File: Simplex.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (2192 lines) | stat: -rw-r--r-- 88,621 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
//===- Simplex.cpp - MLIR Simplex Class -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Analysis/Presburger/Simplex.h"
#include "mlir/Analysis/Presburger/Matrix.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/Support/Compiler.h"
#include <numeric>
#include <optional>

using namespace mlir;
using namespace presburger;

using Direction = Simplex::Direction;

const int nullIndex = std::numeric_limits<int>::max();

// Return a + scale*b;
LLVM_ATTRIBUTE_UNUSED
static SmallVector<MPInt, 8>
scaleAndAddForAssert(ArrayRef<MPInt> a, const MPInt &scale, ArrayRef<MPInt> b) {
  assert(a.size() == b.size());
  SmallVector<MPInt, 8> res;
  res.reserve(a.size());
  for (unsigned i = 0, e = a.size(); i < e; ++i)
    res.push_back(a[i] + scale * b[i]);
  return res;
}

SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM)
    : usingBigM(mustUseBigM), nRedundant(0), nSymbol(0),
      tableau(0, getNumFixedCols() + nVar), empty(false) {
  colUnknown.insert(colUnknown.begin(), getNumFixedCols(), nullIndex);
  for (unsigned i = 0; i < nVar; ++i) {
    var.emplace_back(Orientation::Column, /*restricted=*/false,
                     /*pos=*/getNumFixedCols() + i);
    colUnknown.push_back(i);
  }
}

SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM,
                         const llvm::SmallBitVector &isSymbol)
    : SimplexBase(nVar, mustUseBigM) {
  assert(isSymbol.size() == nVar && "invalid bitmask!");
  // Invariant: nSymbol is the number of symbols that have been marked
  // already and these occupy the columns
  // [getNumFixedCols(), getNumFixedCols() + nSymbol).
  for (unsigned symbolIdx : isSymbol.set_bits()) {
    var[symbolIdx].isSymbol = true;
    swapColumns(var[symbolIdx].pos, getNumFixedCols() + nSymbol);
    ++nSymbol;
  }
}

const Simplex::Unknown &SimplexBase::unknownFromIndex(int index) const {
  assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
  return index >= 0 ? var[index] : con[~index];
}

const Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) const {
  assert(col < getNumColumns() && "Invalid column");
  return unknownFromIndex(colUnknown[col]);
}

const Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) const {
  assert(row < getNumRows() && "Invalid row");
  return unknownFromIndex(rowUnknown[row]);
}

Simplex::Unknown &SimplexBase::unknownFromIndex(int index) {
  assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
  return index >= 0 ? var[index] : con[~index];
}

Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) {
  assert(col < getNumColumns() && "Invalid column");
  return unknownFromIndex(colUnknown[col]);
}

Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) {
  assert(row < getNumRows() && "Invalid row");
  return unknownFromIndex(rowUnknown[row]);
}

unsigned SimplexBase::addZeroRow(bool makeRestricted) {
  // Resize the tableau to accommodate the extra row.
  unsigned newRow = tableau.appendExtraRow();
  assert(getNumRows() == getNumRows() && "Inconsistent tableau size");
  rowUnknown.push_back(~con.size());
  con.emplace_back(Orientation::Row, makeRestricted, newRow);
  undoLog.push_back(UndoLogEntry::RemoveLastConstraint);
  tableau(newRow, 0) = 1;
  return newRow;
}

/// Add a new row to the tableau corresponding to the given constant term and
/// list of coefficients. The coefficients are specified as a vector of
/// (variable index, coefficient) pairs.
unsigned SimplexBase::addRow(ArrayRef<MPInt> coeffs, bool makeRestricted) {
  assert(coeffs.size() == var.size() + 1 &&
         "Incorrect number of coefficients!");
  assert(var.size() + getNumFixedCols() == getNumColumns() &&
         "inconsistent column count!");

  unsigned newRow = addZeroRow(makeRestricted);
  tableau(newRow, 1) = coeffs.back();
  if (usingBigM) {
    // When the lexicographic pivot rule is used, instead of the variables
    //
    // x, y, z ...
    //
    // we internally use the variables
    //
    // M, M + x, M + y, M + z, ...
    //
    // where M is the big M parameter. As such, when the user tries to add
    // a row ax + by + cz + d, we express it in terms of our internal variables
    // as -(a + b + c)M + a(M + x) + b(M + y) + c(M + z) + d.
    //
    // Symbols don't use the big M parameter since they do not get lex
    // optimized.
    MPInt bigMCoeff(0);
    for (unsigned i = 0; i < coeffs.size() - 1; ++i)
      if (!var[i].isSymbol)
        bigMCoeff -= coeffs[i];
    // The coefficient to the big M parameter is stored in column 2.
    tableau(newRow, 2) = bigMCoeff;
  }

  // Process each given variable coefficient.
  for (unsigned i = 0; i < var.size(); ++i) {
    unsigned pos = var[i].pos;
    if (coeffs[i] == 0)
      continue;

    if (var[i].orientation == Orientation::Column) {
      // If a variable is in column position at column col, then we just add the
      // coefficient for that variable (scaled by the common row denominator) to
      // the corresponding entry in the new row.
      tableau(newRow, pos) += coeffs[i] * tableau(newRow, 0);
      continue;
    }

    // If the variable is in row position, we need to add that row to the new
    // row, scaled by the coefficient for the variable, accounting for the two
    // rows potentially having different denominators. The new denominator is
    // the lcm of the two.
    MPInt lcm = presburger::lcm(tableau(newRow, 0), tableau(pos, 0));
    MPInt nRowCoeff = lcm / tableau(newRow, 0);
    MPInt idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0));
    tableau(newRow, 0) = lcm;
    for (unsigned col = 1, e = getNumColumns(); col < e; ++col)
      tableau(newRow, col) =
          nRowCoeff * tableau(newRow, col) + idxRowCoeff * tableau(pos, col);
  }

  tableau.normalizeRow(newRow);
  // Push to undo log along with the index of the new constraint.
  return con.size() - 1;
}

namespace {
bool signMatchesDirection(const MPInt &elem, Direction direction) {
  assert(elem != 0 && "elem should not be 0");
  return direction == Direction::Up ? elem > 0 : elem < 0;
}

Direction flippedDirection(Direction direction) {
  return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up;
}
} // namespace

/// We simply make the tableau consistent while maintaining a lexicopositive
/// basis transform, and then return the sample value. If the tableau becomes
/// empty, we return empty.
///
/// Let the variables be x = (x_1, ... x_n).
/// Let the basis unknowns be y = (y_1, ... y_n).
/// We have that x = A*y + b for some n x n matrix A and n x 1 column vector b.
///
/// As we will show below, A*y is either zero or lexicopositive.
/// Adding a lexicopositive vector to b will make it lexicographically
/// greater, so A*y + b is always equal to or lexicographically greater than b.
/// Thus, since we can attain x = b, that is the lexicographic minimum.
///
/// We have that that every column in A is lexicopositive, i.e., has at least
/// one non-zero element, with the first such element being positive. Since for
/// the tableau to be consistent we must have non-negative sample values not
/// only for the constraints but also for the variables, we also have x >= 0 and
/// y >= 0, by which we mean every element in these vectors is non-negative.
///
/// Proof that if every column in A is lexicopositive, and y >= 0, then
/// A*y is zero or lexicopositive. Begin by considering A_1, the first row of A.
/// If this row is all zeros, then (A*y)_1 = (A_1)*y = 0; proceed to the next
/// row. If we run out of rows, A*y is zero and we are done; otherwise, we
/// encounter some row A_i that has a non-zero element. Every column is
/// lexicopositive and so has some positive element before any negative elements
/// occur, so the element in this row for any column, if non-zero, must be
/// positive. Consider (A*y)_i = (A_i)*y. All the elements in both vectors are
/// non-negative, so if this is non-zero then it must be positive. Then the
/// first non-zero element of A*y is positive so A*y is lexicopositive.
///
/// Otherwise, if (A_i)*y is zero, then for every column j that had a non-zero
/// element in A_i, y_j is zero. Thus these columns have no contribution to A*y
/// and we can completely ignore these columns of A. We now continue downwards,
/// looking for rows of A that have a non-zero element other than in the ignored
/// columns. If we find one, say A_k, once again these elements must be positive
/// since they are the first non-zero element in each of these columns, so if
/// (A_k)*y is not zero then we have that A*y is lexicopositive and if not we
/// add these to the set of ignored columns and continue to the next row. If we
/// run out of rows, then A*y is zero and we are done.
MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::findRationalLexMin() {
  if (restoreRationalConsistency().failed()) {
    markEmpty();
    return OptimumKind::Empty;
  }
  return getRationalSample();
}

/// Given a row that has a non-integer sample value, add an inequality such
/// that this fractional sample value is cut away from the polytope. The added
/// inequality will be such that no integer points are removed. i.e., the
/// integer lexmin, if it exists, is the same with and without this constraint.
///
/// Let the row be
/// (c + coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n)/d,
/// where s_1, ... s_m are the symbols and
///       y_1, ... y_n are the other basis unknowns.
///
/// For this to be an integer, we want
/// coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n = -c (mod d)
/// Note that this constraint must always hold, independent of the basis,
/// becuse the row unknown's value always equals this expression, even if *we*
/// later compute the sample value from a different expression based on a
/// different basis.
///
/// Let us assume that M has a factor of d in it. Imposing this constraint on M
/// does not in any way hinder us from finding a value of M that is big enough.
/// Moreover, this function is only called when the symbolic part of the sample,
/// a_1*s_1 + ... + a_m*s_m, is known to be an integer.
///
/// Also, we can safely reduce the coefficients modulo d, so we have:
///
/// (b_1%d)y_1 + ... + (b_n%d)y_n = (-c%d) + k*d for some integer `k`
///
/// Note that all coefficient modulos here are non-negative. Also, all the
/// unknowns are non-negative here as both constraints and variables are
/// non-negative in LexSimplexBase. (We used the big M trick to make the
/// variables non-negative). Therefore, the LHS here is non-negative.
/// Since 0 <= (-c%d) < d, k is the quotient of dividing the LHS by d and
/// is therefore non-negative as well.
///
/// So we have
/// ((b_1%d)y_1 + ... + (b_n%d)y_n - (-c%d))/d >= 0.
///
/// The constraint is violated when added (it would be useless otherwise)
/// so we immediately try to move it to a column.
LogicalResult LexSimplexBase::addCut(unsigned row) {
  MPInt d = tableau(row, 0);
  unsigned cutRow = addZeroRow(/*makeRestricted=*/true);
  tableau(cutRow, 0) = d;
  tableau(cutRow, 1) = -mod(-tableau(row, 1), d); // -c%d.
  tableau(cutRow, 2) = 0;
  for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col)
    tableau(cutRow, col) = mod(tableau(row, col), d); // b_i%d.
  return moveRowUnknownToColumn(cutRow);
}

std::optional<unsigned> LexSimplex::maybeGetNonIntegralVarRow() const {
  for (const Unknown &u : var) {
    if (u.orientation == Orientation::Column)
      continue;
    // If the sample value is of the form (a/d)M + b/d, we need b to be
    // divisible by d. We assume M contains all possible
    // factors and is divisible by everything.
    unsigned row = u.pos;
    if (tableau(row, 1) % tableau(row, 0) != 0)
      return row;
  }
  return {};
}

