File: Matrix.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (377 lines) | stat: -rw-r--r-- 12,984 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
//===- Matrix.cpp - MLIR Matrix Class -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Analysis/Presburger/Matrix.h"
#include "mlir/Analysis/Presburger/Utils.h"
#include "llvm/Support/MathExtras.h"

using namespace mlir;
using namespace presburger;

Matrix::Matrix(unsigned rows, unsigned columns, unsigned reservedRows,
               unsigned reservedColumns)
    : nRows(rows), nColumns(columns),
      nReservedColumns(std::max(nColumns, reservedColumns)),
      data(nRows * nReservedColumns) {
  data.reserve(std::max(nRows, reservedRows) * nReservedColumns);
}

Matrix Matrix::identity(unsigned dimension) {
  Matrix matrix(dimension, dimension);
  for (unsigned i = 0; i < dimension; ++i)
    matrix(i, i) = 1;
  return matrix;
}

unsigned Matrix::getNumReservedRows() const {
  return data.capacity() / nReservedColumns;
}

void Matrix::reserveRows(unsigned rows) {
  data.reserve(rows * nReservedColumns);
}

unsigned Matrix::appendExtraRow() {
  resizeVertically(nRows + 1);
  return nRows - 1;
}

unsigned Matrix::appendExtraRow(ArrayRef<MPInt> elems) {
  assert(elems.size() == nColumns && "elems must match row length!");
  unsigned row = appendExtraRow();
  for (unsigned col = 0; col < nColumns; ++col)
    at(row, col) = elems[col];
  return row;
}

void Matrix::resizeHorizontally(unsigned newNColumns) {
  if (newNColumns < nColumns)
    removeColumns(newNColumns, nColumns - newNColumns);
  if (newNColumns > nColumns)
    insertColumns(nColumns, newNColumns - nColumns);
}

void Matrix::resize(unsigned newNRows, unsigned newNColumns) {
  resizeHorizontally(newNColumns);
  resizeVertically(newNRows);
}

void Matrix::resizeVertically(unsigned newNRows) {
  nRows = newNRows;
  data.resize(nRows * nReservedColumns);
}

void Matrix::swapRows(unsigned row, unsigned otherRow) {
  assert((row < getNumRows() && otherRow < getNumRows()) &&
         "Given row out of bounds");
  if (row == otherRow)
    return;
  for (unsigned col = 0; col < nColumns; col++)
    std::swap(at(row, col), at(otherRow, col));
}

void Matrix::swapColumns(unsigned column, unsigned otherColumn) {
  assert((column < getNumColumns() && otherColumn < getNumColumns()) &&
         "Given column out of bounds");
  if (column == otherColumn)
    return;
  for (unsigned row = 0; row < nRows; row++)
    std::swap(at(row, column), at(row, otherColumn));
}

MutableArrayRef<MPInt> Matrix::getRow(unsigned row) {
  return {&data[row * nReservedColumns], nColumns};
}

ArrayRef<MPInt> Matrix::getRow(unsigned row) const {
  return {&data[row * nReservedColumns], nColumns};
}

void Matrix::setRow(unsigned row, ArrayRef<MPInt> elems) {
  assert(elems.size() == getNumColumns() &&
         "elems size must match row length!");
  for (unsigned i = 0, e = getNumColumns(); i < e; ++i)
    at(row, i) = elems[i];
}

void Matrix::insertColumn(unsigned pos) { insertColumns(pos, 1); }
void Matrix::insertColumns(unsigned pos, unsigned count) {
  if (count == 0)
    return;
  assert(pos <= nColumns);
  unsigned oldNReservedColumns = nReservedColumns;
  if (nColumns + count > nReservedColumns) {
    nReservedColumns = llvm::NextPowerOf2(nColumns + count);
    data.resize(nRows * nReservedColumns);
  }
  nColumns += count;

  for (int ri = nRows - 1; ri >= 0; --ri) {
    for (int ci = nReservedColumns - 1; ci >= 0; --ci) {
      unsigned r = ri;
      unsigned c = ci;
      MPInt &dest = data[r * nReservedColumns + c];
      if (c >= nColumns) { // NOLINT
        // Out of bounds columns are zero-initialized. NOLINT because clang-tidy
        // complains about this branch being the same as the c >= pos one.
        //
        // TODO: this case can be skipped if the number of reserved columns
        // didn't change.
        dest = 0;
      } else if (c >= pos + count) {
        // Shift the data occuring after the inserted columns.
        dest = data[r * oldNReservedColumns + c - count];
      } else if (c >= pos) {
        // The inserted columns are also zero-initialized.
        dest = 0;
      } else {
        // The columns before the inserted columns stay at the same (row, col)
        // but this corresponds to a different location in the linearized array
        // if the number of reserved columns changed.
        if (nReservedColumns == oldNReservedColumns)
          break;
        dest = data[r * oldNReservedColumns + c];
      }
    }
  }
}

