNonDivLocals - 1);
std::swap(reprs[i], reprs[e - numNonDivLocals - 1]);
++numNonDivLocals;
continue;
}
++i;
}
// If there are no non-div locals, we're done.
if (numNonDivLocals == 0)
return PresburgerRelation(*this);
// We computeSymbolicIntegerLexMin by considering the non-div locals as
// "non-symbols" and considering everything else as "symbols". This will
// compute a function mapping assignments to "symbols" to the
// lexicographically minimal valid assignment of "non-symbols", when a
// satisfying assignment exists. It separately returns the set of assignments
// to the "symbols" such that a satisfying assignment to the "non-symbols"
// exists but the lexmin is unbounded. We basically want to find the set of
// values of the "symbols" such that an assignment to the "non-symbols"
// exists, which is the union of the domain of the returned lexmin function
// and the returned set of assignments to the "symbols" that makes the lexmin
// unbounded.
SymbolicLexMin lexminResult =
SymbolicLexSimplex(copy, /*symbolOffset*/ 0,
IntegerPolyhedron(PresburgerSpace::getSetSpace(
/*numDims=*/copy.getNumVars() - numNonDivLocals)))
.computeSymbolicIntegerLexMin();
PresburgerRelation result =
lexminResult.lexmin.getDomain().unionSet(lexminResult.unboundedDomain);
// The result set might lie in the wrong space -- all its ids are dims.
// Set it to the desired space and return.
PresburgerSpace space = getSpace();
space.removeVarRange(VarKind::Local, 0, getNumLocalVars());
result.setSpace(space);
return result;
}
SymbolicLexMin IntegerRelation::findSymbolicIntegerLexMin() const {
// Symbol and Domain vars will be used as symbols for symbolic lexmin.
// In other words, for every value of the symbols and domain, return the
// lexmin value of the (range, locals).
llvm::SmallBitVector isSymbol(getNumVars(), false);
isSymbol.set(getVarKindOffset(VarKind::Symbol),
getVarKindEnd(VarKind::Symbol));
isSymbol.set(getVarKindOffset(VarKind::Domain),
getVarKindEnd(VarKind::Domain));
// Compute the symbolic lexmin of the dims and locals, with the symbols being
// the actual symbols of this set.
// The resultant space of lexmin is the space of the relation itself.
SymbolicLexMin result =
SymbolicLexSimplex(*this,
IntegerPolyhedron(PresburgerSpace::getSetSpace(
/*numDims=*/getNumDomainVars(),
/*numSymbols=*/getNumSymbolVars())),
isSymbol)
.computeSymbolicIntegerLexMin();
// We want to return only the lexmin over the dims, so strip the locals from
// the computed lexmin.
result.lexmin.removeOutputs(result.lexmin.getNumOutputs() - getNumLocalVars(),
result.lexmin.getNumOutputs());
return result;
}
PresburgerRelation
IntegerRelation::subtract(const PresburgerRelation &set) const {
return PresburgerRelation(*this).subtract(set);
}
unsigned IntegerRelation::insertVar(VarKind kind, unsigned pos, unsigned num) {
assert(pos <= getNumVarKind(kind));
unsigned insertPos = space.insertVar(kind, pos, num);
inequalities.insertColumns(insertPos, num);
equalities.insertColumns(insertPos, num);
return insertPos;
}
unsigned IntegerRelation::appendVar(VarKind kind, unsigned num) {
unsigned pos = getNumVarKind(kind);
return insertVar(kind, pos, num);
}
void IntegerRelation::addEquality(ArrayRef<MPInt> eq) {
assert(eq.size() == getNumCols());
unsigned row = equalities.appendExtraRow();
for (unsigned i = 0, e = eq.size(); i < e; ++i)
equalities(row, i) = eq[i];
}
void IntegerRelation::addInequality(ArrayRef<MPInt> inEq) {
assert(inEq.size() == getNumCols());
unsigned row = inequalities.appendExtraRow();
for (unsigned i = 0, e = inEq.size(); i < e; ++i)
inequalities(row, i) = inEq[i];
}
void IntegerRelation::removeVar(VarKind kind, unsigned pos) {
removeVarRange(kind, pos, pos + 1);
}
void IntegerRelation::removeVar(unsigned pos) { removeVarRange(pos, pos + 1); }
void IntegerRelation::removeVarRange(VarKind kind, unsigned varStart,
unsigned varLimit) {
assert(varLimit <= getNumVarKind(kind));
if (varStart >= varLimit)
return;
// Remove eliminated variables from the constraints.
unsigned offset = getVarKindOffset(kind);
equalities.removeColumns(offset + varStart, varLimit - varStart);
inequalities.removeColumns(offset + varStart, varLimit - varStart);
// Remove eliminated variables from the space.
space.removeVarRange(kind, varStart, varLimit);
}
void IntegerRelation::removeVarRange(unsigned varStart, unsigned varLimit) {
assert(varLimit <= getNumVars());
if (varStart >= varLimit)
return;
// Helper function to remove vars of the specified kind in the given range
// [start, limit), The range is absolute (i.e. it is not relative to the kind
// of variable). Also updates `limit` to reflect the deleted variables.
auto removeVarKindInRange = [this](VarKind kind, unsigned &start,
unsigned &limit) {
if (start >= limit)
return;
unsigned offset = getVarKindOffset(kind);
unsigned num = getNumVarKind(kind);
// Get `start`, `limit` relative to the specified kind.
unsigned relativeStart =
start <= offset ? 0 : std::min(num, start - offset);
unsigned relativeLimit =
limit <= offset ? 0 : std::min(num, limit - offset);
// Remove vars of the specified kind in the relative range.
removeVarRange(kind, relativeStart, relativeLimit);
// Update `limit` to reflect deleted variables.
// `start` does not need to be updated because any variables that are
// deleted are after position `start`.
limit -= relativeLimit - relativeStart;
};
removeVarKindInRange(VarKind::Domain, varStart, varLimit);
removeVarKindInRange(VarKind::Range, varStart, varLimit);
removeVarKindInRange(VarKind::Symbol, varStart, varLimit);
removeVarKindInRange(VarKind::Local, varStart, varLimit);
}
void IntegerRelation::removeEquality(unsigned pos) {
equalities.removeRow(pos);
}
void IntegerRelation::removeInequality(unsigned pos) {
inequalities.removeRow(pos);
}
void IntegerRelation::removeEqualityRange(unsigned start, unsigned end) {
if (start >= end)
return;
equalities.removeRows(start, end - start);
}
void IntegerRelation::removeInequalityRange(unsigned start, unsigned end) {
if (start >= end)
return;
inequalities.removeRows(start, end - start);
}
void IntegerRelation::swapVar(unsigned posA, unsigned posB) {
assert(posA < getNumVars() && "invalid position A");
assert(posB < getNumVars() && "invalid position B");
if (posA == posB)
return;
inequalities.swapColumns(posA, posB);
equalities.swapColumns(posA, posB);
}
void IntegerRelation::clearConstraints() {
equalities.resizeVertically(0);
inequalities.resizeVertically(0);
}
/// Gather all lower and upper bounds of the variable at `pos`, and
/// optionally any equalities on it. In addition, the bounds are to be
/// independent of variables in position range [`offset`, `offset` + `num`).
void IntegerRelation::getLowerAndUpperBoundIndices(
unsigned pos, SmallVectorImpl<unsigned> *lbIndices,
SmallVectorImpl<unsigned> *ubIndices, SmallVectorImpl<unsigned> *eqIndices,
unsigned offset, unsigned num) const {
assert(pos < getNumVars() && "invalid position");
assert(offset + num < getNumCols() && "invalid range");
// Checks for a constraint that has a non-zero coeff for the variables in
// the position range [offset, offset + num) while ignoring `pos`.
auto containsConstraintDependentOnRange = [&](unsigned r, bool isEq) {
unsigned c, f;
auto cst = isEq ? getEquality(r) : getInequality(r);
for (c = offset, f = offset + num; c < f; ++c) {
if (c == pos)
continue;
if (cst[c] != 0)
break;
}
return c < f;
};
// Gather all lower bounds and upper bounds of the variable. Since the
// canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
// bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
// The bounds are to be independent of [offset, offset + num) columns.
if (containsConstraintDependentOnRange(r, /*isEq=*/false))
continue;
if (atIneq(r, pos) >= 1) {
// Lower bound.
lbIndices->push_back(r);
} else if (atIneq(r, pos) <= -1) {
// Upper bound.
ubIndices->push_back(r);
}
}
// An equality is both a lower and upper bound. Record any equalities
// involving the pos^th variable.
if (!eqIndices)
return;
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
if (atEq(r, pos) == 0)
continue;
if (containsConstraintDependentOnRange(r, /*isEq=*/true))
continue;
eqIndices->push_back(r);
}
}
bool IntegerRelation::hasConsistentState() const {
if (!inequalities.hasConsistentState())
return false;
if (!equalities.hasConsistentState())
return false;
return true;
}
void IntegerRelation::setAndEliminate(unsigned pos, ArrayRef<MPInt> values) {
if (values.empty())
return;
assert(pos + values.size() <= getNumVars() &&
"invalid position or too many values");
// Setting x_j = p in sum_i a_i x_i + c is equivalent to adding p*a_j to the
// constant term and removing the var x_j. We do this for all the vars
// pos, pos + 1, ... pos + values.size() - 1.
unsigned constantColPos = getNumCols() - 1;
for (unsigned i = 0, numVals = values.size(); i < numVals; ++i)
inequalities.addToColumn(i + pos, constantColPos, values[i]);
for (unsigned i = 0, numVals = values.size(); i < numVals; ++i)
equalities.addToColumn(i + pos, constantColPos, values[i]);
removeVarRange(pos, pos + values.size());
}
void IntegerRelation::clearAndCopyFrom(const IntegerRelation &other) {
*this = other;
}
// Searches for a constraint with a non-zero coefficient at `colIdx` in
// equality (isEq=true) or inequality (isEq=false) constraints.