MaybeOptimum<SmallVector<MPInt, 8>> LexSimplex::findIntegerLexMin() {
  // We first try to make the tableau consistent.
  if (restoreRationalConsistency().failed())
    return OptimumKind::Empty;

  // Then, if the sample value is integral, we are done.
  while (std::optional<unsigned> maybeRow = maybeGetNonIntegralVarRow()) {
    // Otherwise, for the variable whose row has a non-integral sample value,
    // we add a cut, a constraint that remove this rational point
    // while preserving all integer points, thus keeping the lexmin the same.
    // We then again try to make the tableau with the new constraint
    // consistent. This continues until the tableau becomes empty, in which
    // case there is no integer point, or until there are no variables with
    // non-integral sample values.
    //
    // Failure indicates that the tableau became empty, which occurs when the
    // polytope is integer empty.
    if (addCut(*maybeRow).failed())
      return OptimumKind::Empty;
    if (restoreRationalConsistency().failed())
      return OptimumKind::Empty;
  }

  MaybeOptimum<SmallVector<Fraction, 8>> sample = getRationalSample();
  assert(!sample.isEmpty() && "If we reached here the sample should exist!");
  if (sample.isUnbounded())
    return OptimumKind::Unbounded;
  return llvm::to_vector<8>(
      llvm::map_range(*sample, std::mem_fn(&Fraction::getAsInteger)));
}

bool LexSimplex::isSeparateInequality(ArrayRef<MPInt> coeffs) {
  SimplexRollbackScopeExit scopeExit(*this);
  addInequality(coeffs);
  return findIntegerLexMin().isEmpty();
}

bool LexSimplex::isRedundantInequality(ArrayRef<MPInt> coeffs) {
  return isSeparateInequality(getComplementIneq(coeffs));
}

SmallVector<MPInt, 8>
SymbolicLexSimplex::getSymbolicSampleNumerator(unsigned row) const {
  SmallVector<MPInt, 8> sample;
  sample.reserve(nSymbol + 1);
  for (unsigned col = 3; col < 3 + nSymbol; ++col)
    sample.push_back(tableau(row, col));
  sample.push_back(tableau(row, 1));
  return sample;
}

SmallVector<MPInt, 8>
SymbolicLexSimplex::getSymbolicSampleIneq(unsigned row) const {
  SmallVector<MPInt, 8> sample = getSymbolicSampleNumerator(row);
  // The inequality is equivalent to the GCD-normalized one.
  normalizeRange(sample);
  return sample;
}

void LexSimplexBase::appendSymbol() {
  appendVariable();
  swapColumns(3 + nSymbol, getNumColumns() - 1);
  var.back().isSymbol = true;
  nSymbol++;
}

static bool isRangeDivisibleBy(ArrayRef<MPInt> range, const MPInt &divisor) {
  assert(divisor > 0 && "divisor must be positive!");
  return llvm::all_of(range,
                      [divisor](const MPInt &x) { return x % divisor == 0; });
}

bool SymbolicLexSimplex::isSymbolicSampleIntegral(unsigned row) const {
  MPInt denom = tableau(row, 0);
  return tableau(row, 1) % denom == 0 &&
         isRangeDivisibleBy(tableau.getRow(row).slice(3, nSymbol), denom);
}

/// This proceeds similarly to LexSimplexBase::addCut(). We are given a row that
/// has a symbolic sample value with fractional coefficients.
///
/// Let the row be
/// (c + coeffM*M + sum_i a_i*s_i + sum_j b_j*y_j)/d,
/// where s_1, ... s_m are the symbols and
///       y_1, ... y_n are the other basis unknowns.
///
/// As in LexSimplex::addCut, for this to be an integer, we want
///
/// coeffM*M + sum_j b_j*y_j = -c + sum_i (-a_i*s_i) (mod d)
///
/// This time, a_1*s_1 + ... + a_m*s_m may not be an integer. We find that
///
/// sum_i (b_i%d)y_i = ((-c%d) + sum_i (-a_i%d)s_i)%d + k*d for some integer k
///
/// where we take a modulo of the whole symbolic expression on the right to
/// bring it into the range [0, d - 1]. Therefore, as in addCut(),
/// k is the quotient on dividing the LHS by d, and since LHS >= 0, we have
/// k >= 0 as well. If all the a_i are divisible by d, then we can add the
/// constraint directly.  Otherwise, we realize the modulo of the symbolic
/// expression by adding a division variable
///
/// q = ((-c%d) + sum_i (-a_i%d)s_i)/d
///
/// to the symbol domain, so the equality becomes
///
/// sum_i (b_i%d)y_i = (-c%d) + sum_i (-a_i%d)s_i - q*d + k*d for some integer k
///
/// So the cut is
/// (sum_i (b_i%d)y_i - (-c%d) - sum_i (-a_i%d)s_i + q*d)/d >= 0
/// This constraint is violated when added so we immediately try to move it to a
/// column.
LogicalResult SymbolicLexSimplex::addSymbolicCut(unsigned row) {
  MPInt d = tableau(row, 0);
  if (isRangeDivisibleBy(tableau.getRow(row).slice(3, nSymbol), d)) {
    // The coefficients of symbols in the symbol numerator are divisible
    // by the denominator, so we can add the constraint directly,
    // i.e., ignore the symbols and add a regular cut as in addCut().
    return addCut(row);
  }

  // Construct the division variable `q = ((-c%d) + sum_i (-a_i%d)s_i)/d`.
  SmallVector<MPInt, 8> divCoeffs;
  divCoeffs.reserve(nSymbol + 1);
  MPInt divDenom = d;
  for (unsigned col = 3; col < 3 + nSymbol; ++col)
    divCoeffs.push_back(mod(-tableau(row, col), divDenom)); // (-a_i%d)s_i
  divCoeffs.push_back(mod(-tableau(row, 1), divDenom));     // -c%d.
  normalizeDiv(divCoeffs, divDenom);

  domainSimplex.addDivisionVariable(divCoeffs, divDenom);
  domainPoly.addLocalFloorDiv(divCoeffs, divDenom);

  // Update `this` to account for the additional symbol we just added.
  appendSymbol();

  // Add the cut (sum_i (b_i%d)y_i - (-c%d) + sum_i -(-a_i%d)s_i + q*d)/d >= 0.
  unsigned cutRow = addZeroRow(/*makeRestricted=*/true);
  tableau(cutRow, 0) = d;
  tableau(cutRow, 2) = 0;

  tableau(cutRow, 1) = -mod(-tableau(row, 1), d); // -(-c%d).
  for (unsigned col = 3; col < 3 + nSymbol - 1; ++col)
    tableau(cutRow, col) = -mod(-tableau(row, col), d); // -(-a_i%d)s_i.
  tableau(cutRow, 3 + nSymbol - 1) = d;                 // q*d.

  for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col)
    tableau(cutRow, col) = mod(tableau(row, col), d); // (b_i%d)y_i.
  return moveRowUnknownToColumn(cutRow);
}

void SymbolicLexSimplex::recordOutput(SymbolicLexMin &result) const {
  Matrix output(0, domainPoly.getNumVars() + 1);
  output.reserveRows(result.lexmin.getNumOutputs());
  for (const Unknown &u : var) {
    if (u.isSymbol)
      continue;

    if (u.orientation == Orientation::Column) {
      // M + u has a sample value of zero so u has a sample value of -M, i.e,
      // unbounded.
      result.unboundedDomain.unionInPlace(domainPoly);
      return;
    }

    MPInt denom = tableau(u.pos, 0);
    if (tableau(u.pos, 2) < denom) {
      // M + u has a sample value of fM + something, where f < 1, so
      // u = (f - 1)M + something, which has a negative coefficient for M,
      // and so is unbounded.
      result.unboundedDomain.unionInPlace(domainPoly);
      return;
    }
    assert(tableau(u.pos, 2) == denom &&
           "Coefficient of M should not be greater than 1!");

    SmallVector<MPInt, 8> sample = getSymbolicSampleNumerator(u.pos);
    for (MPInt &elem : sample) {
      assert(elem % denom == 0 && "coefficients must be integral!");
      elem /= denom;
    }
    output.appendExtraRow(sample);
  }

  // Store the output in a MultiAffineFunction and add it the result.
  PresburgerSpace funcSpace = result.lexmin.getSpace();
  funcSpace.insertVar(VarKind::Local, 0, domainPoly.getNumLocalVars());

  result.lexmin.addPiece(
      {PresburgerSet(domainPoly),
       MultiAffineFunction(funcSpace, output, domainPoly.getLocalReprs())});
}

std::optional<unsigned> SymbolicLexSimplex::maybeGetAlwaysViolatedRow() {
  // First look for rows that are clearly violated just from the big M
  // coefficient, without needing to perform any simplex queries on the domain.
  for (unsigned row = 0, e = getNumRows(); row < e; ++row)
    if (tableau(row, 2) < 0)
      return row;

  for (unsigned row = 0, e = getNumRows(); row < e; ++row) {
    if (tableau(row, 2) > 0)
      continue;
    if (domainSimplex.isSeparateInequality(getSymbolicSampleIneq(row))) {
      // Sample numerator always takes negative values in the symbol domain.
      return row;
    }
  }
  return {};
}

std::optional<unsigned> SymbolicLexSimplex::maybeGetNonIntegralVarRow() {
  for (const Unknown &u : var) {
    if (u.orientation == Orientation::Column)
      continue;
    assert(!u.isSymbol && "Symbol should not be in row orientation!");
    if (!isSymbolicSampleIntegral(u.pos))
      return u.pos;
  }
  return {};
}

