File: Utils.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (522 lines) | stat: -rw-r--r-- 20,056 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
//===- Utils.cpp - General utilities for Presburger library ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Utility functions required by the Presburger Library.
//
//===----------------------------------------------------------------------===//

#include "mlir/Analysis/Presburger/Utils.h"
#include "mlir/Analysis/Presburger/IntegerRelation.h"
#include "mlir/Analysis/Presburger/MPInt.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Support/MathExtras.h"
#include <numeric>

#include <numeric>
#include <optional>

using namespace mlir;
using namespace presburger;

/// Normalize a division's `dividend` and the `divisor` by their GCD. For
/// example: if the dividend and divisor are [2,0,4] and 4 respectively,
/// they get normalized to [1,0,2] and 2. The divisor must be non-negative;
/// it is allowed for the divisor to be zero, but nothing is done in this case.
static void normalizeDivisionByGCD(MutableArrayRef<MPInt> dividend,
                                   MPInt &divisor) {
  assert(divisor > 0 && "divisor must be non-negative!");
  if (divisor == 0 || dividend.empty())
    return;
  // We take the absolute value of dividend's coefficients to make sure that
  // `gcd` is positive.
  MPInt gcd = presburger::gcd(abs(dividend.front()), divisor);

  // The reason for ignoring the constant term is as follows.
  // For a division:
  //      floor((a + m.f(x))/(m.d))
  // It can be replaced by:
  //      floor((floor(a/m) + f(x))/d)
  // Since `{a/m}/d` in the dividend satisfies 0 <= {a/m}/d < 1/d, it will not
  // influence the result of the floor division and thus, can be ignored.
  for (size_t i = 1, m = dividend.size() - 1; i < m; i++) {
    gcd = presburger::gcd(abs(dividend[i]), gcd);
    if (gcd == 1)
      return;
  }

  // Normalize the dividend and the denominator.
  std::transform(dividend.begin(), dividend.end(), dividend.begin(),
                 [gcd](MPInt &n) { return floorDiv(n, gcd); });
  divisor /= gcd;
}

/// Check if the pos^th variable can be represented as a division using upper
/// bound inequality at position `ubIneq` and lower bound inequality at position
/// `lbIneq`.
///
/// Let `var` be the pos^th variable, then `var` is equivalent to
/// `expr floordiv divisor` if there are constraints of the form:
///      0 <= expr - divisor * var <= divisor - 1
/// Rearranging, we have:
///       divisor * var - expr + (divisor - 1) >= 0  <-- Lower bound for 'var'
///      -divisor * var + expr                 >= 0  <-- Upper bound for 'var'
///
/// For example:
///     32*k >= 16*i + j - 31                 <-- Lower bound for 'k'
///     32*k  <= 16*i + j                     <-- Upper bound for 'k'
///     expr = 16*i + j, divisor = 32
///     k = ( 16*i + j ) floordiv 32
///
///     4q >= i + j - 2                       <-- Lower bound for 'q'
///     4q <= i + j + 1                       <-- Upper bound for 'q'
///     expr = i + j + 1, divisor = 4
///     q = (i + j + 1) floordiv 4
//
/// This function also supports detecting divisions from bounds that are
/// strictly tighter than the division bounds described above, since tighter
/// bounds imply the division bounds. For example:
///     4q - i - j + 2 >= 0                       <-- Lower bound for 'q'
///    -4q + i + j     >= 0                       <-- Tight upper bound for 'q'
///
/// To extract floor divisions with tighter bounds, we assume that that the
/// constraints are of the form:
///     c <= expr - divisior * var <= divisor - 1, where 0 <= c <= divisor - 1
/// Rearranging, we have:
///     divisor * var - expr + (divisor - 1) >= 0  <-- Lower bound for 'var'
///    -divisor * var + expr - c             >= 0  <-- Upper bound for 'var'
///
/// If successful, `expr` is set to dividend of the division and `divisor` is
/// set to the denominator of the division, which will be positive.
/// The final division expression is normalized by GCD.
static LogicalResult getDivRepr(const IntegerRelation &cst, unsigned pos,
                                unsigned ubIneq, unsigned lbIneq,
                                MutableArrayRef<MPInt> expr, MPInt &divisor) {

  assert(pos <= cst.getNumVars() && "Invalid variable position");
  assert(ubIneq <= cst.getNumInequalities() &&
         "Invalid upper bound inequality position");
  assert(lbIneq <= cst.getNumInequalities() &&
         "Invalid upper bound inequality position");
  assert(expr.size() == cst.getNumCols() && "Invalid expression size");
  assert(cst.atIneq(lbIneq, pos) > 0 && "lbIneq is not a lower bound!");
  assert(cst.atIneq(ubIneq, pos) < 0 && "ubIneq is not an upper bound!");