// Returns true and sets row found in search in `rowIdx`, false otherwise.
bool IntegerRelation::findConstraintWithNonZeroAt(unsigned colIdx, bool isEq,
unsigned *rowIdx) const {
assert(colIdx < getNumCols() && "position out of bounds");
auto at = [&](unsigned rowIdx) -> MPInt {
return isEq ? atEq(rowIdx, colIdx) : atIneq(rowIdx, colIdx);
};
unsigned e = isEq ? getNumEqualities() : getNumInequalities();
for (*rowIdx = 0; *rowIdx < e; ++(*rowIdx)) {
if (at(*rowIdx) != 0) {
return true;
}
}
return false;
}
void IntegerRelation::normalizeConstraintsByGCD() {
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i)
equalities.normalizeRow(i);
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i)
inequalities.normalizeRow(i);
}
bool IntegerRelation::hasInvalidConstraint() const {
assert(hasConsistentState());
auto check = [&](bool isEq) -> bool {
unsigned numCols = getNumCols();
unsigned numRows = isEq ? getNumEqualities() : getNumInequalities();
for (unsigned i = 0, e = numRows; i < e; ++i) {
unsigned j;
for (j = 0; j < numCols - 1; ++j) {
MPInt v = isEq ? atEq(i, j) : atIneq(i, j);
// Skip rows with non-zero variable coefficients.
if (v != 0)
break;
}
if (j < numCols - 1) {
continue;
}
// Check validity of constant term at 'numCols - 1' w.r.t 'isEq'.
// Example invalid constraints include: '1 == 0' or '-1 >= 0'
MPInt v = isEq ? atEq(i, numCols - 1) : atIneq(i, numCols - 1);
if ((isEq && v != 0) || (!isEq && v < 0)) {
return true;
}
}
return false;
};
if (check(/*isEq=*/true))
return true;
return check(/*isEq=*/false);
}
/// Eliminate variable from constraint at `rowIdx` based on coefficient at
/// pivotRow, pivotCol. Columns in range [elimColStart, pivotCol) will not be
/// updated as they have already been eliminated.
static void eliminateFromConstraint(IntegerRelation *constraints,
unsigned rowIdx, unsigned pivotRow,
unsigned pivotCol, unsigned elimColStart,
bool isEq) {
// Skip if equality 'rowIdx' if same as 'pivotRow'.
if (isEq && rowIdx == pivotRow)
return;
auto at = [&](unsigned i, unsigned j) -> MPInt {
return isEq ? constraints->atEq(i, j) : constraints->atIneq(i, j);
};
MPInt leadCoeff = at(rowIdx, pivotCol);
// Skip if leading coefficient at 'rowIdx' is already zero.
if (leadCoeff == 0)
return;
MPInt pivotCoeff = constraints->atEq(pivotRow, pivotCol);
int sign = (leadCoeff * pivotCoeff > 0) ? -1 : 1;
MPInt lcm = presburger::lcm(pivotCoeff, leadCoeff);
MPInt pivotMultiplier = sign * (lcm / abs(pivotCoeff));
MPInt rowMultiplier = lcm / abs(leadCoeff);
unsigned numCols = constraints->getNumCols();
for (unsigned j = 0; j < numCols; ++j) {
// Skip updating column 'j' if it was just eliminated.
if (j >= elimColStart && j < pivotCol)
continue;
MPInt v = pivotMultiplier * constraints->atEq(pivotRow, j) +
rowMultiplier * at(rowIdx, j);
isEq ? constraints->atEq(rowIdx, j) = v
: constraints->atIneq(rowIdx, j) = v;
}
}
/// Returns the position of the variable that has the minimum <number of lower
/// bounds> times <number of upper bounds> from the specified range of
/// variables [start, end). It is often best to eliminate in the increasing
/// order of these counts when doing Fourier-Motzkin elimination since FM adds
/// that many new constraints.
static unsigned getBestVarToEliminate(const IntegerRelation &cst,
unsigned start, unsigned end) {
assert(start < cst.getNumVars() && end < cst.getNumVars() + 1);
auto getProductOfNumLowerUpperBounds = [&](unsigned pos) {
unsigned numLb = 0;
unsigned numUb = 0;
for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
if (cst.atIneq(r, pos) > 0) {
++numLb;
} else if (cst.atIneq(r, pos) < 0) {
++numUb;
}
}
return numLb * numUb;
};
unsigned minLoc = start;
unsigned min = getProductOfNumLowerUpperBounds(start);
for (unsigned c = start + 1; c < end; c++) {
unsigned numLbUbProduct = getProductOfNumLowerUpperBounds(c);
if (numLbUbProduct < min) {
min = numLbUbProduct;
minLoc = c;
}
}
return minLoc;
}
// Checks for emptiness of the set by eliminating variables successively and
// using the GCD test (on all equality constraints) and checking for trivially
// invalid constraints. Returns 'true' if the constraint system is found to be
// empty; false otherwise.
bool IntegerRelation::isEmpty() const {
if (isEmptyByGCDTest() || hasInvalidConstraint())
return true;
IntegerRelation tmpCst(*this);
// First, eliminate as many local variables as possible using equalities.
tmpCst.removeRedundantLocalVars();
if (tmpCst.isEmptyByGCDTest() || tmpCst.hasInvalidConstraint())
return true;
// Eliminate as many variables as possible using Gaussian elimination.
unsigned currentPos = 0;
while (currentPos < tmpCst.getNumVars()) {
tmpCst.gaussianEliminateVars(currentPos, tmpCst.getNumVars());
++currentPos;
// We check emptiness through trivial checks after eliminating each ID to
// detect emptiness early. Since the checks isEmptyByGCDTest() and
// hasInvalidConstraint() are linear time and single sweep on the constraint
// buffer, this appears reasonable - but can optimize in the future.
if (tmpCst.hasInvalidConstraint() || tmpCst.isEmptyByGCDTest())
return true;
}
// Eliminate the remaining using FM.
for (unsigned i = 0, e = tmpCst.getNumVars(); i < e; i++) {
tmpCst.fourierMotzkinEliminate(
getBestVarToEliminate(tmpCst, 0, tmpCst.getNumVars()));
// Check for a constraint explosion. This rarely happens in practice, but
// this check exists as a safeguard against improperly constructed
// constraint systems or artificially created arbitrarily complex systems
// that aren't the intended use case for IntegerRelation. This is
// needed since FM has a worst case exponential complexity in theory.
if (tmpCst.getNumConstraints() >= kExplosionFactor * getNumVars()) {
LLVM_DEBUG(llvm::dbgs() << "FM constraint explosion detected\n");
return false;
}
// FM wouldn't have modified the equalities in any way. So no need to again
// run GCD test. Check for trivial invalid constraints.
if (tmpCst.hasInvalidConstraint())
return true;
}
return false;
}
// Runs the GCD test on all equality constraints. Returns 'true' if this test
// fails on any equality. Returns 'false' otherwise.
// This test can be used to disprove the existence of a solution. If it returns
// true, no integer solution to the equality constraints can exist.
//
// GCD test definition:
//
// The equality constraint:
//
// c_1*x_1 + c_2*x_2 + ... + c_n*x_n = c_0
//
// has an integer solution iff:
//
// GCD of c_1, c_2, ..., c_n divides c_0.
bool IntegerRelation::isEmptyByGCDTest() const {
assert(hasConsistentState());
unsigned numCols = getNumCols();
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
MPInt gcd = abs(atEq(i, 0));
for (unsigned j = 1; j < numCols - 1; ++j) {
gcd = presburger::gcd(gcd, abs(atEq(i, j)));
}
MPInt v = abs(atEq(i, numCols - 1));
if (gcd > 0 && (v % gcd != 0)) {
return true;
}
}
return false;
}
// Returns a matrix where each row is a vector along which the polytope is
// bounded. The span of the returned vectors is guaranteed to contain all
// such vectors. The returned vectors are NOT guaranteed to be linearly
// independent. This function should not be called on empty sets.
//
// It is sufficient to check the perpendiculars of the constraints, as the set
// of perpendiculars which are bounded must span all bounded directions.
Matrix IntegerRelation::getBoundedDirections() const {
// Note that it is necessary to add the equalities too (which the constructor
// does) even though we don't need to check if they are bounded; whether an
// inequality is bounded or not depends on what other constraints, including
// equalities, are present.
Simplex simplex(*this);
assert(!simplex.isEmpty() && "It is not meaningful to ask whether a "
"direction is bounded in an empty set.");
SmallVector<unsigned, 8> boundedIneqs;
// The constructor adds the inequalities to the simplex first, so this
// processes all the inequalities.
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
if (simplex.isBoundedAlongConstraint(i))
boundedIneqs.push_back(i);
}
// The direction vector is given by the coefficients and does not include the
// constant term, so the matrix has one fewer column.
unsigned dirsNumCols = getNumCols() - 1;
Matrix dirs(boundedIneqs.size() + getNumEqualities(), dirsNumCols);
// Copy the bounded inequalities.
unsigned row = 0;
for (unsigned i : boundedIneqs) {
for (unsigned col = 0; col < dirsNumCols; ++col)
dirs(row, col) = atIneq(i, col);
++row;
}
// Copy the equalities. All the equalities' perpendiculars are bounded.
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
for (unsigned col = 0; col < dirsNumCols; ++col)
dirs(row, col) = atEq(i, col);
++row;
}
return dirs;
}
bool IntegerRelation::isIntegerEmpty() const { return !findIntegerSample(); }
/// Let this set be S. If S is bounded then we directly call into the GBR
/// sampling algorithm. Otherwise, there are some unbounded directions, i.e.,
/// vectors v such that S extends to infinity along v or -v. In this case we
/// use an algorithm described in the integer set library (isl) manual and used
/// by the isl_set_sample function in that library. The algorithm is:
///
/// 1) Apply a unimodular transform T to S to obtain S*T, such that all
/// dimensions in which S*T is bounded lie in the linear span of a prefix of the
/// dimensions.