/// The non-branching pivots are just the ones moving the rows
/// that are always violated in the symbol domain.
LogicalResult SymbolicLexSimplex::doNonBranchingPivots() {
  while (std::optional<unsigned> row = maybeGetAlwaysViolatedRow())
    if (moveRowUnknownToColumn(*row).failed())
      return failure();
  return success();
}

SymbolicLexMin SymbolicLexSimplex::computeSymbolicIntegerLexMin() {
  SymbolicLexMin result(PresburgerSpace::getRelationSpace(
      /*numDomain=*/domainPoly.getNumDimVars(),
      /*numRange=*/var.size() - nSymbol,
      /*numSymbols=*/domainPoly.getNumSymbolVars()));

  /// The algorithm is more naturally expressed recursively, but we implement
  /// it iteratively here to avoid potential issues with stack overflows in the
  /// compiler. We explicitly maintain the stack frames in a vector.
  ///
  /// To "recurse", we store the current "stack frame", i.e., state variables
  /// that we will need when we "return", into `stack`, increment `level`, and
  /// `continue`. To "tail recurse", we just `continue`.
  /// To "return", we decrement `level` and `continue`.
  ///
  /// When there is no stack frame for the current `level`, this indicates that
  /// we have just "recursed" or "tail recursed". When there does exist one,
  /// this indicates that we have just "returned" from recursing. There is only
  /// one point at which non-tail calls occur so we always "return" there.
  unsigned level = 1;
  struct StackFrame {
    int splitIndex;
    unsigned snapshot;
    unsigned domainSnapshot;
    IntegerRelation::CountsSnapshot domainPolyCounts;
  };
  SmallVector<StackFrame, 8> stack;

  while (level > 0) {
    assert(level >= stack.size());
    if (level > stack.size()) {
      if (empty || domainSimplex.findIntegerLexMin().isEmpty()) {
        // No integer points; return.
        --level;
        continue;
      }

      if (doNonBranchingPivots().failed()) {
        // Could not find pivots for violated constraints; return.
        --level;
        continue;
      }

      SmallVector<MPInt, 8> symbolicSample;
      unsigned splitRow = 0;
      for (unsigned e = getNumRows(); splitRow < e; ++splitRow) {
        if (tableau(splitRow, 2) > 0)
          continue;
        assert(tableau(splitRow, 2) == 0 &&
               "Non-branching pivots should have been handled already!");

        symbolicSample = getSymbolicSampleIneq(splitRow);
        if (domainSimplex.isRedundantInequality(symbolicSample))
          continue;

        // It's neither redundant nor separate, so it takes both positive and
        // negative values, and hence constitutes a row for which we need to
        // split the domain and separately run each case.
        assert(!domainSimplex.isSeparateInequality(symbolicSample) &&
               "Non-branching pivots should have been handled already!");
        break;
      }

      if (splitRow < getNumRows()) {
        unsigned domainSnapshot = domainSimplex.getSnapshot();
        IntegerRelation::CountsSnapshot domainPolyCounts =
            domainPoly.getCounts();

        // First, we consider the part of the domain where the row is not
        // violated. We don't have to do any pivots for the row in this case,
        // but we record the additional constraint that defines this part of
        // the domain.
        domainSimplex.addInequality(symbolicSample);
        domainPoly.addInequality(symbolicSample);

        // Recurse.
        //
        // On return, the basis as a set is preserved but not the internal
        // ordering within rows or columns. Thus, we take note of the index of
        // the Unknown that caused the split, which may be in a different
        // row when we come back from recursing. We will need this to recurse
        // on the other part of the split domain, where the row is violated.
        //
        // Note that we have to capture the index above and not a reference to
        // the Unknown itself, since the array it lives in might get
        // reallocated.
        int splitIndex = rowUnknown[splitRow];
        unsigned snapshot = getSnapshot();
        stack.push_back(
            {splitIndex, snapshot, domainSnapshot, domainPolyCounts});
        ++level;
        continue;
      }

      // The tableau is rationally consistent for the current domain.
      // Now we look for non-integral sample values and add cuts for them.
      if (std::optional<unsigned> row = maybeGetNonIntegralVarRow()) {
        if (addSymbolicCut(*row).failed()) {
          // No integral points; return.
          --level;
          continue;
        }

        // Rerun this level with the added cut constraint (tail recurse).
        continue;
      }

      // Record output and return.
      recordOutput(result);
      --level;
      continue;
    }

    if (level == stack.size()) {
      // We have "returned" from "recursing".
      const StackFrame &frame = stack.back();
      domainPoly.truncate(frame.domainPolyCounts);
      domainSimplex.rollback(frame.domainSnapshot);
      rollback(frame.snapshot);
      const Unknown &u = unknownFromIndex(frame.splitIndex);

      // Drop the frame. We don't need it anymore.
      stack.pop_back();

      // Now we consider the part of the domain where the unknown `splitIndex`
      // was negative.
      assert(u.orientation == Orientation::Row &&
             "The split row should have been returned to row orientation!");
      SmallVector<MPInt, 8> splitIneq =
          getComplementIneq(getSymbolicSampleIneq(u.pos));
      normalizeRange(splitIneq);
      if (moveRowUnknownToColumn(u.pos).failed()) {
        // The unknown can't be made non-negative; return.
        --level;
        continue;
      }

      // The unknown can be made negative; recurse with the corresponding domain
      // constraints.
      domainSimplex.addInequality(splitIneq);
      domainPoly.addInequality(splitIneq);

      // We are now taking care of the second half of the domain and we don't
      // need to do anything else here after returning, so it's a tail recurse.
      continue;
    }
  }

  return result;
}

bool LexSimplex::rowIsViolated(unsigned row) const {
  if (tableau(row, 2) < 0)
    return true;
  if (tableau(row, 2) == 0 && tableau(row, 1) < 0)
    return true;
  return false;
}

std::optional<unsigned> LexSimplex::maybeGetViolatedRow() const {
  for (unsigned row = 0, e = getNumRows(); row < e; ++row)
    if (rowIsViolated(row))
      return row;
  return {};
}

/// We simply look for violated rows and keep trying to move them to column
/// orientation, which always succeeds unless the constraints have no solution
/// in which case we just give up and return.
LogicalResult LexSimplex::restoreRationalConsistency() {
  if (empty)
    return failure();
  while (std::optional<unsigned> maybeViolatedRow = maybeGetViolatedRow())
    if (moveRowUnknownToColumn(*maybeViolatedRow).failed())
      return failure();
  return success();
}

// Move the row unknown to column orientation while preserving lexicopositivity
// of the basis transform. The sample value of the row must be non-positive.
//
// We only consider pivots where the pivot element is positive. Suppose no such
// pivot exists, i.e., some violated row has no positive coefficient for any
// basis unknown. The row can be represented as (s + c_1*u_1 + ... + c_n*u_n)/d,
// where d is the denominator, s is the sample value and the c_i are the basis
// coefficients. If s != 0, then since any feasible assignment of the basis
// satisfies u_i >= 0 for all i, and we have s < 0 as well as c_i < 0 for all i,
// any feasible assignment would violate this row and therefore the constraints
// have no solution.
//
// We can preserve lexicopositivity by picking the pivot column with positive
// pivot element that makes the lexicographically smallest change to the sample
// point.
//
// Proof. Let
// x = (x_1, ... x_n) be the variables,
// z = (z_1, ... z_m) be the constraints,
// y = (y_1, ... y_n) be the current basis, and
// define w = (x_1, ... x_n, z_1, ... z_m) = B*y + s.
// B is basically the simplex tableau of our implementation except that instead
// of only describing the transform to get back the non-basis unknowns, it
// defines the values of all the unknowns in terms of the basis unknowns.
// Similarly, s is the column for the sample value.
//
// Our goal is to show that each column in B, restricted to the first n
// rows, is lexicopositive after the pivot if it is so before. This is
// equivalent to saying the columns in the whole matrix are lexicopositive;
// there must be some non-zero element in every column in the first n rows since
// the n variables cannot be spanned without using all the n basis unknowns.
//
// Consider a pivot where z_i replaces y_j in the basis. Recall the pivot
// transform for the tableau derived for SimplexBase::pivot:
//
//            pivot col    other col                   pivot col    other col
// pivot row     a             b       ->   pivot row     1/a         -b/a
// other row     c             d            other row     c/a        d - bc/a
//
// Similarly, a pivot results in B changing to B' and c to c'; the difference
// between the tableau and these matrices B and B' is that there is no special
// case for the pivot row, since it continues to represent the same unknown. The
// same formula applies for all rows:
//
// B'.col(j) = B.col(j) / B(i,j)
// B'.col(k) = B.col(k) - B(i,k) * B.col(j) / B(i,j) for k != j
// and similarly, s' = s - s_i * B.col(j) / B(i,j).
//
// If s_i == 0, then the sample value remains unchanged. Otherwise, if s_i < 0,
// the change in sample value when pivoting with column a is lexicographically
// smaller than that when pivoting with column b iff B.col(a) / B(i, a) is
// lexicographically smaller than B.col(b) / B(i, b).
//
// Since B(i, j) > 0, column j remains lexicopositive.
//
// For the other columns, suppose C.col(k) is not lexicopositive.
// This means that for some p, for all t < p,
// C(t,k) = 0 => B(t,k) = B(t,j) * B(i,k) / B(i,j) and
// C(t,k) < 0 => B(p,k) < B(t,j) * B(i,k) / B(i,j),
// which is in contradiction to the fact that B.col(j) / B(i,j) must be
// lexicographically smaller than B.col(k) / B(i,k), since it lexicographically
// minimizes the change in sample value.
LogicalResult LexSimplexBase::moveRowUnknownToColumn(unsigned row) {
  std::optional<unsigned> maybeColumn;
  for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col) {
    if (tableau(row, col) <= 0)
      continue;
    maybeColumn =
        !maybeColumn ? col : getLexMinPivotColumn(row, *maybeColumn, col);
  }

  if (!maybeColumn)
    return failure();

