1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
|
//===- PWMAFunction.cpp - MLIR PWMAFunction Class -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/PWMAFunction.h"
#include "mlir/Analysis/Presburger/Simplex.h"
#include <optional>
using namespace mlir;
using namespace presburger;
void MultiAffineFunction::assertIsConsistent() const {
assert(space.getNumVars() - space.getNumRangeVars() + 1 ==
output.getNumColumns() &&
"Inconsistent number of output columns");
assert(space.getNumDomainVars() + space.getNumSymbolVars() ==
divs.getNumNonDivs() &&
"Inconsistent number of non-division variables in divs");
assert(space.getNumRangeVars() == output.getNumRows() &&
"Inconsistent number of output rows");
assert(space.getNumLocalVars() == divs.getNumDivs() &&
"Inconsistent number of divisions.");
assert(divs.hasAllReprs() && "All divisions should have a representation");
}
// Return the result of subtracting the two given vectors pointwise.
// The vectors must be of the same size.
// e.g., [3, 4, 6] - [2, 5, 1] = [1, -1, 5].
static SmallVector<MPInt, 8> subtractExprs(ArrayRef<MPInt> vecA,
ArrayRef<MPInt> vecB) {
assert(vecA.size() == vecB.size() &&
"Cannot subtract vectors of differing lengths!");
SmallVector<MPInt, 8> result;
result.reserve(vecA.size());
for (unsigned i = 0, e = vecA.size(); i < e; ++i)
result.push_back(vecA[i] - vecB[i]);
return result;
}
PresburgerSet PWMAFunction::getDomain() const {
PresburgerSet domain = PresburgerSet::getEmpty(getDomainSpace());
for (const Piece &piece : pieces)
domain.unionInPlace(piece.domain);
return domain;
}
void MultiAffineFunction::print(raw_ostream &os) const {
space.print(os);
os << "Division Representation:\n";
divs.print(os);
os << "Output:\n";
output.print(os);
}
SmallVector<MPInt, 8>
MultiAffineFunction::valueAt(ArrayRef<MPInt> point) const {
assert(point.size() == getNumDomainVars() + getNumSymbolVars() &&
"Point has incorrect dimensionality!");
SmallVector<MPInt, 8> pointHomogenous{llvm::to_vector(point)};
// Get the division values at this point.
SmallVector<std::optional<MPInt>, 8> divValues = divs.divValuesAt(point);
// The given point didn't include the values of the divs which the output is a
// function of; we have computed one possible set of values and use them here.
pointHomogenous.reserve(pointHomogenous.size() + divValues.size());
for (const std::optional<MPInt> &divVal : divValues)
pointHomogenous.push_back(*divVal);
// The matrix `output` has an affine expression in the ith row, corresponding
// to the expression for the ith value in the output vector. The last column
// of the matrix contains the constant term. Let v be the input point with
// a 1 appended at the end. We can see that output * v gives the desired
// output vector.
pointHomogenous.emplace_back(1);
SmallVector<MPInt, 8> result = output.postMultiplyWithColumn(pointHomogenous);
assert(result.size() == getNumOutputs());
return result;
}
bool MultiAffineFunction::isEqual(const MultiAffineFunction &other) const {
assert(space.isCompatible(other.space) &&
"Spaces should be compatible for equality check.");
return getAsRelation().isEqual(other.getAsRelation());
}
bool MultiAffineFunction::isEqual(const MultiAffineFunction &other,
const IntegerPolyhedron &domain) const {
assert(space.isCompatible(other.space) &&
"Spaces should be compatible for equality check.");
IntegerRelation restrictedThis = getAsRelation();
restrictedThis.intersectDomain(domain);
IntegerRelation restrictedOther = other.getAsRelation();
restrictedOther.intersectDomain(domain);
return restrictedThis.isEqual(restrictedOther);
}
bool MultiAffineFunction::isEqual(const MultiAffineFunction &other,
const PresburgerSet &domain) const {
assert(space.isCompatible(other.space) &&
"Spaces should be compatible for equality check.");
return llvm::all_of(domain.getAllDisjuncts(),
[&](const IntegerRelation &disjunct) {
return isEqual(other, IntegerPolyhedron(disjunct));
});
}
void MultiAffineFunction::removeOutputs(unsigned start, unsigned end) {
assert(end <= getNumOutputs() && "Invalid range");
if (start >= end)
return;
space.removeVarRange(VarKind::Range, start, end);
output.removeRows(start, end - start);
}
void MultiAffineFunction::mergeDivs(MultiAffineFunction &other) {
assert(space.isCompatible(other.space) && "Functions should be compatible");
unsigned nDivs = getNumDivs();
unsigned divOffset = divs.getDivOffset();
other.divs.insertDiv(0, nDivs);
SmallVector<MPInt, 8> div(other.divs.getNumVars() + 1);
for (unsigned i = 0; i < nDivs; ++i) {
// Zero fill.