///
/// 2) Construct a set B by removing all constraints that involve
/// the unbounded dimensions and then deleting the unbounded dimensions. Note
/// that B is a Bounded set.
///
/// 3) Try to obtain a sample from B using the GBR sampling
/// algorithm. If no sample is found, return that S is empty.
///
/// 4) Otherwise, substitute the obtained sample into S*T to obtain a set
/// C. C is a full-dimensional Cone and always contains a sample.
///
/// 5) Obtain an integer sample from C.
///
/// 6) Return T*v, where v is the concatenation of the samples from B and C.
///
/// The following is a sketch of a proof that
/// a) If the algorithm returns empty, then S is empty.
/// b) If the algorithm returns a sample, it is a valid sample in S.
///
/// The algorithm returns empty only if B is empty, in which case S*T is
/// certainly empty since B was obtained by removing constraints and then
/// deleting unconstrained dimensions from S*T. Since T is unimodular, a vector
/// v is in S*T iff T*v is in S. So in this case, since
/// S*T is empty, S is empty too.
///
/// Otherwise, the algorithm substitutes the sample from B into S*T. All the
/// constraints of S*T that did not involve unbounded dimensions are satisfied
/// by this substitution. All dimensions in the linear span of the dimensions
/// outside the prefix are unbounded in S*T (step 1). Substituting values for
/// the bounded dimensions cannot make these dimensions bounded, and these are
/// the only remaining dimensions in C, so C is unbounded along every vector (in
/// the positive or negative direction, or both). C is hence a full-dimensional
/// cone and therefore always contains an integer point.
///
/// Concatenating the samples from B and C gives a sample v in S*T, so the
/// returned sample T*v is a sample in S.
std::optional<SmallVector<MPInt, 8>>
IntegerRelation::findIntegerSample() const {
// First, try the GCD test heuristic.
if (isEmptyByGCDTest())
return {};
Simplex simplex(*this);
if (simplex.isEmpty())
return {};
// For a bounded set, we directly call into the GBR sampling algorithm.
if (!simplex.isUnbounded())
return simplex.findIntegerSample();
// The set is unbounded. We cannot directly use the GBR algorithm.
//
// m is a matrix containing, in each row, a vector in which S is
// bounded, such that the linear span of all these dimensions contains all
// bounded dimensions in S.
Matrix m = getBoundedDirections();
// In column echelon form, each row of m occupies only the first rank(m)
// columns and has zeros on the other columns. The transform T that brings S
// to column echelon form is unimodular as well, so this is a suitable
// transform to use in step 1 of the algorithm.
std::pair<unsigned, LinearTransform> result =
LinearTransform::makeTransformToColumnEchelon(m);
const LinearTransform &transform = result.second;
// 1) Apply T to S to obtain S*T.
IntegerRelation transformedSet = transform.applyTo(*this);
// 2) Remove the unbounded dimensions and constraints involving them to
// obtain a bounded set.
IntegerRelation boundedSet(transformedSet);
unsigned numBoundedDims = result.first;
unsigned numUnboundedDims = getNumVars() - numBoundedDims;
removeConstraintsInvolvingVarRange(boundedSet, numBoundedDims,
numUnboundedDims);
boundedSet.removeVarRange(numBoundedDims, boundedSet.getNumVars());
// 3) Try to obtain a sample from the bounded set.
std::optional<SmallVector<MPInt, 8>> boundedSample =
Simplex(boundedSet).findIntegerSample();
if (!boundedSample)
return {};
assert(boundedSet.containsPoint(*boundedSample) &&
"Simplex returned an invalid sample!");
// 4) Substitute the values of the bounded dimensions into S*T to obtain a
// full-dimensional cone, which necessarily contains an integer sample.
transformedSet.setAndEliminate(0, *boundedSample);
IntegerRelation &cone = transformedSet;
// 5) Obtain an integer sample from the cone.
//
// We shrink the cone such that for any rational point in the shrunken cone,
// rounding up each of the point's coordinates produces a point that still
// lies in the original cone.
//
// Rounding up a point x adds a number e_i in [0, 1) to each coordinate x_i.
// For each inequality sum_i a_i x_i + c >= 0 in the original cone, the
// shrunken cone will have the inequality tightened by some amount s, such
// that if x satisfies the shrunken cone's tightened inequality, then x + e
// satisfies the original inequality, i.e.,
//
// sum_i a_i x_i + c + s >= 0 implies sum_i a_i (x_i + e_i) + c >= 0
//
// for any e_i values in [0, 1). In fact, we will handle the slightly more
// general case where e_i can be in [0, 1]. For example, consider the
// inequality 2x_1 - 3x_2 - 7x_3 - 6 >= 0, and let x = (3, 0, 0). How low
// could the LHS go if we added a number in [0, 1] to each coordinate? The LHS
// is minimized when we add 1 to the x_i with negative coefficient a_i and
// keep the other x_i the same. In the example, we would get x = (3, 1, 1),
// changing the value of the LHS by -3 + -7 = -10.
//
// In general, the value of the LHS can change by at most the sum of the
// negative a_i, so we accomodate this by shifting the inequality by this
// amount for the shrunken cone.
for (unsigned i = 0, e = cone.getNumInequalities(); i < e; ++i) {
for (unsigned j = 0; j < cone.getNumVars(); ++j) {
MPInt coeff = cone.atIneq(i, j);
if (coeff < 0)
cone.atIneq(i, cone.getNumVars()) += coeff;
}
}
// Obtain an integer sample in the cone by rounding up a rational point from
// the shrunken cone. Shrinking the cone amounts to shifting its apex
// "inwards" without changing its "shape"; the shrunken cone is still a
// full-dimensional cone and is hence non-empty.
Simplex shrunkenConeSimplex(cone);
assert(!shrunkenConeSimplex.isEmpty() && "Shrunken cone cannot be empty!");
// The sample will always exist since the shrunken cone is non-empty.
SmallVector<Fraction, 8> shrunkenConeSample =
*shrunkenConeSimplex.getRationalSample();
SmallVector<MPInt, 8> coneSample(llvm::map_range(shrunkenConeSample, ceil));
// 6) Return transform * concat(boundedSample, coneSample).
SmallVector<MPInt, 8> &sample = *boundedSample;
sample.append(coneSample.begin(), coneSample.end());
return transform.postMultiplyWithColumn(sample);
}
/// Helper to evaluate an affine expression at a point.
/// The expression is a list of coefficients for the dimensions followed by the
/// constant term.
static MPInt valueAt(ArrayRef<MPInt> expr, ArrayRef<MPInt> point) {
assert(expr.size() == 1 + point.size() &&
"Dimensionalities of point and expression don't match!");
MPInt value = expr.back();
for (unsigned i = 0; i < point.size(); ++i)
value += expr[i] * point[i];
return value;
}
/// A point satisfies an equality iff the value of the equality at the
/// expression is zero, and it satisfies an inequality iff the value of the
/// inequality at that point is non-negative.
bool IntegerRelation::containsPoint(ArrayRef<MPInt> point) const {
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
if (valueAt(getEquality(i), point) != 0)
return false;
}
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
if (valueAt(getInequality(i), point) < 0)
return false;
}
return true;
}
/// Just substitute the values given and check if an integer sample exists for
/// the local vars.
///
/// TODO: this could be made more efficient by handling divisions separately.
/// Instead of finding an integer sample over all the locals, we can first
/// compute the values of the locals that have division representations and
/// only use the integer emptiness check for the locals that don't have this.
/// Handling this correctly requires ordering the divs, though.
std::optional<SmallVector<MPInt, 8>>
IntegerRelation::containsPointNoLocal(ArrayRef<MPInt> point) const {
assert(point.size() == getNumVars() - getNumLocalVars() &&
"Point should contain all vars except locals!");
assert(getVarKindOffset(VarKind::Local) == getNumVars() - getNumLocalVars() &&
"This function depends on locals being stored last!");
IntegerRelation copy = *this;
copy.setAndEliminate(0, point);
return copy.findIntegerSample();
}
DivisionRepr
IntegerRelation::getLocalReprs(std::vector<MaybeLocalRepr> *repr) const {
SmallVector<bool, 8> foundRepr(getNumVars(), false);
for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; ++i)
foundRepr[i] = true;
unsigned localOffset = getVarKindOffset(VarKind::Local);
DivisionRepr divs(getNumVars(), getNumLocalVars());
bool changed;
do {
// Each time changed is true, at end of this iteration, one or more local
// vars have been detected as floor divs.
changed = false;
for (unsigned i = 0, e = getNumLocalVars(); i < e; ++i) {
if (!foundRepr[i + localOffset]) {
MaybeLocalRepr res =
computeSingleVarRepr(*this, foundRepr, localOffset + i,
divs.getDividend(i), divs.getDenom(i));
if (!res) {
// No representation was found, so clear the representation and
// continue.
divs.clearRepr(i);
continue;
}
foundRepr[localOffset + i] = true;
if (repr)
(*repr)[i] = res;
changed = true;
}
}
} while (changed);
return divs;
}
/// Tightens inequalities given that we are dealing with integer spaces. This is
/// analogous to the GCD test but applied to inequalities. The constant term can
/// be reduced to the preceding multiple of the GCD of the coefficients, i.e.,
/// 64*i - 100 >= 0 => 64*i - 128 >= 0 (since 'i' is an integer). This is a
/// fast method - linear in the number of coefficients.
// Example on how this affects practical cases: consider the scenario:
// 64*i >= 100, j = 64*i; without a tightening, elimination of i would yield
// j >= 100 instead of the tighter (exact) j >= 128.
void IntegerRelation::gcdTightenInequalities() {
unsigned numCols = getNumCols();
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
// Normalize the constraint and tighten the constant term by the GCD.