  pivot(row, *maybeColumn);
  return success();
}

unsigned LexSimplexBase::getLexMinPivotColumn(unsigned row, unsigned colA,
                                              unsigned colB) const {
  // First, let's consider the non-symbolic case.
  // A pivot causes the following change. (in the diagram the matrix elements
  // are shown as rationals and there is no common denominator used)
  //
  //            pivot col    big M col      const col
  // pivot row     a            p               b
  // other row     c            q               d
  //                        |
  //                        v
  //
  //            pivot col    big M col      const col
  // pivot row     1/a         -p/a           -b/a
  // other row     c/a        q - pc/a       d - bc/a
  //
  // Let the sample value of the pivot row be s = pM + b before the pivot. Since
  // the pivot row represents a violated constraint we know that s < 0.
  //
  // If the variable is a non-pivot column, its sample value is zero before and
  // after the pivot.
  //
  // If the variable is the pivot column, then its sample value goes from 0 to
  // (-p/a)M + (-b/a), i.e. 0 to -(pM + b)/a. Thus the change in the sample
  // value is -s/a.
  //
  // If the variable is the pivot row, its sample value goes from s to 0, for a
  // change of -s.
  //
  // If the variable is a non-pivot row, its sample value changes from
  // qM + d to qM + d + (-pc/a)M + (-bc/a). Thus the change in sample value
  // is -(pM + b)(c/a) = -sc/a.
  //
  // Thus the change in sample value is either 0, -s/a, -s, or -sc/a. Here -s is
  // fixed for all calls to this function since the row and tableau are fixed.
  // The callee just wants to compare the return values with the return value of
  // other invocations of the same function. So the -s is common for all
  // comparisons involved and can be ignored, since -s is strictly positive.
  //
  // Thus we take away this common factor and just return 0, 1/a, 1, or c/a as
  // appropriate. This allows us to run the entire algorithm treating M
  // symbolically, as the pivot to be performed does not depend on the value
  // of M, so long as the sample value s is negative. Note that this is not
  // because of any special feature of M; by the same argument, we ignore the
  // symbols too. The caller ensure that the sample value s is negative for
  // all possible values of the symbols.
  auto getSampleChangeCoeffForVar = [this, row](unsigned col,
                                                const Unknown &u) -> Fraction {
    MPInt a = tableau(row, col);
    if (u.orientation == Orientation::Column) {
      // Pivot column case.
      if (u.pos == col)
        return {1, a};

      // Non-pivot column case.
      return {0, 1};
    }

    // Pivot row case.
    if (u.pos == row)
      return {1, 1};

    // Non-pivot row case.
    MPInt c = tableau(u.pos, col);
    return {c, a};
  };

  for (const Unknown &u : var) {
    Fraction changeA = getSampleChangeCoeffForVar(colA, u);
    Fraction changeB = getSampleChangeCoeffForVar(colB, u);
    if (changeA < changeB)
      return colA;
    if (changeA > changeB)
      return colB;
  }

  // If we reached here, both result in exactly the same changes, so it
  // doesn't matter which we return.
  return colA;
}

/// Find a pivot to change the sample value of the row in the specified
/// direction. The returned pivot row will involve `row` if and only if the
/// unknown is unbounded in the specified direction.
///
/// To increase (resp. decrease) the value of a row, we need to find a live
/// column with a non-zero coefficient. If the coefficient is positive, we need
/// to increase (decrease) the value of the column, and if the coefficient is
/// negative, we need to decrease (increase) the value of the column. Also,
/// we cannot decrease the sample value of restricted columns.
///
/// If multiple columns are valid, we break ties by considering a lexicographic
/// ordering where we prefer unknowns with lower index.
std::optional<SimplexBase::Pivot>
Simplex::findPivot(int row, Direction direction) const {
  std::optional<unsigned> col;
  for (unsigned j = 2, e = getNumColumns(); j < e; ++j) {
    MPInt elem = tableau(row, j);
    if (elem == 0)
      continue;

    if (unknownFromColumn(j).restricted &&
        !signMatchesDirection(elem, direction))
      continue;
    if (!col || colUnknown[j] < colUnknown[*col])
      col = j;
  }

  if (!col)
    return {};

  Direction newDirection =
      tableau(row, *col) < 0 ? flippedDirection(direction) : direction;
  std::optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col);
  return Pivot{maybePivotRow.value_or(row), *col};
}

/// Swap the associated unknowns for the row and the column.
///
/// First we swap the index associated with the row and column. Then we update
/// the unknowns to reflect their new position and orientation.
void SimplexBase::swapRowWithCol(unsigned row, unsigned col) {
  std::swap(rowUnknown[row], colUnknown[col]);
  Unknown &uCol = unknownFromColumn(col);
  Unknown &uRow = unknownFromRow(row);
  uCol.orientation = Orientation::Column;
  uRow.orientation = Orientation::Row;
  uCol.pos = col;
  uRow.pos = row;
}

void SimplexBase::pivot(Pivot pair) { pivot(pair.row, pair.column); }

/// Pivot pivotRow and pivotCol.
///
/// Let R be the pivot row unknown and let C be the pivot col unknown.
/// Since initially R = a*C + sum b_i * X_i
/// (where the sum is over the other column's unknowns, x_i)
/// C = (R - (sum b_i * X_i))/a
///
/// Let u be some other row unknown.
/// u = c*C + sum d_i * X_i
/// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i
///
/// This results in the following transform:
///            pivot col    other col                   pivot col    other col
/// pivot row     a             b       ->   pivot row     1/a         -b/a
/// other row     c             d            other row     c/a        d - bc/a
///
/// Taking into account the common denominators p and q:
///
///            pivot col    other col                    pivot col   other col
/// pivot row     a/p          b/p     ->   pivot row      p/a         -b/a
/// other row     c/q          d/q          other row     cp/aq    (da - bc)/aq
///
/// The pivot row transform is accomplished be swapping a with the pivot row's
/// common denominator and negating the pivot row except for the pivot column
/// element.
void SimplexBase::pivot(unsigned pivotRow, unsigned pivotCol) {
  assert(pivotCol >= getNumFixedCols() && "Refusing to pivot invalid column");
  assert(!unknownFromColumn(pivotCol).isSymbol);

  swapRowWithCol(pivotRow, pivotCol);
  std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol));
  // We need to negate the whole pivot row except for the pivot column.
  if (tableau(pivotRow, 0) < 0) {
    // If the denominator is negative, we negate the row by simply negating the
    // denominator.
    tableau(pivotRow, 0) = -tableau(pivotRow, 0);
    tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol);
  } else {
    for (unsigned col = 1, e = getNumColumns(); col < e; ++col) {
      if (col == pivotCol)
        continue;
      tableau(pivotRow, col) = -tableau(pivotRow, col);
    }
  }
  tableau.normalizeRow(pivotRow);

  for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) {
    if (row == pivotRow)
      continue;
    if (tableau(row, pivotCol) == 0) // Nothing to do.
      continue;
    tableau(row, 0) *= tableau(pivotRow, 0);
    for (unsigned col = 1, numCols = getNumColumns(); col < numCols; ++col) {
      if (col == pivotCol)
        continue;
      // Add rather than subtract because the pivot row has been negated.
      tableau(row, col) = tableau(row, col) * tableau(pivotRow, 0) +
                          tableau(row, pivotCol) * tableau(pivotRow, col);
    }
    tableau(row, pivotCol) *= tableau(pivotRow, pivotCol);
    tableau.normalizeRow(row);
  }
}

/// Perform pivots until the unknown has a non-negative sample value or until
/// no more upward pivots can be performed. Return success if we were able to
/// bring the row to a non-negative sample value, and failure otherwise.
LogicalResult Simplex::restoreRow(Unknown &u) {
  assert(u.orientation == Orientation::Row &&
         "unknown should be in row position");

  while (tableau(u.pos, 1) < 0) {
    std::optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up);
    if (!maybePivot)
      break;

    pivot(*maybePivot);
    if (u.orientation == Orientation::Column)
      return success(); // the unknown is unbounded above.
  }
  return success(tableau(u.pos, 1) >= 0);
}

/// Find a row that can be used to pivot the column in the specified direction.
/// This returns an empty optional if and only if the column is unbounded in the
/// specified direction (ignoring skipRow, if skipRow is set).
///
/// If skipRow is set, this row is not considered, and (if it is restricted) its
/// restriction may be violated by the returned pivot. Usually, skipRow is set
/// because we don't want to move it to column position unless it is unbounded,
/// and we are either trying to increase the value of skipRow or explicitly
/// trying to make skipRow negative, so we are not concerned about this.
///
/// If the direction is up (resp. down) and a restricted row has a negative
/// (positive) coefficient for the column, then this row imposes a bound on how
/// much the sample value of the column can change. Such a row with constant
/// term c and coefficient f for the column imposes a bound of c/|f| on the
/// change in sample value (in the specified direction). (note that c is
/// non-negative here since the row is restricted and the tableau is consistent)
///
/// We iterate through the rows and pick the row which imposes the most
/// stringent bound, since pivoting with a row changes the row's sample value to
/// 0 and hence saturates the bound it imposes. We break ties between rows that
/// impose the same bound by considering a lexicographic ordering where we
/// prefer unknowns with lower index value.
std::optional<unsigned> Simplex::findPivotRow(std::optional<unsigned> skipRow,
                                              Direction direction,
                                              unsigned col) const {
  std::optional<unsigned> retRow;
  // Initialize these to zero in order to silence a warning about retElem and
  // retConst being used uninitialized in the initialization of `diff` below. In
  // reality, these are always initialized when that line is reached since these
  // are set whenever retRow is set.
  MPInt retElem, retConst;
  for (unsigned row = nRedundant, e = getNumRows(); row < e; ++row) {
    if (skipRow && row == *skipRow)
      continue;
    MPInt elem = tableau(row, col);
    if (elem == 0)
      continue;
    if (!unknownFromRow(row).restricted)
      continue;
    if (signMatchesDirection(elem, direction))
      continue;
    MPInt constTerm = tableau(row, 1);

    if (!retRow) {
      retRow = row;
      retElem = elem;
      retConst = constTerm;
      continue;
    }

    MPInt diff = retConst * elem - constTerm * retElem;
    if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) ||
        (diff != 0 && !signMatchesDirection(diff, direction))) {
      retRow = row;
      retElem = elem;
      retConst = constTerm;
    }
  }
  return retRow;
}

bool SimplexBase::isEmpty() const { return empty; }

void SimplexBase::swapRows(unsigned i, unsigned j) {
  if (i == j)
    return;
  tableau.swapRows(i, j);
  std::swap(rowUnknown[i], rowUnknown[j]);
  unknownFromRow(i).pos = i;
  unknownFromRow(j).pos = j;
}

void SimplexBase::swapColumns(unsigned i, unsigned j) {
  assert(i < getNumColumns() && j < getNumColumns() &&
         "Invalid columns provided!");
  if (i == j)
    return;
  tableau.swapColumns(i, j);
  std::swap(colUnknown[i], colUnknown[j]);
  unknownFromColumn(i).pos = i;
  unknownFromColumn(j).pos = j;
}