  // Extract divisor from the lower bound.
  divisor = cst.atIneq(lbIneq, pos);

  // First, check if the constraints are opposite of each other except the
  // constant term.
  unsigned i = 0, e = 0;
  for (i = 0, e = cst.getNumVars(); i < e; ++i)
    if (cst.atIneq(ubIneq, i) != -cst.atIneq(lbIneq, i))
      break;

  if (i < e)
    return failure();

  // Then, check if the constant term is of the proper form.
  // Due to the form of the upper/lower bound inequalities, the sum of their
  // constants is `divisor - 1 - c`. From this, we can extract c:
  MPInt constantSum = cst.atIneq(lbIneq, cst.getNumCols() - 1) +
                      cst.atIneq(ubIneq, cst.getNumCols() - 1);
  MPInt c = divisor - 1 - constantSum;

  // Check if `c` satisfies the condition `0 <= c <= divisor - 1`.
  // This also implictly checks that `divisor` is positive.
  if (!(0 <= c && c <= divisor - 1)) // NOLINT
    return failure();

  // The inequality pair can be used to extract the division.
  // Set `expr` to the dividend of the division except the constant term, which
  // is set below.
  for (i = 0, e = cst.getNumVars(); i < e; ++i)
    if (i != pos)
      expr[i] = cst.atIneq(ubIneq, i);

  // From the upper bound inequality's form, its constant term is equal to the
  // constant term of `expr`, minus `c`. From this,
  // constant term of `expr` = constant term of upper bound + `c`.
  expr.back() = cst.atIneq(ubIneq, cst.getNumCols() - 1) + c;
  normalizeDivisionByGCD(expr, divisor);

  return success();
}

/// Check if the pos^th variable can be represented as a division using
/// equality at position `eqInd`.
///
/// For example:
///     32*k == 16*i + j - 31                 <-- `eqInd` for 'k'
///     expr = 16*i + j - 31, divisor = 32
///     k = (16*i + j - 31) floordiv 32
///
/// If successful, `expr` is set to dividend of the division and `divisor` is
/// set to the denominator of the division. The final division expression is
/// normalized by GCD.
static LogicalResult getDivRepr(const IntegerRelation &cst, unsigned pos,
                                unsigned eqInd, MutableArrayRef<MPInt> expr,
                                MPInt &divisor) {

  assert(pos <= cst.getNumVars() && "Invalid variable position");
  assert(eqInd <= cst.getNumEqualities() && "Invalid equality position");
  assert(expr.size() == cst.getNumCols() && "Invalid expression size");

  // Extract divisor, the divisor can be negative and hence its sign information
  // is stored in `signDiv` to reverse the sign of dividend's coefficients.
  // Equality must involve the pos-th variable and hence `tempDiv` != 0.
  MPInt tempDiv = cst.atEq(eqInd, pos);
  if (tempDiv == 0)
    return failure();
  int signDiv = tempDiv < 0 ? -1 : 1;

  // The divisor is always a positive integer.
  divisor = tempDiv * signDiv;

  for (unsigned i = 0, e = cst.getNumVars(); i < e; ++i)
    if (i != pos)
      expr[i] = -signDiv * cst.atEq(eqInd, i);

  expr.back() = -signDiv * cst.atEq(eqInd, cst.getNumCols() - 1);
  normalizeDivisionByGCD(expr, divisor);

  return success();
}

// Returns `false` if the constraints depends on a variable for which an
// explicit representation has not been found yet, otherwise returns `true`.
static bool checkExplicitRepresentation(const IntegerRelation &cst,
                                        ArrayRef<bool> foundRepr,
                                        ArrayRef<MPInt> dividend,
                                        unsigned pos) {
  // Exit to avoid circular dependencies between divisions.
  for (unsigned c = 0, e = cst.getNumVars(); c < e; ++c) {
    if (c == pos)
      continue;