MPInt gcd = inequalities.normalizeRow(i, getNumCols() - 1);
if (gcd > 1)
atIneq(i, numCols - 1) = floorDiv(atIneq(i, numCols - 1), gcd);
}
}
// Eliminates all variable variables in column range [posStart, posLimit).
// Returns the number of variables eliminated.
unsigned IntegerRelation::gaussianEliminateVars(unsigned posStart,
unsigned posLimit) {
// Return if variable positions to eliminate are out of range.
assert(posLimit <= getNumVars());
assert(hasConsistentState());
if (posStart >= posLimit)
return 0;
gcdTightenInequalities();
unsigned pivotCol = 0;
for (pivotCol = posStart; pivotCol < posLimit; ++pivotCol) {
// Find a row which has a non-zero coefficient in column 'j'.
unsigned pivotRow;
if (!findConstraintWithNonZeroAt(pivotCol, /*isEq=*/true, &pivotRow)) {
// No pivot row in equalities with non-zero at 'pivotCol'.
if (!findConstraintWithNonZeroAt(pivotCol, /*isEq=*/false, &pivotRow)) {
// If inequalities are also non-zero in 'pivotCol', it can be
// eliminated.
continue;
}
break;
}
// Eliminate variable at 'pivotCol' from each equality row.
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart,
/*isEq=*/true);
equalities.normalizeRow(i);
}
// Eliminate variable at 'pivotCol' from each inequality row.
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart,
/*isEq=*/false);
inequalities.normalizeRow(i);
}
removeEquality(pivotRow);
gcdTightenInequalities();
}
// Update position limit based on number eliminated.
posLimit = pivotCol;
// Remove eliminated columns from all constraints.
removeVarRange(posStart, posLimit);
return posLimit - posStart;
}
// A more complex check to eliminate redundant inequalities. Uses FourierMotzkin
// to check if a constraint is redundant.
void IntegerRelation::removeRedundantInequalities() {
SmallVector<bool, 32> redun(getNumInequalities(), false);
// To check if an inequality is redundant, we replace the inequality by its
// complement (for eg., i - 1 >= 0 by i <= 0), and check if the resulting
// system is empty. If it is, the inequality is redundant.
IntegerRelation tmpCst(*this);
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
// Change the inequality to its complement.
tmpCst.inequalities.negateRow(r);
--tmpCst.atIneq(r, tmpCst.getNumCols() - 1);
if (tmpCst.isEmpty()) {
redun[r] = true;
// Zero fill the redundant inequality.
inequalities.fillRow(r, /*value=*/0);
tmpCst.inequalities.fillRow(r, /*value=*/0);
} else {
// Reverse the change (to avoid recreating tmpCst each time).
++tmpCst.atIneq(r, tmpCst.getNumCols() - 1);
tmpCst.inequalities.negateRow(r);
}
}
unsigned pos = 0;
for (unsigned r = 0, e = getNumInequalities(); r < e; ++r) {
if (!redun[r])
inequalities.copyRow(r, pos++);
}
inequalities.resizeVertically(pos);
}
// A more complex check to eliminate redundant inequalities and equalities. Uses
// Simplex to check if a constraint is redundant.
void IntegerRelation::removeRedundantConstraints() {
// First, we run gcdTightenInequalities. This allows us to catch some
// constraints which are not redundant when considering rational solutions
// but are redundant in terms of integer solutions.
gcdTightenInequalities();
Simplex simplex(*this);
simplex.detectRedundant();
unsigned pos = 0;
unsigned numIneqs = getNumInequalities();
// Scan to get rid of all inequalities marked redundant, in-place. In Simplex,
// the first constraints added are the inequalities.
for (unsigned r = 0; r < numIneqs; r++) {
if (!simplex.isMarkedRedundant(r))
inequalities.copyRow(r, pos++);
}
inequalities.resizeVertically(pos);
// Scan to get rid of all equalities marked redundant, in-place. In Simplex,
// after the inequalities, a pair of constraints for each equality is added.
// An equality is redundant if both the inequalities in its pair are
// redundant.
pos = 0;
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
if (!(simplex.isMarkedRedundant(numIneqs + 2 * r) &&
simplex.isMarkedRedundant(numIneqs + 2 * r + 1)))
equalities.copyRow(r, pos++);
}
equalities.resizeVertically(pos);
}
std::optional<MPInt> IntegerRelation::computeVolume() const {
assert(getNumSymbolVars() == 0 && "Symbols are not yet supported!");
Simplex simplex(*this);
// If the polytope is rationally empty, there are certainly no integer
// points.
if (simplex.isEmpty())
return MPInt(0);
// Just find the maximum and minimum integer value of each non-local var
// separately, thus finding the number of integer values each such var can
// take. Multiplying these together gives a valid overapproximation of the
// number of integer points in the relation. The result this gives is
// equivalent to projecting (rationally) the relation onto its non-local vars
// and returning the number of integer points in a minimal axis-parallel
// hyperrectangular overapproximation of that.
//
// We also handle the special case where one dimension is unbounded and
// another dimension can take no integer values. In this case, the volume is
// zero.
//
// If there is no such empty dimension, if any dimension is unbounded we
// just return the result as unbounded.
MPInt count(1);
SmallVector<MPInt, 8> dim(getNumVars() + 1);
bool hasUnboundedVar = false;
for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; ++i) {
dim[i] = 1;
auto [min, max] = simplex.computeIntegerBounds(dim);
dim[i] = 0;
assert((!min.isEmpty() && !max.isEmpty()) &&
"Polytope should be rationally non-empty!");
// One of the dimensions is unbounded. Note this fact. We will return
// unbounded if none of the other dimensions makes the volume zero.
if (min.isUnbounded() || max.isUnbounded()) {
hasUnboundedVar = true;
continue;
}
// In this case there are no valid integer points and the volume is
// definitely zero.
if (min.getBoundedOptimum() > max.getBoundedOptimum())
return MPInt(0);
count *= (*max - *min + 1);
}
if (count == 0)
return MPInt(0);
if (hasUnboundedVar)
return {};
return count;
}
void IntegerRelation::eliminateRedundantLocalVar(unsigned posA, unsigned posB) {
assert(posA < getNumLocalVars() && "Invalid local var position");
assert(posB < getNumLocalVars() && "Invalid local var position");
unsigned localOffset = getVarKindOffset(VarKind::Local);
posA += localOffset;
posB += localOffset;
inequalities.addToColumn(posB, posA, 1);
equalities.addToColumn(posB, posA, 1);
removeVar(posB);
}
/// Adds additional local ids to the sets such that they both have the union
/// of the local ids in each set, without changing the set of points that
/// lie in `this` and `other`.
///
/// To detect local ids that always take the same value, each local id is
/// represented as a floordiv with constant denominator in terms of other ids.
/// After extracting these divisions, local ids in `other` with the same
/// division representation as some other local id in any set are considered
/// duplicate and are merged.
///
/// It is possible that division representation for some local id cannot be
/// obtained, and thus these local ids are not considered for detecting
/// duplicates.
unsigned IntegerRelation::mergeLocalVars(IntegerRelation &other) {
IntegerRelation &relA = *this;
IntegerRelation &relB = other;
unsigned oldALocals = relA.getNumLocalVars();
// Merge function that merges the local variables in both sets by treating
// them as the same variable.
auto merge = [&relA, &relB, oldALocals](unsigned i, unsigned j) -> bool {
// We only merge from local at pos j to local at pos i, where j > i.
if (i >= j)
return false;
// If i < oldALocals, we are trying to merge duplicate divs. Since we do not
// want to merge duplicates in A, we ignore this call.
if (j < oldALocals)
return false;
// Merge local at pos j into local at position i.
relA.eliminateRedundantLocalVar(i, j);
relB.eliminateRedundantLocalVar(i, j);
return true;
};
presburger::mergeLocalVars(*this, other, merge);
// Since we do not remove duplicate divisions in relA, this is guranteed to be
// non-negative.
return relA.getNumLocalVars() - oldALocals;
}
bool IntegerRelation::hasOnlyDivLocals() const {
return getLocalReprs().hasAllReprs();
}
void IntegerRelation::removeDuplicateDivs() {
DivisionRepr divs = getLocalReprs();
auto merge = [this](unsigned i, unsigned j) -> bool {
eliminateRedundantLocalVar(i, j);
return true;
};
divs.removeDuplicateDivs(merge);
}
/// Removes local variables using equalities. Each equality is checked if it
/// can be reduced to the form: `e = affine-expr`, where `e` is a local
/// variable and `affine-expr` is an affine expression not containing `e`.
/// If an equality satisfies this form, the local variable is replaced in
/// each constraint and then removed. The equality used to replace this local
/// variable is also removed.
void IntegerRelation::removeRedundantLocalVars() {
// Normalize the equality constraints to reduce coefficients of local
// variables to 1 wherever possible.
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i)
equalities.normalizeRow(i);
while (true) {
unsigned i, e, j, f;
for (i = 0, e = getNumEqualities(); i < e; ++i) {
// Find a local variable to eliminate using ith equality.
for (j = getNumDimAndSymbolVars(), f = getNumVars(); j < f; ++j)
if (abs(atEq(i, j)) == 1)
break;
// Local variable can be eliminated using ith equality.
if (j < f)
break;
}
// No equality can be used to eliminate a local variable.
if (i == e)
break;
// Use the ith equality to simplify other equalities. If any changes
// are made to an equality constraint, it is normalized by GCD.
for (unsigned k = 0, t = getNumEqualities(); k < t; ++k) {
if (atEq(k, j) != 0) {
eliminateFromConstraint(this, k, i, j, j, /*isEq=*/true);
equalities.normalizeRow(k);
}
}
// Use the ith equality to simplify inequalities.
for (unsigned k = 0, t = getNumInequalities(); k < t; ++k)
eliminateFromConstraint(this, k, i, j, j, /*isEq=*/false);
// Remove the ith equality and the found local variable.
removeVar(j);
removeEquality(i);
}
}
void IntegerRelation::convertVarKind(VarKind srcKind, unsigned varStart,
unsigned varLimit, VarKind dstKind,
unsigned pos) {
assert(varLimit <= getNumVarKind(srcKind) && "Invalid id range");
if (varStart >= varLimit)
return;
// Append new local variables corresponding to the dimensions to be converted.
unsigned convertCount = varLimit - varStart;
unsigned newVarsBegin = insertVar(dstKind, pos, convertCount);
// Swap the new local variables with dimensions.