/// Mark this tableau empty and push an entry to the undo stack.
void SimplexBase::markEmpty() {
  // If the set is already empty, then we shouldn't add another UnmarkEmpty log
  // entry, since in that case the Simplex will be erroneously marked as
  // non-empty when rolling back past this point.
  if (empty)
    return;
  undoLog.push_back(UndoLogEntry::UnmarkEmpty);
  empty = true;
}

/// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
/// is the current number of variables, then the corresponding inequality is
/// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0.
///
/// We add the inequality and mark it as restricted. We then try to make its
/// sample value non-negative. If this is not possible, the tableau has become
/// empty and we mark it as such.
void Simplex::addInequality(ArrayRef<MPInt> coeffs) {
  unsigned conIndex = addRow(coeffs, /*makeRestricted=*/true);
  LogicalResult result = restoreRow(con[conIndex]);
  if (failed(result))
    markEmpty();
}

/// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
/// is the current number of variables, then the corresponding equality is
/// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0.
///
/// We simply add two opposing inequalities, which force the expression to
/// be zero.
void SimplexBase::addEquality(ArrayRef<MPInt> coeffs) {
  addInequality(coeffs);
  SmallVector<MPInt, 8> negatedCoeffs;
  for (const MPInt &coeff : coeffs)
    negatedCoeffs.emplace_back(-coeff);
  addInequality(negatedCoeffs);
}

unsigned SimplexBase::getNumVariables() const { return var.size(); }
unsigned SimplexBase::getNumConstraints() const { return con.size(); }

/// Return a snapshot of the current state. This is just the current size of the
/// undo log.
unsigned SimplexBase::getSnapshot() const { return undoLog.size(); }

unsigned SimplexBase::getSnapshotBasis() {
  SmallVector<int, 8> basis;
  for (int index : colUnknown) {
    if (index != nullIndex)
      basis.push_back(index);
  }
  savedBases.push_back(std::move(basis));

  undoLog.emplace_back(UndoLogEntry::RestoreBasis);
  return undoLog.size() - 1;
}

void SimplexBase::removeLastConstraintRowOrientation() {
  assert(con.back().orientation == Orientation::Row);

  // Move this unknown to the last row and remove the last row from the
  // tableau.
  swapRows(con.back().pos, getNumRows() - 1);
  // It is not strictly necessary to shrink the tableau, but for now we
  // maintain the invariant that the tableau has exactly getNumRows()
  // rows.
  tableau.resizeVertically(getNumRows() - 1);
  rowUnknown.pop_back();
  con.pop_back();
}

// This doesn't find a pivot row only if the column has zero
// coefficients for every row.
//
// If the unknown is a constraint, this can't happen, since it was added
// initially as a row. Such a row could never have been pivoted to a column. So
// a pivot row will always be found if we have a constraint.
//
// If we have a variable, then the column has zero coefficients for every row
// iff no constraints have been added with a non-zero coefficient for this row.
std::optional<unsigned> SimplexBase::findAnyPivotRow(unsigned col) {
  for (unsigned row = nRedundant, e = getNumRows(); row < e; ++row)
    if (tableau(row, col) != 0)
      return row;
  return {};
}

// It's not valid to remove the constraint by deleting the column since this
// would result in an invalid basis.
void Simplex::undoLastConstraint() {
  if (con.back().orientation == Orientation::Column) {
    // We try to find any pivot row for this column that preserves tableau
    // consistency (except possibly the column itself, which is going to be
    // deallocated anyway).
    //
    // If no pivot row is found in either direction, then the unknown is
    // unbounded in both directions and we are free to perform any pivot at
    // all. To do this, we just need to find any row with a non-zero
    // coefficient for the column. findAnyPivotRow will always be able to
    // find such a row for a constraint.
    unsigned column = con.back().pos;
    if (std::optional<unsigned> maybeRow =
            findPivotRow({}, Direction::Up, column)) {
      pivot(*maybeRow, column);
    } else if (std::optional<unsigned> maybeRow =
                   findPivotRow({}, Direction::Down, column)) {
      pivot(*maybeRow, column);
    } else {
      std::optional<unsigned> row = findAnyPivotRow(column);
      assert(row && "Pivot should always exist for a constraint!");
      pivot(*row, column);
    }
  }
  removeLastConstraintRowOrientation();
}

// It's not valid to remove the constraint by deleting the column since this
// would result in an invalid basis.
void LexSimplexBase::undoLastConstraint() {
  if (con.back().orientation == Orientation::Column) {
    // When removing the last constraint during a rollback, we just need to find
    // any pivot at all, i.e., any row with non-zero coefficient for the
    // column, because when rolling back a lexicographic simplex, we always
    // end by restoring the exact basis that was present at the time of the
    // snapshot, so what pivots we perform while undoing doesn't matter as
    // long as we get the unknown to row orientation and remove it.
    unsigned column = con.back().pos;
    std::optional<unsigned> row = findAnyPivotRow(column);
    assert(row && "Pivot should always exist for a constraint!");
    pivot(*row, column);
  }
  removeLastConstraintRowOrientation();
}

void SimplexBase::undo(UndoLogEntry entry) {
  if (entry == UndoLogEntry::RemoveLastConstraint) {
    // Simplex and LexSimplex handle this differently, so we call out to a
    // virtual function to handle this.
    undoLastConstraint();
  } else if (entry == UndoLogEntry::RemoveLastVariable) {
    // Whenever we are rolling back the addition of a variable, it is guaranteed
    // that the variable will be in column position.
    //
    // We can see this as follows: any constraint that depends on this variable
    // was added after this variable was added, so the addition of such
    // constraints should already have been rolled back by the time we get to
    // rolling back the addition of the variable. Therefore, no constraint
    // currently has a component along the variable, so the variable itself must
    // be part of the basis.
    assert(var.back().orientation == Orientation::Column &&
           "Variable to be removed must be in column orientation!");

    if (var.back().isSymbol)
      nSymbol--;

    // Move this variable to the last column and remove the column from the
    // tableau.
    swapColumns(var.back().pos, getNumColumns() - 1);
    tableau.resizeHorizontally(getNumColumns() - 1);
    var.pop_back();
    colUnknown.pop_back();
  } else if (entry == UndoLogEntry::UnmarkEmpty) {
    empty = false;
  } else if (entry == UndoLogEntry::UnmarkLastRedundant) {
    nRedundant--;
  } else if (entry == UndoLogEntry::RestoreBasis) {
    assert(!savedBases.empty() && "No bases saved!");

    SmallVector<int, 8> basis = std::move(savedBases.back());
    savedBases.pop_back();

    for (int index : basis) {
      Unknown &u = unknownFromIndex(index);
      if (u.orientation == Orientation::Column)
        continue;
      for (unsigned col = getNumFixedCols(), e = getNumColumns(); col < e;
           col++) {
        assert(colUnknown[col] != nullIndex &&
               "Column should not be a fixed column!");
        if (llvm::is_contained(basis, colUnknown[col]))
          continue;
        if (tableau(u.pos, col) == 0)
          continue;
        pivot(u.pos, col);
        break;
      }

      assert(u.orientation == Orientation::Column && "No pivot found!");
    }
  }
}

/// Rollback to the specified snapshot.
///
/// We undo all the log entries until the log size when the snapshot was taken
/// is reached.
void SimplexBase::rollback(unsigned snapshot) {
  while (undoLog.size() > snapshot) {
    undo(undoLog.back());
    undoLog.pop_back();
  }
}

/// We add the usual floor division constraints:
/// `0 <= coeffs - denom*q <= denom - 1`, where `q` is the new division
/// variable.
///
/// This constrains the remainder `coeffs - denom*q` to be in the
/// range `[0, denom - 1]`, which fixes the integer value of the quotient `q`.
void SimplexBase::addDivisionVariable(ArrayRef<MPInt> coeffs,
                                      const MPInt &denom) {
  assert(denom > 0 && "Denominator must be positive!");
  appendVariable();

  SmallVector<MPInt, 8> ineq(coeffs.begin(), coeffs.end());
  MPInt constTerm = ineq.back();
  ineq.back() = -denom;
  ineq.push_back(constTerm);
  addInequality(ineq);

  for (MPInt &coeff : ineq)
    coeff = -coeff;
  ineq.back() += denom - 1;
  addInequality(ineq);
}

void SimplexBase::appendVariable(unsigned count) {
  if (count == 0)
    return;
  var.reserve(var.size() + count);
  colUnknown.reserve(colUnknown.size() + count);
  for (unsigned i = 0; i < count; ++i) {
    var.emplace_back(Orientation::Column, /*restricted=*/false,
                     /*pos=*/getNumColumns() + i);
    colUnknown.push_back(var.size() - 1);
  }
  tableau.resizeHorizontally(getNumColumns() + count);
  undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable);
}

/// Add all the constraints from the given IntegerRelation.
void SimplexBase::intersectIntegerRelation(const IntegerRelation &rel) {
  assert(rel.getNumVars() == getNumVariables() &&
         "IntegerRelation must have same dimensionality as simplex");
  for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i)
    addInequality(rel.getInequality(i));
  for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i)
    addEquality(rel.getEquality(i));
}

MaybeOptimum<Fraction> Simplex::computeRowOptimum(Direction direction,
                                                  unsigned row) {
  // Keep trying to find a pivot for the row in the specified direction.
  while (std::optional<Pivot> maybePivot = findPivot(row, direction)) {
    // If findPivot returns a pivot involving the row itself, then the optimum
    // is unbounded, so we return std::nullopt.
    if (maybePivot->row == row)
      return OptimumKind::Unbounded;
    pivot(*maybePivot);
  }

  // The row has reached its optimal sample value, which we return.
  // The sample value is the entry in the constant column divided by the common
  // denominator for this row.
  return Fraction(tableau(row, 1), tableau(row, 0));
}

/// Compute the optimum of the specified expression in the specified direction,
/// or std::nullopt if it is unbounded.
MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction,
                                               ArrayRef<MPInt> coeffs) {
  if (empty)
    return OptimumKind::Empty;

  SimplexRollbackScopeExit scopeExit(*this);
  unsigned conIndex = addRow(coeffs);
  unsigned row = con[conIndex].pos;
  return computeRowOptimum(direction, row);
}

MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction,
                                               Unknown &u) {
  if (empty)
    return OptimumKind::Empty;
  if (u.orientation == Orientation::Column) {
    unsigned column = u.pos;
    std::optional<unsigned> pivotRow = findPivotRow({}, direction, column);
    // If no pivot is returned, the constraint is unbounded in the specified
    // direction.
    if (!pivotRow)
      return OptimumKind::Unbounded;
    pivot(*pivotRow, column);
  }

  unsigned row = u.pos;
  MaybeOptimum<Fraction> optimum = computeRowOptimum(direction, row);
  if (u.restricted && direction == Direction::Down &&
      (optimum.isUnbounded() || *optimum < Fraction(0, 1))) {
    if (failed(restoreRow(u)))
      llvm_unreachable("Could not restore row!");
  }
  return optimum;
}

bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) {
  assert(!empty && "It is not meaningful to ask whether a direction is bounded "
                   "in an empty set.");
  // The constraint's perpendicular is already bounded below, since it is a
  // constraint. If it is also bounded above, we can return true.
  return computeOptimum(Direction::Up, con[constraintIndex]).isBounded();
}

/// Redundant constraints are those that are in row orientation and lie in
/// rows 0 to nRedundant - 1.
bool Simplex::isMarkedRedundant(unsigned constraintIndex) const {
  const Unknown &u = con[constraintIndex];
  return u.orientation == Orientation::Row && u.pos < nRedundant;
}

/// Mark the specified row redundant.
///
/// This is done by moving the unknown to the end of the block of redundant
/// rows (namely, to row nRedundant) and incrementing nRedundant to
/// accomodate the new redundant row.
void Simplex::markRowRedundant(Unknown &u) {
  assert(u.orientation == Orientation::Row &&
         "Unknown should be in row position!");
  assert(u.pos >= nRedundant && "Unknown is already marked redundant!");
  swapRows(u.pos, nRedundant);
  ++nRedundant;
  undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant);
}

/// Find a subset of constraints that is redundant and mark them redundant.
void Simplex::detectRedundant(unsigned offset, unsigned count) {
  assert(offset + count <= con.size() && "invalid range!");
  // It is not meaningful to talk about redundancy for empty sets.
  if (empty)
    return;

  // Iterate through the constraints and check for each one if it can attain
  // negative sample values. If it can, it's not redundant. Otherwise, it is.
  // We mark redundant constraints redundant.
  //
  // Constraints that get marked redundant in one iteration are not respected
  // when checking constraints in later iterations. This prevents, for example,
  // two identical constraints both being marked redundant since each is
  // redundant given the other one. In this example, only the first of the
  // constraints that is processed will get marked redundant, as it should be.
  for (unsigned i = 0; i < count; ++i) {
    Unknown &u = con[offset + i];
    if (u.orientation == Orientation::Column) {
      unsigned column = u.pos;
      std::optional<unsigned> pivotRow =
          findPivotRow({}, Direction::Down, column);
      // If no downward pivot is returned, the constraint is unbounded below
      // and hence not redundant.
      if (!pivotRow)
        continue;
      pivot(*pivotRow, column);
    }

    unsigned row = u.pos;
    MaybeOptimum<Fraction> minimum = computeRowOptimum(Direction::Down, row);
    if (minimum.isUnbounded() || *minimum < Fraction(0, 1)) {
      // Constraint is unbounded below or can attain negative sample values and
      // hence is not redundant.
      if (failed(restoreRow(u)))
        llvm_unreachable("Could not restore non-redundant row!");
      continue;
    }

    markRowRedundant(u);
  }
}

bool Simplex::isUnbounded() {
  if (empty)
    return false;

  SmallVector<MPInt, 8> dir(var.size() + 1);
  for (unsigned i = 0; i < var.size(); ++i) {
    dir[i] = 1;

    if (computeOptimum(Direction::Up, dir).isUnbounded())
      return true;

    if (computeOptimum(Direction::Down, dir).isUnbounded())
      return true;

    dir[i] = 0;
  }
  return false;
}

/// Make a tableau to represent a pair of points in the original tableau.
///
/// The product constraints and variables are stored as: first A's, then B's.
///
/// The product tableau has row layout:
///   A's redundant rows, B's redundant rows, A's other rows, B's other rows.
///
/// It has column layout:
///   denominator, constant, A's columns, B's columns.
Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) {
  unsigned numVar = a.getNumVariables() + b.getNumVariables();
  unsigned numCon = a.getNumConstraints() + b.getNumConstraints();
  Simplex result(numVar);

  result.tableau.reserveRows(numCon);
  result.empty = a.empty || b.empty;

  auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) {
    SmallVector<Unknown, 8> result;
    result.reserve(v.size() + w.size());
    result.insert(result.end(), v.begin(), v.end());
    result.insert(result.end(), w.begin(), w.end());
    return result;
  };
  result.con = concat(a.con, b.con);
  result.var = concat(a.var, b.var);

  auto indexFromBIndex = [&](int index) {
    return index >= 0 ? a.getNumVariables() + index
                      : ~(a.getNumConstraints() + ~index);
  };

  result.colUnknown.assign(2, nullIndex);
  for (unsigned i = 2, e = a.getNumColumns(); i < e; ++i) {
    result.colUnknown.push_back(a.colUnknown[i]);
    result.unknownFromIndex(result.colUnknown.back()).pos =
        result.colUnknown.size() - 1;
  }
  for (unsigned i = 2, e = b.getNumColumns(); i < e; ++i) {
    result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i]));
    result.unknownFromIndex(result.colUnknown.back()).pos =
        result.colUnknown.size() - 1;
  }

  auto appendRowFromA = [&](unsigned row) {
    unsigned resultRow = result.tableau.appendExtraRow();
    for (unsigned col = 0, e = a.getNumColumns(); col < e; ++col)
      result.tableau(resultRow, col) = a.tableau(row, col);
    result.rowUnknown.push_back(a.rowUnknown[row]);
    result.unknownFromIndex(result.rowUnknown.back()).pos =
        result.rowUnknown.size() - 1;
  };

  // Also fixes the corresponding entry in rowUnknown and var/con (as the case
  // may be).
  auto appendRowFromB = [&](unsigned row) {
    unsigned resultRow = result.tableau.appendExtraRow();
    result.tableau(resultRow, 0) = b.tableau(row, 0);
    result.tableau(resultRow, 1) = b.tableau(row, 1);

    unsigned offset = a.getNumColumns() - 2;
    for (unsigned col = 2, e = b.getNumColumns(); col < e; ++col)
      result.tableau(resultRow, offset + col) = b.tableau(row, col);
    result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row]));
    result.unknownFromIndex(result.rowUnknown.back()).pos =
        result.rowUnknown.size() - 1;
  };

  result.nRedundant = a.nRedundant + b.nRedundant;
  for (unsigned row = 0; row < a.nRedundant; ++row)
    appendRowFromA(row);
  for (unsigned row = 0; row < b.nRedundant; ++row)
    appendRowFromB(row);
  for (unsigned row = a.nRedundant, e = a.getNumRows(); row < e; ++row)
    appendRowFromA(row);
  for (unsigned row = b.nRedundant, e = b.getNumRows(); row < e; ++row)
    appendRowFromB(row);

  return result;
}

std::optional<SmallVector<Fraction, 8>> Simplex::getRationalSample() const {
  if (empty)
    return {};

  SmallVector<Fraction, 8> sample;
  sample.reserve(var.size());
  // Push the sample value for each variable into the vector.
  for (const Unknown &u : var) {
    if (u.orientation == Orientation::Column) {
      // If the variable is in column position, its sample value is zero.
      sample.emplace_back(0, 1);
    } else {
      // If the variable is in row position, its sample value is the
      // entry in the constant column divided by the denominator.
      MPInt denom = tableau(u.pos, 0);
      sample.emplace_back(tableau(u.pos, 1), denom);
    }
  }
  return sample;
}

void LexSimplexBase::addInequality(ArrayRef<MPInt> coeffs) {
  addRow(coeffs, /*makeRestricted=*/true);
}

MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::getRationalSample() const {
  if (empty)
    return OptimumKind::Empty;

  SmallVector<Fraction, 8> sample;
  sample.reserve(var.size());
  // Push the sample value for each variable into the vector.
  for (const Unknown &u : var) {
    // When the big M parameter is being used, each variable x is represented
    // as M + x, so its sample value is finite if and only if it is of the
    // form 1*M + c. If the coefficient of M is not one then the sample value
    // is infinite, and we return an empty optional.

    if (u.orientation == Orientation::Column) {
      // If the variable is in column position, the sample value of M + x is
      // zero, so x = -M which is unbounded.
      return OptimumKind::Unbounded;
    }

    // If the variable is in row position, its sample value is the
    // entry in the constant column divided by the denominator.
    MPInt denom = tableau(u.pos, 0);
    if (usingBigM)
      if (tableau(u.pos, 2) != denom)
        return OptimumKind::Unbounded;
    sample.emplace_back(tableau(u.pos, 1), denom);
  }
  return sample;
}

std::optional<SmallVector<MPInt, 8>> Simplex::getSamplePointIfIntegral() const {
  // If the tableau is empty, no sample point exists.
  if (empty)
    return {};

  // The value will always exist since the Simplex is non-empty.
  SmallVector<Fraction, 8> rationalSample = *getRationalSample();
  SmallVector<MPInt, 8> integerSample;
  integerSample.reserve(var.size());
  for (const Fraction &coord : rationalSample) {
    // If the sample is non-integral, return std::nullopt.
    if (coord.num % coord.den != 0)
      return {};
    integerSample.push_back(coord.num / coord.den);
  }
  return integerSample;
}

/// Given a simplex for a polytope, construct a new simplex whose variables are
/// identified with a pair of points (x, y) in the original polytope. Supports
/// some operations needed for generalized basis reduction. In what follows,
/// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the
/// dimension of the original polytope.
///
/// This supports adding equality constraints dotProduct(dir, x - y) == 0. It
/// also supports rolling back this addition, by maintaining a snapshot stack
/// that contains a snapshot of the Simplex's state for each equality, just
/// before that equality was added.
class presburger::GBRSimplex {
  using Orientation = Simplex::Orientation;

public:
  GBRSimplex(const Simplex &originalSimplex)
      : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)),
        simplexConstraintOffset(simplex.getNumConstraints()) {}