std::fill(div.begin(), div.end(), 0);
// Fill div with dividend from `divs`. Do not fill the constant.
std::copy(divs.getDividend(i).begin(), divs.getDividend(i).end() - 1,
div.begin());
// Fill constant.
div.back() = divs.getDividend(i).back();
other.divs.setDiv(i, div, divs.getDenom(i));
}
other.space.insertVar(VarKind::Local, 0, nDivs);
other.output.insertColumns(divOffset, nDivs);
auto merge = [&](unsigned i, unsigned j) {
// We only merge from local at pos j to local at pos i, where j > i.
if (i >= j)
return false;
// If i < nDivs, we are trying to merge duplicate divs in `this`. Since we
// do not want to merge duplicates in `this`, we ignore this call.
if (j < nDivs)
return false;
// Merge things in space and output.
other.space.removeVarRange(VarKind::Local, j, j + 1);
other.output.addToColumn(divOffset + i, divOffset + j, 1);
other.output.removeColumn(divOffset + j);
return true;
};
other.divs.removeDuplicateDivs(merge);
unsigned newDivs = other.divs.getNumDivs() - nDivs;
space.insertVar(VarKind::Local, nDivs, newDivs);
output.insertColumns(divOffset + nDivs, newDivs);
divs = other.divs;
// Check consistency.
assertIsConsistent();
other.assertIsConsistent();
}
PresburgerSet
MultiAffineFunction::getLexSet(OrderingKind comp,
const MultiAffineFunction &other) const {
assert(getSpace().isCompatible(other.getSpace()) &&
"Output space of funcs should be compatible");
// Create copies of functions and merge their local space.
MultiAffineFunction funcA = *this;
MultiAffineFunction funcB = other;
funcA.mergeDivs(funcB);
// We first create the set `result`, corresponding to the set where output
// of funcA is lexicographically larger/smaller than funcB. This is done by
// creating a PresburgerSet with the following constraints:
//
// (outA[0] > outB[0]) U
// (outA[0] = outB[0], outA[1] > outA[1]) U
// (outA[0] = outB[0], outA[1] = outA[1], outA[2] > outA[2]) U
// ...
// (outA[0] = outB[0], ..., outA[n-2] = outB[n-2], outA[n-1] > outB[n-1])
//
// where `n` is the number of outputs.
// If `lexMin` is set, the complement inequality is used:
//
// (outA[0] < outB[0]) U
// (outA[0] = outB[0], outA[1] < outA[1]) U
// (outA[0] = outB[0], outA[1] = outA[1], outA[2] < outA[2]) U
// ...
// (outA[0] = outB[0], ..., outA[n-2] = outB[n-2], outA[n-1] < outB[n-1])
PresburgerSpace resultSpace = funcA.getDomainSpace();
PresburgerSet result =
PresburgerSet::getEmpty(resultSpace.getSpaceWithoutLocals());
IntegerPolyhedron levelSet(
/*numReservedInequalities=*/1 + 2 * resultSpace.getNumLocalVars(),
/*numReservedEqualities=*/funcA.getNumOutputs(),
/*numReservedCols=*/resultSpace.getNumVars() + 1, resultSpace);
// Add division inequalities to `levelSet`.
for (unsigned i = 0, e = funcA.getNumDivs(); i < e; ++i) {
levelSet.addInequality(getDivUpperBound(funcA.divs.getDividend(i),
funcA.divs.getDenom(i),
funcA.divs.getDivOffset() + i));
levelSet.addInequality(getDivLowerBound(funcA.divs.getDividend(i),
funcA.divs.getDenom(i),
funcA.divs.getDivOffset() + i));
}
for (unsigned level = 0; level < funcA.getNumOutputs(); ++level) {
// Create the expression `outA - outB` for this level.