//
// Essentially, this moves the information corresponding to the specified ids
// of kind `srcKind` to the `convertCount` newly created ids of kind
// `dstKind`. In particular, this moves the columns in the constraint
// matrices, and zeros out the initially occupied columns (because the newly
// created ids we're swapping with were zero-initialized).
unsigned offset = getVarKindOffset(srcKind);
for (unsigned i = 0; i < convertCount; ++i)
swapVar(offset + varStart + i, newVarsBegin + i);
// Complete the move by deleting the initially occupied columns.
removeVarRange(srcKind, varStart, varLimit);
}
void IntegerRelation::addBound(BoundType type, unsigned pos,
const MPInt &value) {
assert(pos < getNumCols());
if (type == BoundType::EQ) {
unsigned row = equalities.appendExtraRow();
equalities(row, pos) = 1;
equalities(row, getNumCols() - 1) = -value;
} else {
unsigned row = inequalities.appendExtraRow();
inequalities(row, pos) = type == BoundType::LB ? 1 : -1;
inequalities(row, getNumCols() - 1) =
type == BoundType::LB ? -value : value;
}
}
void IntegerRelation::addBound(BoundType type, ArrayRef<MPInt> expr,
const MPInt &value) {
assert(type != BoundType::EQ && "EQ not implemented");
assert(expr.size() == getNumCols());
unsigned row = inequalities.appendExtraRow();
for (unsigned i = 0, e = expr.size(); i < e; ++i)
inequalities(row, i) = type == BoundType::LB ? expr[i] : -expr[i];
inequalities(inequalities.getNumRows() - 1, getNumCols() - 1) +=
type == BoundType::LB ? -value : value;
}
/// Adds a new local variable as the floordiv of an affine function of other
/// variables, the coefficients of which are provided in 'dividend' and with
/// respect to a positive constant 'divisor'. Two constraints are added to the
/// system to capture equivalence with the floordiv.
/// q = expr floordiv c <=> c*q <= expr <= c*q + c - 1.
void IntegerRelation::addLocalFloorDiv(ArrayRef<MPInt> dividend,
const MPInt &divisor) {
assert(dividend.size() == getNumCols() && "incorrect dividend size");
assert(divisor > 0 && "positive divisor expected");
appendVar(VarKind::Local);
SmallVector<MPInt, 8> dividendCopy(dividend.begin(), dividend.end());
dividendCopy.insert(dividendCopy.end() - 1, MPInt(0));
addInequality(
getDivLowerBound(dividendCopy, divisor, dividendCopy.size() - 2));
addInequality(
getDivUpperBound(dividendCopy, divisor, dividendCopy.size() - 2));
}
/// Finds an equality that equates the specified variable to a constant.
/// Returns the position of the equality row. If 'symbolic' is set to true,
/// symbols are also treated like a constant, i.e., an affine function of the
/// symbols is also treated like a constant. Returns -1 if such an equality
/// could not be found.
static int findEqualityToConstant(const IntegerRelation &cst, unsigned pos,
bool symbolic = false) {
assert(pos < cst.getNumVars() && "invalid position");
for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
MPInt v = cst.atEq(r, pos);
if (v * v != 1)
continue;
unsigned c;
unsigned f = symbolic ? cst.getNumDimVars() : cst.getNumVars();
// This checks for zeros in all positions other than 'pos' in [0, f)
for (c = 0; c < f; c++) {
if (c == pos)
continue;
if (cst.atEq(r, c) != 0) {
// Dependent on another variable.
break;
}
}
if (c == f)
// Equality is free of other variables.
return r;
}
return -1;
}
LogicalResult IntegerRelation::constantFoldVar(unsigned pos) {
assert(pos < getNumVars() && "invalid position");
int rowIdx;
if ((rowIdx = findEqualityToConstant(*this, pos)) == -1)
return failure();
// atEq(rowIdx, pos) is either -1 or 1.
assert(atEq(rowIdx, pos) * atEq(rowIdx, pos) == 1);
MPInt constVal = -atEq(rowIdx, getNumCols() - 1) / atEq(rowIdx, pos);
setAndEliminate(pos, constVal);
return success();
}
void IntegerRelation::constantFoldVarRange(unsigned pos, unsigned num) {
for (unsigned s = pos, t = pos, e = pos + num; s < e; s++) {
if (failed(constantFoldVar(t)))
t++;
}
}
/// Returns a non-negative constant bound on the extent (upper bound - lower
/// bound) of the specified variable if it is found to be a constant; returns
/// std::nullopt if it's not a constant. This methods treats symbolic variables
/// specially, i.e., it looks for constant differences between affine
/// expressions involving only the symbolic variables. See comments at function
/// definition for example. 'lb', if provided, is set to the lower bound
/// associated with the constant difference. Note that 'lb' is purely symbolic
/// and thus will contain the coefficients of the symbolic variables and the
/// constant coefficient.
// Egs: 0 <= i <= 15, return 16.
// s0 + 2 <= i <= s0 + 17, returns 16. (s0 has to be a symbol)
// s0 + s1 + 16 <= d0 <= s0 + s1 + 31, returns 16.
// s0 - 7 <= 8*j <= s0 returns 1 with lb = s0, lbDivisor = 8 (since lb =
// ceil(s0 - 7 / 8) = floor(s0 / 8)).
std::optional<MPInt> IntegerRelation::getConstantBoundOnDimSize(
unsigned pos, SmallVectorImpl<MPInt> *lb, MPInt *boundFloorDivisor,
SmallVectorImpl<MPInt> *ub, unsigned *minLbPos, unsigned *minUbPos) const {
assert(pos < getNumDimVars() && "Invalid variable position");
// Find an equality for 'pos'^th variable that equates it to some function
// of the symbolic variables (+ constant).
int eqPos = findEqualityToConstant(*this, pos, /*symbolic=*/true);
if (eqPos != -1) {
auto eq = getEquality(eqPos);
// If the equality involves a local var, punt for now.
// TODO: this can be handled in the future by using the explicit
// representation of the local vars.
if (!std::all_of(eq.begin() + getNumDimAndSymbolVars(), eq.end() - 1,
[](const MPInt &coeff) { return coeff == 0; }))
return std::nullopt;
// This variable can only take a single value.
if (lb) {
// Set lb to that symbolic value.
lb->resize(getNumSymbolVars() + 1);
if (ub)
ub->resize(getNumSymbolVars() + 1);
for (unsigned c = 0, f = getNumSymbolVars() + 1; c < f; c++) {
MPInt v = atEq(eqPos, pos);
// atEq(eqRow, pos) is either -1 or 1.
assert(v * v == 1);
(*lb)[c] = v < 0 ? atEq(eqPos, getNumDimVars() + c) / -v
: -atEq(eqPos, getNumDimVars() + c) / v;
// Since this is an equality, ub = lb.
if (ub)
(*ub)[c] = (*lb)[c];
}
assert(boundFloorDivisor &&
"both lb and divisor or none should be provided");
*boundFloorDivisor = 1;
}
if (minLbPos)
*minLbPos = eqPos;
if (minUbPos)
*minUbPos = eqPos;
return MPInt(1);
}
// Check if the variable appears at all in any of the inequalities.
unsigned r, e;
for (r = 0, e = getNumInequalities(); r < e; r++) {
if (atIneq(r, pos) != 0)
break;
}
if (r == e)
// If it doesn't, there isn't a bound on it.
return std::nullopt;
// Positions of constraints that are lower/upper bounds on the variable.
SmallVector<unsigned, 4> lbIndices, ubIndices;
// Gather all symbolic lower bounds and upper bounds of the variable, i.e.,
// the bounds can only involve symbolic (and local) variables. Since the
// canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
// bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
getLowerAndUpperBoundIndices(pos, &lbIndices, &ubIndices,
/*eqIndices=*/nullptr, /*offset=*/0,
/*num=*/getNumDimVars());
std::optional<MPInt> minDiff;
unsigned minLbPosition = 0, minUbPosition = 0;
for (auto ubPos : ubIndices) {
for (auto lbPos : lbIndices) {
// Look for a lower bound and an upper bound that only differ by a
// constant, i.e., pairs of the form 0 <= c_pos - f(c_i's) <= diffConst.
// For example, if ii is the pos^th variable, we are looking for
// constraints like ii >= i, ii <= ii + 50, 50 being the difference. The
// minimum among all such constant differences is kept since that's the
// constant bounding the extent of the pos^th variable.
unsigned j, e;
for (j = 0, e = getNumCols() - 1; j < e; j++)
if (atIneq(ubPos, j) != -atIneq(lbPos, j)) {
break;
}
if (j < getNumCols() - 1)
continue;
MPInt diff = ceilDiv(atIneq(ubPos, getNumCols() - 1) +
atIneq(lbPos, getNumCols() - 1) + 1,
atIneq(lbPos, pos));
// This bound is non-negative by definition.
diff = std::max<MPInt>(diff, MPInt(0));
if (minDiff == std::nullopt || diff < minDiff) {
minDiff = diff;
minLbPosition = lbPos;
minUbPosition = ubPos;
}
}
}
if (lb && minDiff) {
// Set lb to the symbolic lower bound.
lb->resize(getNumSymbolVars() + 1);
if (ub)
ub->resize(getNumSymbolVars() + 1);
// The lower bound is the ceildiv of the lb constraint over the coefficient
// of the variable at 'pos'. We express the ceildiv equivalently as a floor
// for uniformity. For eg., if the lower bound constraint was: 32*d0 - N +
// 31 >= 0, the lower bound for d0 is ceil(N - 31, 32), i.e., floor(N, 32).