    if (!foundRepr[c] && dividend[c] != 0) {
      // Expression can't be constructed as it depends on a yet unknown
      // variable.
      //
      // TODO: Visit/compute the variables in an order so that this doesn't
      // happen. More complex but much more efficient.
      return false;
    }
  }

  return true;
}

/// Check if the pos^th variable can be expressed as a floordiv of an affine
/// function of other variables (where the divisor is a positive constant).
/// `foundRepr` contains a boolean for each variable indicating if the
/// explicit representation for that variable has already been computed.
/// Returns the `MaybeLocalRepr` struct which contains the indices of the
/// constraints that can be expressed as a floordiv of an affine function. If
/// the representation could be computed, `dividend` and `denominator` are set.
/// If the representation could not be computed, the kind attribute in
/// `MaybeLocalRepr` is set to None.
MaybeLocalRepr presburger::computeSingleVarRepr(const IntegerRelation &cst,
                                                ArrayRef<bool> foundRepr,
                                                unsigned pos,
                                                MutableArrayRef<MPInt> dividend,
                                                MPInt &divisor) {
  assert(pos < cst.getNumVars() && "invalid position");
  assert(foundRepr.size() == cst.getNumVars() &&
         "Size of foundRepr does not match total number of variables");
  assert(dividend.size() == cst.getNumCols() && "Invalid dividend size");

  SmallVector<unsigned, 4> lbIndices, ubIndices, eqIndices;
  cst.getLowerAndUpperBoundIndices(pos, &lbIndices, &ubIndices, &eqIndices);
  MaybeLocalRepr repr{};

  for (unsigned ubPos : ubIndices) {
    for (unsigned lbPos : lbIndices) {
      // Attempt to get divison representation from ubPos, lbPos.
      if (failed(getDivRepr(cst, pos, ubPos, lbPos, dividend, divisor)))
        continue;

      if (!checkExplicitRepresentation(cst, foundRepr, dividend, pos))
        continue;

      repr.kind = ReprKind::Inequality;
      repr.repr.inequalityPair = {ubPos, lbPos};
      return repr;
    }
  }
  for (unsigned eqPos : eqIndices) {
    // Attempt to get divison representation from eqPos.
    if (failed(getDivRepr(cst, pos, eqPos, dividend, divisor)))
      continue;

    if (!checkExplicitRepresentation(cst, foundRepr, dividend, pos))
      continue;

    repr.kind = ReprKind::Equality;
    repr.repr.equalityIdx = eqPos;
    return repr;
  }
  return repr;
}

MaybeLocalRepr presburger::computeSingleVarRepr(
    const IntegerRelation &cst, ArrayRef<bool> foundRepr, unsigned pos,
    SmallVector<int64_t, 8> &dividend, unsigned &divisor) {
  SmallVector<MPInt, 8> dividendMPInt(cst.getNumCols());
  MPInt divisorMPInt;
  MaybeLocalRepr result =
      computeSingleVarRepr(cst, foundRepr, pos, dividendMPInt, divisorMPInt);
  dividend = getInt64Vec(dividendMPInt);
  divisor = unsigned(int64_t(divisorMPInt));
  return result;
}

llvm::SmallBitVector presburger::getSubrangeBitVector(unsigned len,
                                                      unsigned setOffset,
                                                      unsigned numSet) {
  llvm::SmallBitVector vec(len, false);
  vec.set(setOffset, setOffset + numSet);
  return vec;
}

void presburger::mergeLocalVars(
    IntegerRelation &relA, IntegerRelation &relB,
    llvm::function_ref<bool(unsigned i, unsigned j)> merge) {
  assert(relA.getSpace().isCompatible(relB.getSpace()) &&
         "Spaces should be compatible.");

  // Merge local vars of relA and relB without using division information,
  // i.e. append local vars of `relB` to `relA` and insert local vars of `relA`
  // to `relB` at start of its local vars.
  unsigned initLocals = relA.getNumLocalVars();
  relA.insertVar(VarKind::Local, relA.getNumLocalVars(),
                 relB.getNumLocalVars());
  relB.insertVar(VarKind::Local, 0, initLocals);