SmallVector<MPInt, 8> subExpr =
subtractExprs(funcA.getOutputExpr(level), funcB.getOutputExpr(level));
// TODO: Implement all comparison cases.
switch (comp) {
case OrderingKind::LT:
// For less than, we add an upper bound of -1:
// outA - outB <= -1
// outA <= outB - 1
// outA < outB
levelSet.addBound(BoundType::UB, subExpr, MPInt(-1));
break;
case OrderingKind::GT:
// For greater than, we add a lower bound of 1:
// outA - outB >= 1
// outA > outB + 1
// outA > outB
levelSet.addBound(BoundType::LB, subExpr, MPInt(1));
break;
case OrderingKind::GE:
case OrderingKind::LE:
case OrderingKind::EQ:
case OrderingKind::NE:
assert(false && "Not implemented case");
}
// Union the set with the result.
result.unionInPlace(levelSet);
// The last inequality in `levelSet` is the bound we inserted. We remove
// that for next iteration.
levelSet.removeInequality(levelSet.getNumInequalities() - 1);
// Add equality `outA - outB == 0` for this level for next iteration.
levelSet.addEquality(subExpr);
}
return result;
}
/// Two PWMAFunctions are equal if they have the same dimensionalities,
/// the same domain, and take the same value at every point in the domain.
bool PWMAFunction::isEqual(const PWMAFunction &other) const {
if (!space.isCompatible(other.space))
return false;
if (!this->getDomain().isEqual(other.getDomain()))
return false;
// Check if, whenever the domains of a piece of `this` and a piece of `other`
// overlap, they take the same output value. If `this` and `other` have the
// same domain (checked above), then this check passes iff the two functions
// have the same output at every point in the domain.
return llvm::all_of(this->pieces, [&other](const Piece &pieceA) {
return llvm::all_of(other.pieces, [&pieceA](const Piece &pieceB) {
PresburgerSet commonDomain = pieceA.domain.intersect(pieceB.domain);
return pieceA.output.isEqual(pieceB.output, commonDomain);
});
});
}
void PWMAFunction::addPiece(const Piece &piece) {
assert(piece.isConsistent() && "Piece should be consistent");
assert(piece.domain.intersect(getDomain()).isIntegerEmpty() &&
"Piece should be disjoint from the function");
pieces.push_back(piece);
}
void PWMAFunction::print(raw_ostream &os) const {
space.print(os);
os << getNumPieces() << " pieces:\n";
for (const Piece &piece : pieces) {
os << "Domain of piece:\n";
piece.domain.print(os);
os << "Output of piece\n";
piece.output.print(os);
}
}
void PWMAFunction::dump() const { print(llvm::errs()); }
PWMAFunction PWMAFunction::unionFunction(
const PWMAFunction &func,
llvm::function_ref<PresburgerSet(Piece maf1, Piece maf2)> tiebreak) const {
assert(getNumOutputs() == func.getNumOutputs() &&
"Ranges of functions should be same.");
assert(getSpace().isCompatible(func.getSpace()) &&
"Space is not compatible.");
// The algorithm used here is as follows:
// - Add the output of pieceB for the part of the domain where both pieceA and
// pieceB are defined, and `tiebreak` chooses the output of pieceB.
// - Add the output of pieceA, where pieceB is not defined or `tiebreak`
// chooses
// pieceA over pieceB.
// - Add the output of pieceB, where pieceA is not defined.
// Add parts of the common domain where pieceB's output is used. Also
// add all the parts where pieceA's output is used, both common and
// non-common.
PWMAFunction result(getSpace());
for (const Piece &pieceA : pieces) {
PresburgerSet dom(pieceA.domain);
for (const Piece &pieceB : func.pieces) {
PresburgerSet better = tiebreak(pieceB, pieceA);
// Add the output of pieceB, where it is better than output of pieceA.
// The disjuncts in "better" will be disjoint as tiebreak should gurantee
// that.
result.addPiece({better, pieceB.output});
dom = dom.subtract(better);
}
// Add output of pieceA, where it is better than pieceB, or pieceB is not
// defined.
//
// `dom` here is guranteed to be disjoint from already added pieces
// because because the pieces added before are either:
// - Subsets of the domain of other MAFs in `this`, which are guranteed
// to be disjoint from `dom`, or
// - They are one of the pieces added for `pieceB`, and we have been
// subtracting all such pieces from `dom`, so `dom` is disjoint from those
// pieces as well.
result.addPiece({dom, pieceA.output});
}
// Add parts of pieceB which are not shared with pieceA.
PresburgerSet dom = getDomain();
for (const Piece &pieceB : func.pieces)
result.addPiece({pieceB.domain.subtract(dom), pieceB.output});
return result;
}
/// A tiebreak function which breaks ties by comparing the outputs
/// lexicographically based on the given comparison operator.