*boundFloorDivisor = atIneq(minLbPosition, pos);
assert(*boundFloorDivisor == -atIneq(minUbPosition, pos));
for (unsigned c = 0, e = getNumSymbolVars() + 1; c < e; c++) {
(*lb)[c] = -atIneq(minLbPosition, getNumDimVars() + c);
}
if (ub) {
for (unsigned c = 0, e = getNumSymbolVars() + 1; c < e; c++)
(*ub)[c] = atIneq(minUbPosition, getNumDimVars() + c);
}
// The lower bound leads to a ceildiv while the upper bound is a floordiv
// whenever the coefficient at pos != 1. ceildiv (val / d) = floordiv (val +
// d - 1 / d); hence, the addition of 'atIneq(minLbPosition, pos) - 1' to
// the constant term for the lower bound.
(*lb)[getNumSymbolVars()] += atIneq(minLbPosition, pos) - 1;
}
if (minLbPos)
*minLbPos = minLbPosition;
if (minUbPos)
*minUbPos = minUbPosition;
return minDiff;
}
template <bool isLower>
std::optional<MPInt>
IntegerRelation::computeConstantLowerOrUpperBound(unsigned pos) {
assert(pos < getNumVars() && "invalid position");
// Project to 'pos'.
projectOut(0, pos);
projectOut(1, getNumVars() - 1);
// Check if there's an equality equating the '0'^th variable to a constant.
int eqRowIdx = findEqualityToConstant(*this, 0, /*symbolic=*/false);
if (eqRowIdx != -1)
// atEq(rowIdx, 0) is either -1 or 1.
return -atEq(eqRowIdx, getNumCols() - 1) / atEq(eqRowIdx, 0);
// Check if the variable appears at all in any of the inequalities.
unsigned r, e;
for (r = 0, e = getNumInequalities(); r < e; r++) {
if (atIneq(r, 0) != 0)
break;
}
if (r == e)
// If it doesn't, there isn't a bound on it.
return std::nullopt;
std::optional<MPInt> minOrMaxConst;
// Take the max across all const lower bounds (or min across all constant
// upper bounds).
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
if (isLower) {
if (atIneq(r, 0) <= 0)
// Not a lower bound.
continue;
} else if (atIneq(r, 0) >= 0) {
// Not an upper bound.
continue;
}
unsigned c, f;
for (c = 0, f = getNumCols() - 1; c < f; c++)
if (c != 0 && atIneq(r, c) != 0)
break;
if (c < getNumCols() - 1)
// Not a constant bound.
continue;
MPInt boundConst =
isLower ? ceilDiv(-atIneq(r, getNumCols() - 1), atIneq(r, 0))
: floorDiv(atIneq(r, getNumCols() - 1), -atIneq(r, 0));
if (isLower) {
if (minOrMaxConst == std::nullopt || boundConst > minOrMaxConst)
minOrMaxConst = boundConst;
} else {
if (minOrMaxConst == std::nullopt || boundConst < minOrMaxConst)
minOrMaxConst = boundConst;
}
}
return minOrMaxConst;
}
std::optional<MPInt> IntegerRelation::getConstantBound(BoundType type,
unsigned pos) const {
if (type == BoundType::LB)
return IntegerRelation(*this)
.computeConstantLowerOrUpperBound</*isLower=*/true>(pos);
if (type == BoundType::UB)
return IntegerRelation(*this)
.computeConstantLowerOrUpperBound</*isLower=*/false>(pos);
assert(type == BoundType::EQ && "expected EQ");
std::optional<MPInt> lb =
IntegerRelation(*this).computeConstantLowerOrUpperBound</*isLower=*/true>(
pos);
std::optional<MPInt> ub =
IntegerRelation(*this)
.computeConstantLowerOrUpperBound</*isLower=*/false>(pos);
return (lb && ub && *lb == *ub) ? std::optional<MPInt>(*ub) : std::nullopt;
}
// A simple (naive and conservative) check for hyper-rectangularity.
bool IntegerRelation::isHyperRectangular(unsigned pos, unsigned num) const {
assert(pos < getNumCols() - 1);
// Check for two non-zero coefficients in the range [pos, pos + sum).
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
unsigned sum = 0;
for (unsigned c = pos; c < pos + num; c++) {
if (atIneq(r, c) != 0)
sum++;
}
if (sum > 1)
return false;
}
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
unsigned sum = 0;
for (unsigned c = pos; c < pos + num; c++) {
if (atEq(r, c) != 0)
sum++;
}
if (sum > 1)
return false;
}
return true;
}
/// Removes duplicate constraints, trivially true constraints, and constraints
/// that can be detected as redundant as a result of differing only in their
/// constant term part. A constraint of the form <non-negative constant> >= 0 is
/// considered trivially true.
// Uses a DenseSet to hash and detect duplicates followed by a linear scan to
// remove duplicates in place.
void IntegerRelation::removeTrivialRedundancy() {
gcdTightenInequalities();
normalizeConstraintsByGCD();
// A map used to detect redundancy stemming from constraints that only differ
// in their constant term. The value stored is <row position, const term>
// for a given row.
SmallDenseMap<ArrayRef<MPInt>, std::pair<unsigned, MPInt>>
rowsWithoutConstTerm;
// To unique rows.
SmallDenseSet<ArrayRef<MPInt>, 8> rowSet;
// Check if constraint is of the form <non-negative-constant> >= 0.
auto isTriviallyValid = [&](unsigned r) -> bool {
for (unsigned c = 0, e = getNumCols() - 1; c < e; c++) {
if (atIneq(r, c) != 0)
return false;
}
return atIneq(r, getNumCols() - 1) >= 0;
};
// Detect and mark redundant constraints.
SmallVector<bool, 256> redunIneq(getNumInequalities(), false);
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
MPInt *rowStart = &inequalities(r, 0);
auto row = ArrayRef<MPInt>(rowStart, getNumCols());
if (isTriviallyValid(r) || !rowSet.insert(row).second) {
redunIneq[r] = true;
continue;
}
// Among constraints that only differ in the constant term part, mark
// everything other than the one with the smallest constant term redundant.
// (eg: among i - 16j - 5 >= 0, i - 16j - 1 >=0, i - 16j - 7 >= 0, the
// former two are redundant).
MPInt constTerm = atIneq(r, getNumCols() - 1);
auto rowWithoutConstTerm = ArrayRef<MPInt>(rowStart, getNumCols() - 1);
const auto &ret =
rowsWithoutConstTerm.insert({rowWithoutConstTerm, {r, constTerm}});
if (!ret.second) {
// Check if the other constraint has a higher constant term.
auto &val = ret.first->second;
if (val.second > constTerm) {
// The stored row is redundant. Mark it so, and update with this one.
redunIneq[val.first] = true;
val = {r, constTerm};
} else {
// The one stored makes this one redundant.
redunIneq[r] = true;
}
}
}
// Scan to get rid of all rows marked redundant, in-place.
unsigned pos = 0;
for (unsigned r = 0, e = getNumInequalities(); r < e; r++)
if (!redunIneq[r])
inequalities.copyRow(r, pos++);
inequalities.resizeVertically(pos);
// TODO: consider doing this for equalities as well, but probably not worth
// the savings.
}
#undef DEBUG_TYPE
#define DEBUG_TYPE "fm"
/// Eliminates variable at the specified position using Fourier-Motzkin
/// variable elimination. This technique is exact for rational spaces but
/// conservative (in "rare" cases) for integer spaces. The operation corresponds
/// to a projection operation yielding the (convex) set of integer points
/// contained in the rational shadow of the set. An emptiness test that relies
/// on this method will guarantee emptiness, i.e., it disproves the existence of
/// a solution if it says it's empty.
/// If a non-null isResultIntegerExact is passed, it is set to true if the
/// result is also integer exact. If it's set to false, the obtained solution
/// *may* not be exact, i.e., it may contain integer points that do not have an
/// integer pre-image in the original set.
///
/// Eg:
/// j >= 0, j <= i + 1
/// i >= 0, i <= N + 1
/// Eliminating i yields,
/// j >= 0, 0 <= N + 1, j - 1 <= N + 1
///
/// If darkShadow = true, this method computes the dark shadow on elimination;
/// the dark shadow is a convex integer subset of the exact integer shadow. A
/// non-empty dark shadow proves the existence of an integer solution. The
/// elimination in such a case could however be an under-approximation, and thus
/// should not be used for scanning sets or used by itself for dependence
/// checking.
///
/// Eg: 2-d set, * represents grid points, 'o' represents a point in the set.
/// ^
/// |
/// | * * * * o o
/// i | * * o o o o
/// | o * * * * *
/// --------------->
/// j ->
///
/// Eliminating i from this system (projecting on the j dimension):
/// rational shadow / integer light shadow: 1 <= j <= 6
/// dark shadow: 3 <= j <= 6
/// exact integer shadow: j = 1 \union 3 <= j <= 6
/// holes/splinters: j = 2
///
/// darkShadow = false, isResultIntegerExact = nullptr are default values.
// TODO: a slight modification to yield dark shadow version of FM (tightened),
// which can prove the existence of a solution if there is one.
void IntegerRelation::fourierMotzkinEliminate(unsigned pos, bool darkShadow,
bool *isResultIntegerExact) {
LLVM_DEBUG(llvm::dbgs() << "FM input (eliminate pos " << pos << "):\n");
LLVM_DEBUG(dump());
assert(pos < getNumVars() && "invalid position");
assert(hasConsistentState());
// Check if this variable can be eliminated through a substitution.