  // Get division representations from each rel.
  DivisionRepr divsA = relA.getLocalReprs();
  DivisionRepr divsB = relB.getLocalReprs();

  for (unsigned i = initLocals, e = divsB.getNumDivs(); i < e; ++i)
    divsA.setDiv(i, divsB.getDividend(i), divsB.getDenom(i));

  // Remove duplicate divisions from divsA. The removing duplicate divisions
  // call, calls `merge` to effectively merge divisions in relA and relB.
  divsA.removeDuplicateDivs(merge);
}

SmallVector<MPInt, 8> presburger::getDivUpperBound(ArrayRef<MPInt> dividend,
                                                   const MPInt &divisor,
                                                   unsigned localVarIdx) {
  assert(divisor > 0 && "divisor must be positive!");
  assert(dividend[localVarIdx] == 0 &&
         "Local to be set to division must have zero coeff!");
  SmallVector<MPInt, 8> ineq(dividend.begin(), dividend.end());
  ineq[localVarIdx] = -divisor;
  return ineq;
}

SmallVector<MPInt, 8> presburger::getDivLowerBound(ArrayRef<MPInt> dividend,
                                                   const MPInt &divisor,
                                                   unsigned localVarIdx) {
  assert(divisor > 0 && "divisor must be positive!");
  assert(dividend[localVarIdx] == 0 &&
         "Local to be set to division must have zero coeff!");
  SmallVector<MPInt, 8> ineq(dividend.size());
  std::transform(dividend.begin(), dividend.end(), ineq.begin(),
                 std::negate<MPInt>());
  ineq[localVarIdx] = divisor;
  ineq.back() += divisor - 1;
  return ineq;
}

MPInt presburger::gcdRange(ArrayRef<MPInt> range) {
  MPInt gcd(0);
  for (const MPInt &elem : range) {
    gcd = presburger::gcd(gcd, abs(elem));
    if (gcd == 1)
      return gcd;
  }
  return gcd;
}

MPInt presburger::normalizeRange(MutableArrayRef<MPInt> range) {
  MPInt gcd = gcdRange(range);
  if ((gcd == 0) || (gcd == 1))
    return gcd;
  for (MPInt &elem : range)
    elem /= gcd;
  return gcd;
}

void presburger::normalizeDiv(MutableArrayRef<MPInt> num, MPInt &denom) {
  assert(denom > 0 && "denom must be positive!");
  MPInt gcd = presburger::gcd(gcdRange(num), denom);
  for (MPInt &coeff : num)
    coeff /= gcd;
  denom /= gcd;
}

SmallVector<MPInt, 8> presburger::getNegatedCoeffs(ArrayRef<MPInt> coeffs) {
  SmallVector<MPInt, 8> negatedCoeffs;
  negatedCoeffs.reserve(coeffs.size());
  for (const MPInt &coeff : coeffs)
    negatedCoeffs.emplace_back(-coeff);
  return negatedCoeffs;
}

SmallVector<MPInt, 8> presburger::getComplementIneq(ArrayRef<MPInt> ineq) {
  SmallVector<MPInt, 8> coeffs;
  coeffs.reserve(ineq.size());
  for (const MPInt &coeff : ineq)
    coeffs.emplace_back(-coeff);
  --coeffs.back();
  return coeffs;
}

SmallVector<std::optional<MPInt>, 4>
DivisionRepr::divValuesAt(ArrayRef<MPInt> point) const {
  assert(point.size() == getNumNonDivs() && "Incorrect point size");

  SmallVector<std::optional<MPInt>, 4> divValues(getNumDivs(), std::nullopt);
  bool changed = true;
  while (changed) {
    changed = false;
    for (unsigned i = 0, e = getNumDivs(); i < e; ++i) {
      // If division value is found, continue;
      if (divValues[i])
        continue;

      ArrayRef<MPInt> dividend = getDividend(i);
      MPInt divVal(0);

      // Check if we have all the division values required for this division.
      unsigned j, f;
      for (j = 0, f = getNumDivs(); j < f; ++j) {
        if (dividend[getDivOffset() + j] == 0)
          continue;
        // Division value required, but not found yet.
        if (!divValues[j])
          break;
        divVal += dividend[getDivOffset() + j] * *divValues[j];
      }