  /// Add an equality dotProduct(dir, x - y) == 0.
  /// First pushes a snapshot for the current simplex state to the stack so
  /// that this can be rolled back later.
  void addEqualityForDirection(ArrayRef<MPInt> dir) {
    assert(llvm::any_of(dir, [](const MPInt &x) { return x != 0; }) &&
           "Direction passed is the zero vector!");
    snapshotStack.push_back(simplex.getSnapshot());
    simplex.addEquality(getCoeffsForDirection(dir));
  }
  /// Compute max(dotProduct(dir, x - y)).
  Fraction computeWidth(ArrayRef<MPInt> dir) {
    MaybeOptimum<Fraction> maybeWidth =
        simplex.computeOptimum(Direction::Up, getCoeffsForDirection(dir));
    assert(maybeWidth.isBounded() && "Width should be bounded!");
    return *maybeWidth;
  }

  /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only
  /// the direction equalities to `dual`.
  Fraction computeWidthAndDuals(ArrayRef<MPInt> dir,
                                SmallVectorImpl<MPInt> &dual,
                                MPInt &dualDenom) {
    // We can't just call into computeWidth or computeOptimum since we need to
    // access the state of the tableau after computing the optimum, and these
    // functions rollback the insertion of the objective function into the
    // tableau before returning. We instead add a row for the objective function
    // ourselves, call into computeOptimum, compute the duals from the tableau
    // state, and finally rollback the addition of the row before returning.
    SimplexRollbackScopeExit scopeExit(simplex);
    unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir));
    unsigned row = simplex.con[conIndex].pos;
    MaybeOptimum<Fraction> maybeWidth =
        simplex.computeRowOptimum(Simplex::Direction::Up, row);
    assert(maybeWidth.isBounded() && "Width should be bounded!");
    dualDenom = simplex.tableau(row, 0);
    dual.clear();

    // The increment is i += 2 because equalities are added as two inequalities,
    // one positive and one negative. Each iteration processes one equality.
    for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) {
      // The dual variable for an inequality in column orientation is the
      // negative of its coefficient at the objective row. If the inequality is
      // in row orientation, the corresponding dual variable is zero.
      //
      // We want the dual for the original equality, which corresponds to two
      // inequalities: a positive inequality, which has the same coefficients as
      // the equality, and a negative equality, which has negated coefficients.
      //
      // Note that at most one of these inequalities can be in column
      // orientation because the column unknowns should form a basis and hence
      // must be linearly independent. If the positive inequality is in column
      // position, its dual is the dual corresponding to the equality. If the
      // negative inequality is in column position, the negation of its dual is
      // the dual corresponding to the equality. If neither is in column
      // position, then that means that this equality is redundant, and its dual
      // is zero.
      //
      // Note that it is NOT valid to perform pivots during the computation of
      // the duals. This entire dual computation must be performed on the same
      // tableau configuration.
      assert(!(simplex.con[i].orientation == Orientation::Column &&
               simplex.con[i + 1].orientation == Orientation::Column) &&
             "Both inequalities for the equality cannot be in column "
             "orientation!");
      if (simplex.con[i].orientation == Orientation::Column)
        dual.push_back(-simplex.tableau(row, simplex.con[i].pos));
      else if (simplex.con[i + 1].orientation == Orientation::Column)
        dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos));
      else
        dual.emplace_back(0);
    }
    return *maybeWidth;
  }

  /// Remove the last equality that was added through addEqualityForDirection.
  ///
  /// We do this by rolling back to the snapshot at the top of the stack, which
  /// should be a snapshot taken just before the last equality was added.
  void removeLastEquality() {
    assert(!snapshotStack.empty() && "Snapshot stack is empty!");
    simplex.rollback(snapshotStack.back());
    snapshotStack.pop_back();
  }

private:
  /// Returns coefficients of the expression 'dot_product(dir, x - y)',
  /// i.e.,   dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n
  ///       - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n,
  /// where n is the dimension of the original polytope.
  SmallVector<MPInt, 8> getCoeffsForDirection(ArrayRef<MPInt> dir) {
    assert(2 * dir.size() == simplex.getNumVariables() &&
           "Direction vector has wrong dimensionality");
    SmallVector<MPInt, 8> coeffs(dir.begin(), dir.end());
    coeffs.reserve(2 * dir.size());
    for (const MPInt &coeff : dir)
      coeffs.push_back(-coeff);
    coeffs.emplace_back(0); // constant term
    return coeffs;
  }

  Simplex simplex;
  /// The first index of the equality constraints, the index immediately after
  /// the last constraint in the initial product simplex.
  unsigned simplexConstraintOffset;
  /// A stack of snapshots, used for rolling back.
  SmallVector<unsigned, 8> snapshotStack;
};

/// Reduce the basis to try and find a direction in which the polytope is
/// "thin". This only works for bounded polytopes.
///
/// This is an implementation of the algorithm described in the paper
/// "An Implementation of Generalized Basis Reduction for Integer Programming"
/// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross.
///
/// Let b_{level}, b_{level + 1}, ... b_n be the current basis.
/// Let width_i(v) = max <v, x - y> where x and y are points in the original
/// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i.
///
/// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u
/// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i
/// be the dual variable associated with the constraint <b_i, x - y> = 0 when
/// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the
/// minimizing value of u, if it were allowed to be fractional. Due to
/// convexity, the minimizing integer value is either floor(dual_i) or
/// ceil(dual_i), so we just need to check which of these gives a lower
/// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i.
///
/// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new)
/// b_{i + 1} and decrement i (unless i = level, in which case we stay at the
/// same i). Otherwise, we increment i.
///
/// We keep f values and duals cached and invalidate them when necessary.
/// Whenever possible, we use them instead of recomputing them. We implement the
/// algorithm as follows.
///
/// In an iteration at i we need to compute:
///   a) width_i(b_{i + 1})
///   b) width_i(b_i)
///   c) the integer u that minimizes width_i(b_{i + 1} + u*b_i)
///
/// If width_i(b_i) is not already cached, we compute it.
///
/// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and
/// store the duals from this computation.
///
/// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value
/// of u as explained before, caches the duals from this computation, sets
/// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}).
///
/// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and
/// decrement i, resulting in the basis
/// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ...
/// with corresponding f values
/// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ...
/// The values up to i - 1 remain unchanged. We have just gotten the middle
/// value from updateBasisWithUAndGetFCandidate, so we can update that in the
/// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from
/// the cache. The iteration after decrementing needs exactly the duals from the
/// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache.
///
/// When incrementing i, no cached f values get invalidated. However, the cached
/// duals do get invalidated as the duals for the higher levels are different.
void Simplex::reduceBasis(Matrix &basis, unsigned level) {
  const Fraction epsilon(3, 4);

  if (level == basis.getNumRows() - 1)
    return;

  GBRSimplex gbrSimplex(*this);
  SmallVector<Fraction, 8> width;
  SmallVector<MPInt, 8> dual;
  MPInt dualDenom;

  // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the
  // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns
  // the new value of width_i(b_{i+1}).
  //
  // If dual_i is not an integer, the minimizing value must be either
  // floor(dual_i) or ceil(dual_i). We compute the expression for both and
  // choose the minimizing value.
  //
  // If dual_i is an integer, we don't need to perform these computations. We
  // know that in this case,
  //   a) u = dual_i.
  //   b) one can show that dual_j for j < i are the same duals we would have
  //      gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals
  //      are the ones already in the cache.
  //   c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i),
  //   which
  //      one can show is equal to width_{i+1}(b_{i+1}). The latter value must
  //      be in the cache, so we get it from there and return it.
  auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction {
    assert(i < level + dual.size() && "dual_i is not known!");

    MPInt u = floorDiv(dual[i - level], dualDenom);
    basis.addToRow(i, i + 1, u);
    if (dual[i - level] % dualDenom != 0) {
      SmallVector<MPInt, 8> candidateDual[2];
      MPInt candidateDualDenom[2];
      Fraction widthI[2];

      // Initially u is floor(dual) and basis reflects this.
      widthI[0] = gbrSimplex.computeWidthAndDuals(
          basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]);

      // Now try ceil(dual), i.e. floor(dual) + 1.
      ++u;
      basis.addToRow(i, i + 1, 1);
      widthI[1] = gbrSimplex.computeWidthAndDuals(
          basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]);

      unsigned j = widthI[0] < widthI[1] ? 0 : 1;
      if (j == 0)
        // Subtract 1 to go from u = ceil(dual) back to floor(dual).
        basis.addToRow(i, i + 1, -1);

      // width_i(b{i+1} + u*b_i) should be minimized at our value of u.
      // We assert that this holds by checking that the values of width_i at
      // u - 1 and u + 1 are greater than or equal to the value at u. If the
      // width is lesser at either of the adjacent values, then our computed
      // value of u is clearly not the minimizer. Otherwise by convexity the
      // computed value of u is really the minimizer.

      // Check the value at u - 1.
      assert(gbrSimplex.computeWidth(scaleAndAddForAssert(
                 basis.getRow(i + 1), MPInt(-1), basis.getRow(i))) >=
                 widthI[j] &&
             "Computed u value does not minimize the width!");
      // Check the value at u + 1.
      assert(gbrSimplex.computeWidth(scaleAndAddForAssert(
                 basis.getRow(i + 1), MPInt(+1), basis.getRow(i))) >=
                 widthI[j] &&
             "Computed u value does not minimize the width!");

      dual = std::move(candidateDual[j]);
      dualDenom = candidateDualDenom[j];
      return widthI[j];
    }

    assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved");
    // f_i(b_{i+1} + dual*b_i) == width_{i+1}(b_{i+1}) when `dual` minimizes the
    // LHS. (note: the basis has already been updated, so b_{i+1} + dual*b_i in
    // the above expression is equal to basis.getRow(i+1) below.)
    assert(gbrSimplex.computeWidth(basis.getRow(i + 1)) ==
           width[i + 1 - level]);
    return width[i + 1 - level];
  };

  // In the ith iteration of the loop, gbrSimplex has constraints for directions
  // from `level` to i - 1.
  unsigned i = level;
  while (i < basis.getNumRows() - 1) {
    if (i >= level + width.size()) {
      // We don't even know the value of f_i(b_i), so let's find that first.
      // We have to do this first since later we assume that width already
      // contains values up to and including i.

      assert((i == 0 || i - 1 < level + width.size()) &&
             "We are at level i but we don't know the value of width_{i-1}");

      // We don't actually use these duals at all, but it doesn't matter
      // because this case should only occur when i is level, and there are no
      // duals in that case anyway.
      assert(i == level && "This case should only occur when i == level");
      width.push_back(
          gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom));
    }

    if (i >= level + dual.size()) {
      assert(i + 1 >= level + width.size() &&
             "We don't know dual_i but we know width_{i+1}");
      // We don't know dual for our level, so let's find it.
      gbrSimplex.addEqualityForDirection(basis.getRow(i));
      width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual,
                                                      dualDenom));
      gbrSimplex.removeLastEquality();
    }