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
if (atEq(r, pos) != 0) {
// Use Gaussian elimination here (since we have an equality).
LogicalResult ret = gaussianEliminateVar(pos);
(void)ret;
assert(succeeded(ret) && "Gaussian elimination guaranteed to succeed");
LLVM_DEBUG(llvm::dbgs() << "FM output (through Gaussian elimination):\n");
LLVM_DEBUG(dump());
return;
}
}
// A fast linear time tightening.
gcdTightenInequalities();
// Check if the variable appears at all in any of the inequalities.
if (isColZero(pos)) {
// If it doesn't appear, just remove the column and return.
// TODO: refactor removeColumns to use it from here.
removeVar(pos);
LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
LLVM_DEBUG(dump());
return;
}
// Positions of constraints that are lower bounds on the variable.
SmallVector<unsigned, 4> lbIndices;
// Positions of constraints that are lower bounds on the variable.
SmallVector<unsigned, 4> ubIndices;
// Positions of constraints that do not involve the variable.
std::vector<unsigned> nbIndices;
nbIndices.reserve(getNumInequalities());
// Gather all lower bounds and upper bounds of the variable. Since the
// canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
// bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
if (atIneq(r, pos) == 0) {
// Var does not appear in bound.
nbIndices.push_back(r);
} else if (atIneq(r, pos) >= 1) {
// Lower bound.
lbIndices.push_back(r);
} else {
// Upper bound.
ubIndices.push_back(r);
}
}
PresburgerSpace newSpace = getSpace();
VarKind idKindRemove = newSpace.getVarKindAt(pos);
unsigned relativePos = pos - newSpace.getVarKindOffset(idKindRemove);
newSpace.removeVarRange(idKindRemove, relativePos, relativePos + 1);
/// Create the new system which has one variable less.
IntegerRelation newRel(lbIndices.size() * ubIndices.size() + nbIndices.size(),
getNumEqualities(), getNumCols() - 1, newSpace);
// This will be used to check if the elimination was integer exact.
bool allLCMsAreOne = true;
// Let x be the variable we are eliminating.
// For each lower bound, lb <= c_l*x, and each upper bound c_u*x <= ub, (note
// that c_l, c_u >= 1) we have:
// lb*lcm(c_l, c_u)/c_l <= lcm(c_l, c_u)*x <= ub*lcm(c_l, c_u)/c_u
// We thus generate a constraint:
// lcm(c_l, c_u)/c_l*lb <= lcm(c_l, c_u)/c_u*ub.
// Note if c_l = c_u = 1, all integer points captured by the resulting
// constraint correspond to integer points in the original system (i.e., they
// have integer pre-images). Hence, if the lcm's are all 1, the elimination is
// integer exact.
for (auto ubPos : ubIndices) {
for (auto lbPos : lbIndices) {
SmallVector<MPInt, 4> ineq;
ineq.reserve(newRel.getNumCols());
MPInt lbCoeff = atIneq(lbPos, pos);
// Note that in the comments above, ubCoeff is the negation of the
// coefficient in the canonical form as the view taken here is that of the
// term being moved to the other size of '>='.
MPInt ubCoeff = -atIneq(ubPos, pos);
// TODO: refactor this loop to avoid all branches inside.
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
if (l == pos)
continue;
assert(lbCoeff >= 1 && ubCoeff >= 1 && "bounds wrongly identified");
MPInt lcm = presburger::lcm(lbCoeff, ubCoeff);
ineq.push_back(atIneq(ubPos, l) * (lcm / ubCoeff) +
atIneq(lbPos, l) * (lcm / lbCoeff));
assert(lcm > 0 && "lcm should be positive!");
if (lcm != 1)
allLCMsAreOne = false;
}
if (darkShadow) {
// The dark shadow is a convex subset of the exact integer shadow. If
// there is a point here, it proves the existence of a solution.
ineq[ineq.size() - 1] += lbCoeff * ubCoeff - lbCoeff - ubCoeff + 1;
}
// TODO: we need to have a way to add inequalities in-place in
// IntegerRelation instead of creating and copying over.
newRel.addInequality(ineq);
}
}
LLVM_DEBUG(llvm::dbgs() << "FM isResultIntegerExact: " << allLCMsAreOne
<< "\n");
if (allLCMsAreOne && isResultIntegerExact)
*isResultIntegerExact = true;
// Copy over the constraints not involving this variable.
for (auto nbPos : nbIndices) {
SmallVector<MPInt, 4> ineq;
ineq.reserve(getNumCols() - 1);
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
if (l == pos)
continue;
ineq.push_back(atIneq(nbPos, l));
}
newRel.addInequality(ineq);
}
assert(newRel.getNumConstraints() ==
lbIndices.size() * ubIndices.size() + nbIndices.size());
// Copy over the equalities.
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
SmallVector<MPInt, 4> eq;
eq.reserve(newRel.getNumCols());
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
if (l == pos)
continue;
eq.push_back(atEq(r, l));
}
newRel.addEquality(eq);
}
// GCD tightening and normalization allows detection of more trivially
// redundant constraints.
newRel.gcdTightenInequalities();
newRel.normalizeConstraintsByGCD();
newRel.removeTrivialRedundancy();
clearAndCopyFrom(newRel);
LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
LLVM_DEBUG(dump());
}
#undef DEBUG_TYPE
#define DEBUG_TYPE "presburger"
void IntegerRelation::projectOut(unsigned pos, unsigned num) {
if (num == 0)
return;
// 'pos' can be at most getNumCols() - 2 if num > 0.
assert((getNumCols() < 2 || pos <= getNumCols() - 2) && "invalid position");
assert(pos + num < getNumCols() && "invalid range");
// Eliminate as many variables as possible using Gaussian elimination.
unsigned currentPos = pos;
unsigned numToEliminate = num;
unsigned numGaussianEliminated = 0;
while (currentPos < getNumVars()) {
unsigned curNumEliminated =
gaussianEliminateVars(currentPos, currentPos + numToEliminate);
++currentPos;
numToEliminate -= curNumEliminated + 1;
numGaussianEliminated += curNumEliminated;
}
// Eliminate the remaining using Fourier-Motzkin.
for (unsigned i = 0; i < num - numGaussianEliminated; i++) {
unsigned numToEliminate = num - numGaussianEliminated - i;
fourierMotzkinEliminate(
getBestVarToEliminate(*this, pos, pos + numToEliminate));
}
// Fast/trivial simplifications.
gcdTightenInequalities();
// Normalize constraints after tightening since the latter impacts this, but
// not the other way round.
normalizeConstraintsByGCD();
}
namespace {
enum BoundCmpResult { Greater, Less, Equal, Unknown };
/// Compares two affine bounds whose coefficients are provided in 'first' and
/// 'second'. The last coefficient is the constant term.
static BoundCmpResult compareBounds(ArrayRef<MPInt> a, ArrayRef<MPInt> b) {
assert(a.size() == b.size());
// For the bounds to be comparable, their corresponding variable
// coefficients should be equal; the constant terms are then compared to
// determine less/greater/equal.
if (!std::equal(a.begin(), a.end() - 1, b.begin()))
return Unknown;
if (a.back() == b.back())
return Equal;
return a.back() < b.back() ? Less : Greater;
}
} // namespace
// Returns constraints that are common to both A & B.
static void getCommonConstraints(const IntegerRelation &a,
const IntegerRelation &b, IntegerRelation &c) {
c = IntegerRelation(a.getSpace());
// a naive O(n^2) check should be enough here given the input sizes.
for (unsigned r = 0, e = a.getNumInequalities(); r < e; ++r) {
for (unsigned s = 0, f = b.getNumInequalities(); s < f; ++s) {
if (a.getInequality(r) == b.getInequality(s)) {
c.addInequality(a.getInequality(r));
break;
}
}
}
for (unsigned r = 0, e = a.getNumEqualities(); r < e; ++r) {
for (unsigned s = 0, f = b.getNumEqualities(); s < f; ++s) {
if (a.getEquality(r) == b.getEquality(s)) {
c.addEquality(a.getEquality(r));
break;
}
}
}
}
// Computes the bounding box with respect to 'other' by finding the min of the
// lower bounds and the max of the upper bounds along each of the dimensions.
LogicalResult
IntegerRelation::unionBoundingBox(const IntegerRelation &otherCst) {
assert(space.isEqual(otherCst.getSpace()) && "Spaces should match.");
assert(getNumLocalVars() == 0 && "local ids not supported yet here");
// Get the constraints common to both systems; these will be added as is to
// the union.
IntegerRelation commonCst(PresburgerSpace::getRelationSpace());
getCommonConstraints(*this, otherCst, commonCst);
std::vector<SmallVector<MPInt, 8>> boundingLbs;
std::vector<SmallVector<MPInt, 8>> boundingUbs;
boundingLbs.reserve(2 * getNumDimVars());
boundingUbs.reserve(2 * getNumDimVars());
// To hold lower and upper bounds for each dimension.
SmallVector<MPInt, 4> lb, otherLb, ub, otherUb;
// To compute min of lower bounds and max of upper bounds for each dimension.
SmallVector<MPInt, 4> minLb(getNumSymbolVars() + 1);
SmallVector<MPInt, 4> maxUb(getNumSymbolVars() + 1);
// To compute final new lower and upper bounds for the union.
SmallVector<MPInt, 8> newLb(getNumCols()), newUb(getNumCols());
MPInt lbFloorDivisor, otherLbFloorDivisor;
for (unsigned d = 0, e = getNumDimVars(); d < e; ++d) {
auto extent = getConstantBoundOnDimSize(d, &lb, &lbFloorDivisor, &ub);
if (!extent.has_value())
// TODO: symbolic extents when necessary.