      // We have some division values that are still not found, but are required
      // to find the value of this division.
      if (j < f)
        continue;

      // Fill remaining values.
      divVal = std::inner_product(point.begin(), point.end(), dividend.begin(),
                                  divVal);
      // Add constant.
      divVal += dividend.back();
      // Take floor division with denominator.
      divVal = floorDiv(divVal, denoms[i]);

      // Set div value and continue.
      divValues[i] = divVal;
      changed = true;
    }
  }

  return divValues;
}

void DivisionRepr::removeDuplicateDivs(
    llvm::function_ref<bool(unsigned i, unsigned j)> merge) {

  // Find and merge duplicate divisions.
  // TODO: Add division normalization to support divisions that differ by
  // a constant.
  // TODO: Add division ordering such that a division representation for local
  // variable at position `i` only depends on local variables at position <
  // `i`. This would make sure that all divisions depending on other local
  // variables that can be merged, are merged.
  normalizeDivs();
  for (unsigned i = 0; i < getNumDivs(); ++i) {
    // Check if a division representation exists for the `i^th` local var.
    if (denoms[i] == 0)
      continue;
    // Check if a division exists which is a duplicate of the division at `i`.
    for (unsigned j = i + 1; j < getNumDivs(); ++j) {
      // Check if a division representation exists for the `j^th` local var.
      if (denoms[j] == 0)
        continue;
      // Check if the denominators match.
      if (denoms[i] != denoms[j])
        continue;
      // Check if the representations are equal.
      if (dividends.getRow(i) != dividends.getRow(j))
        continue;

      // Merge divisions at position `j` into division at position `i`. If
      // merge fails, do not merge these divs.
      bool mergeResult = merge(i, j);
      if (!mergeResult)
        continue;

      // Update division information to reflect merging.
      unsigned divOffset = getDivOffset();
      dividends.addToColumn(divOffset + j, divOffset + i, /*scale=*/1);
      dividends.removeColumn(divOffset + j);
      dividends.removeRow(j);
      denoms.erase(denoms.begin() + j);

      // Since `j` can never be zero, we do not need to worry about overflows.
      --j;
    }
  }
}

void DivisionRepr::normalizeDivs() {
  for (unsigned i = 0, e = getNumDivs(); i < e; ++i) {
    if (getDenom(i) == 0 || getDividend(i).empty())
      continue;
    normalizeDiv(getDividend(i), getDenom(i));
  }
}

void DivisionRepr::insertDiv(unsigned pos, ArrayRef<MPInt> dividend,
                             const MPInt &divisor) {
  assert(pos <= getNumDivs() && "Invalid insertion position");
  assert(dividend.size() == getNumVars() + 1 && "Incorrect dividend size");

  dividends.appendExtraRow(dividend);
  denoms.insert(denoms.begin() + pos, divisor);
  dividends.insertColumn(getDivOffset() + pos);
}

void DivisionRepr::insertDiv(unsigned pos, unsigned num) {
  assert(pos <= getNumDivs() && "Invalid insertion position");
  dividends.insertColumns(getDivOffset() + pos, num);
  dividends.insertRows(pos, num);
  denoms.insert(denoms.begin() + pos, num, MPInt(0));
}

void DivisionRepr::print(raw_ostream &os) const {
  os << "Dividends:\n";
  dividends.print(os);
  os << "Denominators\n";
  for (unsigned i = 0, e = denoms.size(); i < e; ++i)
    os << denoms[i] << " ";
  os << "\n";
}

void DivisionRepr::dump() const { print(llvm::errs()); }

SmallVector<MPInt, 8> presburger::getMPIntVec(ArrayRef<int64_t> range) {
  SmallVector<MPInt, 8> result(range.size());
  std::transform(range.begin(), range.end(), result.begin(), mpintFromInt64);
  return result;
}

SmallVector<int64_t, 8> presburger::getInt64Vec(ArrayRef<MPInt> range) {
  SmallVector<int64_t, 8> result(range.size());
  std::transform(range.begin(), range.end(), result.begin(), int64FromMPInt);
  return result;
}