void Matrix::removeColumn(unsigned pos) { removeColumns(pos, 1); }
void Matrix::removeColumns(unsigned pos, unsigned count) {
  if (count == 0)
    return;
  assert(pos + count - 1 < nColumns);
  for (unsigned r = 0; r < nRows; ++r) {
    for (unsigned c = pos; c < nColumns - count; ++c)
      at(r, c) = at(r, c + count);
    for (unsigned c = nColumns - count; c < nColumns; ++c)
      at(r, c) = 0;
  }
  nColumns -= count;
}

void Matrix::insertRow(unsigned pos) { insertRows(pos, 1); }
void Matrix::insertRows(unsigned pos, unsigned count) {
  if (count == 0)
    return;

  assert(pos <= nRows);
  resizeVertically(nRows + count);
  for (int r = nRows - 1; r >= int(pos + count); --r)
    copyRow(r - count, r);
  for (int r = pos + count - 1; r >= int(pos); --r)
    for (unsigned c = 0; c < nColumns; ++c)
      at(r, c) = 0;
}

void Matrix::removeRow(unsigned pos) { removeRows(pos, 1); }
void Matrix::removeRows(unsigned pos, unsigned count) {
  if (count == 0)
    return;
  assert(pos + count - 1 <= nRows);
  for (unsigned r = pos; r + count < nRows; ++r)
    copyRow(r + count, r);
  resizeVertically(nRows - count);
}

void Matrix::copyRow(unsigned sourceRow, unsigned targetRow) {
  if (sourceRow == targetRow)
    return;
  for (unsigned c = 0; c < nColumns; ++c)
    at(targetRow, c) = at(sourceRow, c);
}

void Matrix::fillRow(unsigned row, const MPInt &value) {
  for (unsigned col = 0; col < nColumns; ++col)
    at(row, col) = value;
}

void Matrix::addToRow(unsigned sourceRow, unsigned targetRow,
                      const MPInt &scale) {
  addToRow(targetRow, getRow(sourceRow), scale);
}

void Matrix::addToRow(unsigned row, ArrayRef<MPInt> rowVec,
                      const MPInt &scale) {
  if (scale == 0)
    return;
  for (unsigned col = 0; col < nColumns; ++col)
    at(row, col) += scale * rowVec[col];
}

void Matrix::addToColumn(unsigned sourceColumn, unsigned targetColumn,
                         const MPInt &scale) {
  if (scale == 0)
    return;
  for (unsigned row = 0, e = getNumRows(); row < e; ++row)
    at(row, targetColumn) += scale * at(row, sourceColumn);
}

void Matrix::negateColumn(unsigned column) {
  for (unsigned row = 0, e = getNumRows(); row < e; ++row)
    at(row, column) = -at(row, column);
}

void Matrix::negateRow(unsigned row) {
  for (unsigned column = 0, e = getNumColumns(); column < e; ++column)
    at(row, column) = -at(row, column);
}

MPInt Matrix::normalizeRow(unsigned row, unsigned cols) {
  return normalizeRange(getRow(row).slice(0, cols));
}

MPInt Matrix::normalizeRow(unsigned row) {
  return normalizeRow(row, getNumColumns());
}

SmallVector<MPInt, 8> Matrix::preMultiplyWithRow(ArrayRef<MPInt> rowVec) const {
  assert(rowVec.size() == getNumRows() && "Invalid row vector dimension!");

  SmallVector<MPInt, 8> result(getNumColumns(), MPInt(0));
  for (unsigned col = 0, e = getNumColumns(); col < e; ++col)
    for (unsigned i = 0, e = getNumRows(); i < e; ++i)
      result[col] += rowVec[i] * at(i, col);
  return result;
}

SmallVector<MPInt, 8>
Matrix::postMultiplyWithColumn(ArrayRef<MPInt> colVec) const {
  assert(getNumColumns() == colVec.size() &&
         "Invalid column vector dimension!");

  SmallVector<MPInt, 8> result(getNumRows(), MPInt(0));
  for (unsigned row = 0, e = getNumRows(); row < e; row++)
    for (unsigned i = 0, e = getNumColumns(); i < e; i++)
      result[row] += at(row, i) * colVec[i];
  return result;
}