/// This is templated since it is passed as a lambda.
template <OrderingKind comp>
static PresburgerSet tiebreakLex(const PWMAFunction::Piece &pieceA,
const PWMAFunction::Piece &pieceB) {
PresburgerSet result = pieceA.output.getLexSet(comp, pieceB.output);
result = result.intersect(pieceA.domain).intersect(pieceB.domain);
return result;
}
PWMAFunction PWMAFunction::unionLexMin(const PWMAFunction &func) {
return unionFunction(func, tiebreakLex</*comp=*/OrderingKind::LT>);
}
PWMAFunction PWMAFunction::unionLexMax(const PWMAFunction &func) {
return unionFunction(func, tiebreakLex</*comp=*/OrderingKind::GT>);
}
void MultiAffineFunction::subtract(const MultiAffineFunction &other) {
assert(space.isCompatible(other.space) &&
"Spaces should be compatible for subtraction.");
MultiAffineFunction copyOther = other;
mergeDivs(copyOther);
for (unsigned i = 0, e = getNumOutputs(); i < e; ++i)
output.addToRow(i, copyOther.getOutputExpr(i), MPInt(-1));
// Check consistency.
assertIsConsistent();
}
/// Adds division constraints corresponding to local variables, given a
/// relation and division representations of the local variables in the
/// relation.
static void addDivisionConstraints(IntegerRelation &rel,
const DivisionRepr &divs) {
assert(divs.hasAllReprs() &&
"All divisions in divs should have a representation");
assert(rel.getNumVars() == divs.getNumVars() &&
"Relation and divs should have the same number of vars");
assert(rel.getNumLocalVars() == divs.getNumDivs() &&
"Relation and divs should have the same number of local vars");
for (unsigned i = 0, e = divs.getNumDivs(); i < e; ++i) {
rel.addInequality(getDivUpperBound(divs.getDividend(i), divs.getDenom(i),
divs.getDivOffset() + i));
rel.addInequality(getDivLowerBound(divs.getDividend(i), divs.getDenom(i),
divs.getDivOffset() + i));
}
}
IntegerRelation MultiAffineFunction::getAsRelation() const {
// Create a relation corressponding to the input space plus the divisions
// used in outputs.
IntegerRelation result(PresburgerSpace::getRelationSpace(
space.getNumDomainVars(), 0, space.getNumSymbolVars(),
space.getNumLocalVars()));
// Add division constraints corresponding to divisions used in outputs.
addDivisionConstraints(result, divs);
// The outputs are represented as range variables in the relation. We add
// range variables for the outputs.
result.insertVar(VarKind::Range, 0, getNumOutputs());
// Add equalities such that the i^th range variable is equal to the i^th
// output expression.
SmallVector<MPInt, 8> eq(result.getNumCols());
for (unsigned i = 0, e = getNumOutputs(); i < e; ++i) {
// TODO: Add functions to get VarKind offsets in output in MAF and use them
// here.
// The output expression does not contain range variables, while the
// equality does. So, we need to copy all variables and mark all range
// variables as 0 in the equality.
ArrayRef<MPInt> expr = getOutputExpr(i);
// Copy domain variables in `expr` to domain variables in `eq`.
std::copy(expr.begin(), expr.begin() + getNumDomainVars(), eq.begin());
// Fill the range variables in `eq` as zero.
std::fill(eq.begin() + result.getVarKindOffset(VarKind::Range),
eq.begin() + result.getVarKindEnd(VarKind::Range), 0);
// Copy remaining variables in `expr` to the remaining variables in `eq`.
std::copy(expr.begin() + getNumDomainVars(), expr.end(),
eq.begin() + result.getVarKindEnd(VarKind::Range));
// Set the i^th range var to -1 in `eq` to equate the output expression to
// this range var.
eq[result.getVarKindOffset(VarKind::Range) + i] = -1;
// Add the equality `rangeVar_i = output[i]`.
result.addEquality(eq);
}
return result;
}
void PWMAFunction::removeOutputs(unsigned start, unsigned end) {
space.removeVarRange(VarKind::Range, start, end);
for (Piece &piece : pieces)
piece.output.removeOutputs(start, end);
}
std::optional<SmallVector<MPInt, 8>>
PWMAFunction::valueAt(ArrayRef<MPInt> point) const {
assert(point.size() == getNumDomainVars() + getNumSymbolVars());
for (const Piece &piece : pieces)
if (piece.domain.containsPoint(point))
return piece.output.valueAt(point);
return std::nullopt;
}
|