    // This variable stores width_i(b_{i+1} + u*b_i).
    Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i);
    if (widthICandidate < epsilon * width[i - level]) {
      basis.swapRows(i, i + 1);
      width[i - level] = widthICandidate;
      // The values of width_{i+1}(b_{i+1}) and higher may change after the
      // swap, so we remove the cached values here.
      width.resize(i - level + 1);
      if (i == level) {
        dual.clear();
        continue;
      }

      gbrSimplex.removeLastEquality();
      i--;
      continue;
    }

    // Invalidate duals since the higher level needs to recompute its own duals.
    dual.clear();
    gbrSimplex.addEqualityForDirection(basis.getRow(i));
    i++;
  }
}

/// Search for an integer sample point using a branch and bound algorithm.
///
/// Each row in the basis matrix is a vector, and the set of basis vectors
/// should span the space. Initially this is the identity matrix,
/// i.e., the basis vectors are just the variables.
///
/// In every level, a value is assigned to the level-th basis vector, as
/// follows. Compute the minimum and maximum rational values of this direction.
/// If only one integer point lies in this range, constrain the variable to
/// have this value and recurse to the next variable.
///
/// If the range has multiple values, perform generalized basis reduction via
/// reduceBasis and then compute the bounds again. Now we try constraining
/// this direction in the first value in this range and "recurse" to the next
/// level. If we fail to find a sample, we try assigning the direction the next
/// value in this range, and so on.
///
/// If no integer sample is found from any of the assignments, or if the range
/// contains no integer value, then of course the polytope is empty for the
/// current assignment of the values in previous levels, so we return to
/// the previous level.
///
/// If we reach the last level where all the variables have been assigned values
/// already, then we simply return the current sample point if it is integral,
/// and go back to the previous level otherwise.
///
/// To avoid potentially arbitrarily large recursion depths leading to stack
/// overflows, this algorithm is implemented iteratively.
std::optional<SmallVector<MPInt, 8>> Simplex::findIntegerSample() {
  if (empty)
    return {};

  unsigned nDims = var.size();
  Matrix basis = Matrix::identity(nDims);

  unsigned level = 0;
  // The snapshot just before constraining a direction to a value at each level.
  SmallVector<unsigned, 8> snapshotStack;
  // The maximum value in the range of the direction for each level.
  SmallVector<MPInt, 8> upperBoundStack;
  // The next value to try constraining the basis vector to at each level.
  SmallVector<MPInt, 8> nextValueStack;

  snapshotStack.reserve(basis.getNumRows());
  upperBoundStack.reserve(basis.getNumRows());
  nextValueStack.reserve(basis.getNumRows());
  while (level != -1u) {
    if (level == basis.getNumRows()) {
      // We've assigned values to all variables. Return if we have a sample,
      // or go back up to the previous level otherwise.
      if (auto maybeSample = getSamplePointIfIntegral())
        return maybeSample;
      level--;
      continue;
    }

    if (level >= upperBoundStack.size()) {
      // We haven't populated the stack values for this level yet, so we have
      // just come down a level ("recursed"). Find the lower and upper bounds.
      // If there is more than one integer point in the range, perform
      // generalized basis reduction.
      SmallVector<MPInt, 8> basisCoeffs =
          llvm::to_vector<8>(basis.getRow(level));
      basisCoeffs.emplace_back(0);

      auto [minRoundedUp, maxRoundedDown] = computeIntegerBounds(basisCoeffs);

      // We don't have any integer values in the range.
      // Pop the stack and return up a level.
      if (minRoundedUp.isEmpty() || maxRoundedDown.isEmpty()) {
        assert((minRoundedUp.isEmpty() && maxRoundedDown.isEmpty()) &&
               "If one bound is empty, both should be.");
        snapshotStack.pop_back();
        nextValueStack.pop_back();
        upperBoundStack.pop_back();
        level--;
        continue;
      }

      // We already checked the empty case above.
      assert((minRoundedUp.isBounded() && maxRoundedDown.isBounded()) &&
             "Polyhedron should be bounded!");

      // Heuristic: if the sample point is integral at this point, just return
      // it.
      if (auto maybeSample = getSamplePointIfIntegral())
        return *maybeSample;

      if (*minRoundedUp < *maxRoundedDown) {
        reduceBasis(basis, level);
        basisCoeffs = llvm::to_vector<8>(basis.getRow(level));
        basisCoeffs.emplace_back(0);
        std::tie(minRoundedUp, maxRoundedDown) =
            computeIntegerBounds(basisCoeffs);
      }

      snapshotStack.push_back(getSnapshot());
      // The smallest value in the range is the next value to try.
      // The values in the optionals are guaranteed to exist since we know the
      // polytope is bounded.
      nextValueStack.push_back(*minRoundedUp);
      upperBoundStack.push_back(*maxRoundedDown);
    }

    assert((snapshotStack.size() - 1 == level &&
            nextValueStack.size() - 1 == level &&
            upperBoundStack.size() - 1 == level) &&
           "Mismatched variable stack sizes!");

    // Whether we "recursed" or "returned" from a lower level, we rollback
    // to the snapshot of the starting state at this level. (in the "recursed"
    // case this has no effect)
    rollback(snapshotStack.back());
    MPInt nextValue = nextValueStack.back();
    ++nextValueStack.back();
    if (nextValue > upperBoundStack.back()) {
      // We have exhausted the range and found no solution. Pop the stack and
      // return up a level.
      snapshotStack.pop_back();
      nextValueStack.pop_back();
      upperBoundStack.pop_back();
      level--;
      continue;
    }

    // Try the next value in the range and "recurse" into the next level.
    SmallVector<MPInt, 8> basisCoeffs(basis.getRow(level).begin(),
                                      basis.getRow(level).end());
    basisCoeffs.push_back(-nextValue);
    addEquality(basisCoeffs);
    level++;
  }

  return {};
}

/// Compute the minimum and maximum integer values the expression can take. We
/// compute each separately.
std::pair<MaybeOptimum<MPInt>, MaybeOptimum<MPInt>>
Simplex::computeIntegerBounds(ArrayRef<MPInt> coeffs) {
  MaybeOptimum<MPInt> minRoundedUp(
      computeOptimum(Simplex::Direction::Down, coeffs).map(ceil));
  MaybeOptimum<MPInt> maxRoundedDown(
      computeOptimum(Simplex::Direction::Up, coeffs).map(floor));
  return {minRoundedUp, maxRoundedDown};
}

void SimplexBase::print(raw_ostream &os) const {
  os << "rows = " << getNumRows() << ", columns = " << getNumColumns() << "\n";
  if (empty)
    os << "Simplex marked empty!\n";
  os << "var: ";
  for (unsigned i = 0; i < var.size(); ++i) {
    if (i > 0)
      os << ", ";
    var[i].print(os);
  }
  os << "\ncon: ";
  for (unsigned i = 0; i < con.size(); ++i) {
    if (i > 0)
      os << ", ";
    con[i].print(os);
  }
  os << '\n';
  for (unsigned row = 0, e = getNumRows(); row < e; ++row) {
    if (row > 0)
      os << ", ";
    os << "r" << row << ": " << rowUnknown[row];
  }
  os << '\n';
  os << "c0: denom, c1: const";
  for (unsigned col = 2, e = getNumColumns(); col < e; ++col)
    os << ", c" << col << ": " << colUnknown[col];
  os << '\n';
  for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) {
    for (unsigned col = 0, numCols = getNumColumns(); col < numCols; ++col)
      os << tableau(row, col) << '\t';
    os << '\n';
  }
  os << '\n';
}

void SimplexBase::dump() const { print(llvm::errs()); }

bool Simplex::isRationalSubsetOf(const IntegerRelation &rel) {
  if (isEmpty())
    return true;

  for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i)
    if (findIneqType(rel.getInequality(i)) != IneqType::Redundant)
      return false;

  for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i)
    if (!isRedundantEquality(rel.getEquality(i)))
      return false;

  return true;
}

/// Returns the type of the inequality with coefficients `coeffs`.
/// Possible types are:
/// Redundant   The inequality is satisfied by all points in the polytope
/// Cut         The inequality is satisfied by some points, but not by others
/// Separate    The inequality is not satisfied by any point
///
/// Internally, this computes the minimum and the maximum the inequality with
/// coefficients `coeffs` can take. If the minimum is >= 0, the inequality holds
/// for all points in the polytope, so it is redundant.  If the minimum is <= 0
/// and the maximum is >= 0, the points in between the minimum and the
/// inequality do not satisfy it, the points in between the inequality and the
/// maximum satisfy it. Hence, it is a cut inequality. If both are < 0, no
/// points of the polytope satisfy the inequality, which means it is a separate
/// inequality.
Simplex::IneqType Simplex::findIneqType(ArrayRef<MPInt> coeffs) {
  MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs);
  if (minimum.isBounded() && *minimum >= Fraction(0, 1)) {
    return IneqType::Redundant;
  }
  MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs);
  if ((!minimum.isBounded() || *minimum <= Fraction(0, 1)) &&
      (!maximum.isBounded() || *maximum >= Fraction(0, 1))) {
    return IneqType::Cut;
  }
  return IneqType::Separate;
}

/// Checks whether the type of the inequality with coefficients `coeffs`
/// is Redundant.
bool Simplex::isRedundantInequality(ArrayRef<MPInt> coeffs) {
  assert(!empty &&
         "It is not meaningful to ask about redundancy in an empty set!");
  return findIneqType(coeffs) == IneqType::Redundant;
}

/// Check whether the equality given by `coeffs == 0` is redundant given
/// the existing constraints. This is redundant when `coeffs` is already
/// always zero under the existing constraints. `coeffs` is always zero
/// when the minimum and maximum value that `coeffs` can take are both zero.
bool Simplex::isRedundantEquality(ArrayRef<MPInt> coeffs) {
  assert(!empty &&
         "It is not meaningful to ask about redundancy in an empty set!");
  MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs);
  MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs);
  assert((!minimum.isEmpty() && !maximum.isEmpty()) &&
         "Optima should be non-empty for a non-empty set");
  return minimum.isBounded() && maximum.isBounded() &&
         *maximum == Fraction(0, 1) && *minimum == Fraction(0, 1);
}