/// Set M(row, targetCol) to its remainder on division by M(row, sourceCol)
/// by subtracting from column targetCol an appropriate integer multiple of
/// sourceCol. This brings M(row, targetCol) to the range [0, M(row,
/// sourceCol)). Apply the same column operation to otherMatrix, with the same
/// integer multiple.
static void modEntryColumnOperation(Matrix &m, unsigned row, unsigned sourceCol,
                                    unsigned targetCol, Matrix &otherMatrix) {
  assert(m(row, sourceCol) != 0 && "Cannot divide by zero!");
  assert(m(row, sourceCol) > 0 && "Source must be positive!");
  MPInt ratio = -floorDiv(m(row, targetCol), m(row, sourceCol));
  m.addToColumn(sourceCol, targetCol, ratio);
  otherMatrix.addToColumn(sourceCol, targetCol, ratio);
}

std::pair<Matrix, Matrix> Matrix::computeHermiteNormalForm() const {
  // We start with u as an identity matrix and perform operations on h until h
  // is in hermite normal form. We apply the same sequence of operations on u to
  // obtain a transform that takes h to hermite normal form.
  Matrix h = *this;
  Matrix u = Matrix::identity(h.getNumColumns());

  unsigned echelonCol = 0;
  // Invariant: in all rows above row, all columns from echelonCol onwards
  // are all zero elements. In an iteration, if the curent row has any non-zero
  // elements echelonCol onwards, we bring one to echelonCol and use it to
  // make all elements echelonCol + 1 onwards zero.
  for (unsigned row = 0; row < h.getNumRows(); ++row) {
    // Search row for a non-empty entry, starting at echelonCol.
    unsigned nonZeroCol = echelonCol;
    for (unsigned e = h.getNumColumns(); nonZeroCol < e; ++nonZeroCol) {
      if (h(row, nonZeroCol) == 0)
        continue;
      break;
    }

    // Continue to the next row with the same echelonCol if this row is all
    // zeros from echelonCol onwards.
    if (nonZeroCol == h.getNumColumns())
      continue;

    // Bring the non-zero column to echelonCol. This doesn't affect rows
    // above since they are all zero at these columns.
    if (nonZeroCol != echelonCol) {
      h.swapColumns(nonZeroCol, echelonCol);
      u.swapColumns(nonZeroCol, echelonCol);
    }

    // Make h(row, echelonCol) non-negative.
    if (h(row, echelonCol) < 0) {
      h.negateColumn(echelonCol);
      u.negateColumn(echelonCol);
    }

    // Make all the entries in row after echelonCol zero.
    for (unsigned i = echelonCol + 1, e = h.getNumColumns(); i < e; ++i) {
      // We make h(row, i) non-negative, and then apply the Euclidean GCD
      // algorithm to (row, i) and (row, echelonCol). At the end, one of them
      // has value equal to the gcd of the two entries, and the other is zero.

      if (h(row, i) < 0) {
        h.negateColumn(i);
        u.negateColumn(i);
      }

      unsigned targetCol = i, sourceCol = echelonCol;
      // At every step, we set h(row, targetCol) %= h(row, sourceCol), and
      // swap the indices sourceCol and targetCol. (not the columns themselves)
      // This modulo is implemented as a subtraction
      // h(row, targetCol) -= quotient * h(row, sourceCol),
      // where quotient = floor(h(row, targetCol) / h(row, sourceCol)),
      // which brings h(row, targetCol) to the range [0, h(row, sourceCol)).
      //
      // We are only allowed column operations; we perform the above
      // for every row, i.e., the above subtraction is done as a column
      // operation. This does not affect any rows above us since they are
      // guaranteed to be zero at these columns.
      while (h(row, targetCol) != 0 && h(row, sourceCol) != 0) {
        modEntryColumnOperation(h, row, sourceCol, targetCol, u);
        std::swap(targetCol, sourceCol);
      }

      // One of (row, echelonCol) and (row, i) is zero and the other is the gcd.
      // Make it so that (row, echelonCol) holds the non-zero value.
      if (h(row, echelonCol) == 0) {
        h.swapColumns(i, echelonCol);
        u.swapColumns(i, echelonCol);
      }
    }

    // Make all entries before echelonCol non-negative and strictly smaller
    // than the pivot entry.
    for (unsigned i = 0; i < echelonCol; ++i)
      modEntryColumnOperation(h, row, echelonCol, i, u);

    ++echelonCol;
  }

  return {h, u};
}

void Matrix::print(raw_ostream &os) const {
  for (unsigned row = 0; row < nRows; ++row) {
    for (unsigned column = 0; column < nColumns; ++column)
      os << at(row, column) << ' ';
    os << '\n';
  }
}

void Matrix::dump() const { print(llvm::errs()); }

bool Matrix::hasConsistentState() const {
  if (data.size() != nRows * nReservedColumns)
    return false;
  if (nColumns > nReservedColumns)
    return false;
#ifdef EXPENSIVE_CHECKS
  for (unsigned r = 0; r < nRows; ++r)
    for (unsigned c = nColumns; c < nReservedColumns; ++c)
      if (data[r * nReservedColumns + c] != 0)
        return false;
#endif
  return true;
}