// TODO: handle union if a dimension is unbounded.
return failure();
auto otherExtent = otherCst.getConstantBoundOnDimSize(
d, &otherLb, &otherLbFloorDivisor, &otherUb);
if (!otherExtent.has_value() || lbFloorDivisor != otherLbFloorDivisor)
// TODO: symbolic extents when necessary.
return failure();
assert(lbFloorDivisor > 0 && "divisor always expected to be positive");
auto res = compareBounds(lb, otherLb);
// Identify min.
if (res == BoundCmpResult::Less || res == BoundCmpResult::Equal) {
minLb = lb;
// Since the divisor is for a floordiv, we need to convert to ceildiv,
// i.e., i >= expr floordiv div <=> i >= (expr - div + 1) ceildiv div <=>
// div * i >= expr - div + 1.
minLb.back() -= lbFloorDivisor - 1;
} else if (res == BoundCmpResult::Greater) {
minLb = otherLb;
minLb.back() -= otherLbFloorDivisor - 1;
} else {
// Uncomparable - check for constant lower/upper bounds.
auto constLb = getConstantBound(BoundType::LB, d);
auto constOtherLb = otherCst.getConstantBound(BoundType::LB, d);
if (!constLb.has_value() || !constOtherLb.has_value())
return failure();
std::fill(minLb.begin(), minLb.end(), 0);
minLb.back() = std::min(*constLb, *constOtherLb);
}
// Do the same for ub's but max of upper bounds. Identify max.
auto uRes = compareBounds(ub, otherUb);
if (uRes == BoundCmpResult::Greater || uRes == BoundCmpResult::Equal) {
maxUb = ub;
} else if (uRes == BoundCmpResult::Less) {
maxUb = otherUb;
} else {
// Uncomparable - check for constant lower/upper bounds.
auto constUb = getConstantBound(BoundType::UB, d);
auto constOtherUb = otherCst.getConstantBound(BoundType::UB, d);
if (!constUb.has_value() || !constOtherUb.has_value())
return failure();
std::fill(maxUb.begin(), maxUb.end(), 0);
maxUb.back() = std::max(*constUb, *constOtherUb);
}
std::fill(newLb.begin(), newLb.end(), 0);
std::fill(newUb.begin(), newUb.end(), 0);
// The divisor for lb, ub, otherLb, otherUb at this point is lbDivisor,
// and so it's the divisor for newLb and newUb as well.
newLb[d] = lbFloorDivisor;
newUb[d] = -lbFloorDivisor;
// Copy over the symbolic part + constant term.
std::copy(minLb.begin(), minLb.end(), newLb.begin() + getNumDimVars());
std::transform(newLb.begin() + getNumDimVars(), newLb.end(),
newLb.begin() + getNumDimVars(), std::negate<MPInt>());
std::copy(maxUb.begin(), maxUb.end(), newUb.begin() + getNumDimVars());
boundingLbs.push_back(newLb);
boundingUbs.push_back(newUb);
}
// Clear all constraints and add the lower/upper bounds for the bounding box.
clearConstraints();
for (unsigned d = 0, e = getNumDimVars(); d < e; ++d) {
addInequality(boundingLbs[d]);
addInequality(boundingUbs[d]);
}
// Add the constraints that were common to both systems.
append(commonCst);
removeTrivialRedundancy();
// TODO: copy over pure symbolic constraints from this and 'other' over to the
// union (since the above are just the union along dimensions); we shouldn't
// be discarding any other constraints on the symbols.
return success();
}
bool IntegerRelation::isColZero(unsigned pos) const {
unsigned rowPos;
return !findConstraintWithNonZeroAt(pos, /*isEq=*/false, &rowPos) &&
!findConstraintWithNonZeroAt(pos, /*isEq=*/true, &rowPos);
}
/// Find positions of inequalities and equalities that do not have a coefficient
/// for [pos, pos + num) variables.
static void getIndependentConstraints(const IntegerRelation &cst, unsigned pos,
unsigned num,
SmallVectorImpl<unsigned> &nbIneqIndices,
SmallVectorImpl<unsigned> &nbEqIndices) {
assert(pos < cst.getNumVars() && "invalid start position");
assert(pos + num <= cst.getNumVars() && "invalid limit");
for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
// The bounds are to be independent of [offset, offset + num) columns.
unsigned c;
for (c = pos; c < pos + num; ++c) {
if (cst.atIneq(r, c) != 0)
break;
}
if (c == pos + num)
nbIneqIndices.push_back(r);
}
for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
// The bounds are to be independent of [offset, offset + num) columns.
unsigned c;
for (c = pos; c < pos + num; ++c) {
if (cst.atEq(r, c) != 0)
break;
}
if (c == pos + num)
nbEqIndices.push_back(r);
}
}
void IntegerRelation::removeIndependentConstraints(unsigned pos, unsigned num) {
assert(pos + num <= getNumVars() && "invalid range");
// Remove constraints that are independent of these variables.
SmallVector<unsigned, 4> nbIneqIndices, nbEqIndices;
getIndependentConstraints(*this, /*pos=*/0, num, nbIneqIndices, nbEqIndices);
// Iterate in reverse so that indices don't have to be updated.
// TODO: This method can be made more efficient (because removal of each
// inequality leads to much shifting/copying in the underlying buffer).
for (auto nbIndex : llvm::reverse(nbIneqIndices))
removeInequality(nbIndex);
for (auto nbIndex : llvm::reverse(nbEqIndices))
removeEquality(nbIndex);
}
IntegerPolyhedron IntegerRelation::getDomainSet() const {
IntegerRelation copyRel = *this;
// Convert Range variables to Local variables.
copyRel.convertVarKind(VarKind::Range, 0, getNumVarKind(VarKind::Range),
VarKind::Local);
// Convert Domain variables to SetDim(Range) variables.
copyRel.convertVarKind(VarKind::Domain, 0, getNumVarKind(VarKind::Domain),
VarKind::SetDim);
return IntegerPolyhedron(std::move(copyRel));
}
IntegerPolyhedron IntegerRelation::getRangeSet() const {
IntegerRelation copyRel = *this;
// Convert Domain variables to Local variables.
copyRel.convertVarKind(VarKind::Domain, 0, getNumVarKind(VarKind::Domain),
VarKind::Local);
// We do not need to do anything to Range variables since they are already in
// SetDim position.
return IntegerPolyhedron(std::move(copyRel));
}
void IntegerRelation::intersectDomain(const IntegerPolyhedron &poly) {
assert(getDomainSet().getSpace().isCompatible(poly.getSpace()) &&
"Domain set is not compatible with poly");
// Treating the poly as a relation, convert it from `0 -> R` to `R -> 0`.
IntegerRelation rel = poly;
rel.inverse();
// Append dummy range variables to make the spaces compatible.
rel.appendVar(VarKind::Range, getNumRangeVars());
// Intersect in place.
mergeLocalVars(rel);
append(rel);
}
void IntegerRelation::intersectRange(const IntegerPolyhedron &poly) {
assert(getRangeSet().getSpace().isCompatible(poly.getSpace()) &&
"Range set is not compatible with poly");
IntegerRelation rel = poly;
// Append dummy domain variables to make the spaces compatible.
rel.appendVar(VarKind::Domain, getNumDomainVars());
mergeLocalVars(rel);
append(rel);
}
void IntegerRelation::inverse() {
unsigned numRangeVars = getNumVarKind(VarKind::Range);
convertVarKind(VarKind::Domain, 0, getVarKindEnd(VarKind::Domain),
VarKind::Range);
convertVarKind(VarKind::Range, 0, numRangeVars, VarKind::Domain);
}
void IntegerRelation::compose(const IntegerRelation &rel) {
assert(getRangeSet().getSpace().isCompatible(rel.getDomainSet().getSpace()) &&
"Range of `this` should be compatible with Domain of `rel`");
IntegerRelation copyRel = rel;
// Let relation `this` be R1: A -> B, and `rel` be R2: B -> C.
// We convert R1 to A -> (B X C), and R2 to B X C then intersect the range of
// R1 with R2. After this, we get R1: A -> C, by projecting out B.
// TODO: Using nested spaces here would help, since we could directly
// intersect the range with another relation.
unsigned numBVars = getNumRangeVars();
// Convert R1 from A -> B to A -> (B X C).
appendVar(VarKind::Range, copyRel.getNumRangeVars());
// Convert R2 to B X C.
copyRel.convertVarKind(VarKind::Domain, 0, numBVars, VarKind::Range, 0);
// Intersect R2 to range of R1.
intersectRange(IntegerPolyhedron(copyRel));
// Project out B in R1.
convertVarKind(VarKind::Range, 0, numBVars, VarKind::Local);
}
void IntegerRelation::applyDomain(const IntegerRelation &rel) {
inverse();
compose(rel);
inverse();
}
void IntegerRelation::applyRange(const IntegerRelation &rel) { compose(rel); }
void IntegerRelation::printSpace(raw_ostream &os) const {
space.print(os);
os << getNumConstraints() << " constraints\n";
}
void IntegerRelation::print(raw_ostream &os) const {
assert(hasConsistentState());
printSpace(os);
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
os << " ";
for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
os << atEq(i, j) << "\t";
}
os << "= 0\n";
}
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
os << " ";
for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
os << atIneq(i, j) << "\t";
}
os << ">= 0\n";
}
os << '\n';
}
void IntegerRelation::dump() const { print(llvm::errs()); }
unsigned IntegerPolyhedron::insertVar(VarKind kind, unsigned pos,
unsigned num) {
assert((kind != VarKind::Domain || num == 0) &&
"Domain has to be zero in a set");
return IntegerRelation::insertVar(kind, pos, num);
}
IntegerPolyhedron
IntegerPolyhedron::intersect(const IntegerPolyhedron &other) const {
return IntegerPolyhedron(IntegerRelation::intersect(other));
}
PresburgerSet IntegerPolyhedron::subtract(const PresburgerSet &other) const {
return PresburgerSet(IntegerRelation::subtract(other));
}
|