1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
//===- AsmParserState.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/AsmParser/AsmParserState.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/SymbolTable.h"
#include "llvm/ADT/StringExtras.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// AsmParserState::Impl
//===----------------------------------------------------------------------===//
struct AsmParserState::Impl {
/// A map from a SymbolRefAttr to a range of uses.
using SymbolUseMap =
DenseMap<Attribute, SmallVector<SmallVector<SMRange>, 0>>;
struct PartialOpDef {
explicit PartialOpDef(const OperationName &opName) {
if (opName.hasTrait<OpTrait::SymbolTable>())
symbolTable = std::make_unique<SymbolUseMap>();
}
/// Return if this operation is a symbol table.
bool isSymbolTable() const { return symbolTable.get(); }
/// If this operation is a symbol table, the following contains symbol uses
/// within this operation.
std::unique_ptr<SymbolUseMap> symbolTable;
};
/// Resolve any symbol table uses in the IR.
void resolveSymbolUses();
/// A mapping from operations in the input source file to their parser state.
SmallVector<std::unique_ptr<OperationDefinition>> operations;
DenseMap<Operation *, unsigned> operationToIdx;
/// A mapping from blocks in the input source file to their parser state.
SmallVector<std::unique_ptr<BlockDefinition>> blocks;
DenseMap<Block *, unsigned> blocksToIdx;
/// A set of value definitions that are placeholders for forward references.
/// This map should be empty if the parser finishes successfully.
DenseMap<Value, SmallVector<SMLoc>> placeholderValueUses;
/// The symbol table operations within the IR.
SmallVector<std::pair<Operation *, std::unique_ptr<SymbolUseMap>>>
symbolTableOperations;
/// A stack of partial operation definitions that have been started but not
/// yet finalized.
SmallVector<PartialOpDef> partialOperations;
/// A stack of symbol use scopes. This is used when collecting symbol table
/// uses during parsing.
SmallVector<SymbolUseMap *> symbolUseScopes;
/// A symbol table containing all of the symbol table operations in the IR.
SymbolTableCollection symbolTable;
};
void AsmParserState::Impl::resolveSymbolUses() {
SmallVector<Operation *> symbolOps;
for (auto &opAndUseMapIt : symbolTableOperations) {
for (auto &it : *opAndUseMapIt.second) {
symbolOps.clear();
if (failed(symbolTable.lookupSymbolIn(
opAndUseMapIt.first, cast<SymbolRefAttr>(it.first), symbolOps)))
continue;
for (ArrayRef<SMRange> useRange : it.second) {
for (const auto &symIt : llvm::zip(symbolOps, useRange)) {
auto opIt = operationToIdx.find(std::get<0>(symIt));
if (opIt != operationToIdx.end())
operations[opIt->second]->symbolUses.push_back(std::get<1>(symIt));
}
}
}
}
}
//===----------------------------------------------------------------------===//
// AsmParserState
//===----------------------------------------------------------------------===//
AsmParserState::AsmParserState() : impl(std::make_unique<Impl>()) {}
AsmParserState::~AsmParserState() = default;
AsmParserState &AsmParserState::operator=(AsmParserState &&other) {
impl = std::move(other.impl);
return *this;
}
//===----------------------------------------------------------------------===//
// Access State
auto AsmParserState::getBlockDefs() const -> iterator_range<BlockDefIterator> {
return llvm::make_pointee_range(llvm::ArrayRef(impl->blocks));
}
auto AsmParserState::getBlockDef(Block *block) const
-> const BlockDefinition * {
auto it = impl->blocksToIdx.find(block);
return it == impl->blocksToIdx.end() ? nullptr : &*impl->blocks[it->second];
}
auto AsmParserState::getOpDefs() const -> iterator_range<OperationDefIterator> {
return llvm::make_pointee_range(llvm::ArrayRef(impl->operations));
}
auto AsmParserState::getOpDef(Operation *op) const
-> const OperationDefinition * {
auto it = impl->operationToIdx.find(op);
return it == impl->operationToIdx.end() ? nullptr
: &*impl->operations[it->second];
}
/// Lex a string token whose contents start at the given `curPtr`. Returns the
/// position at the end of the string, after a terminal or invalid character
/// (e.g. `"` or `\0`).
static const char *lexLocStringTok(const char *curPtr) {
while (char c = *curPtr++) {
// Check for various terminal characters.
if (StringRef("\"\n\v\f").contains(c))
return curPtr;
// Check for escape sequences.
if (c == '\\') {
// Check a few known escapes and \xx hex digits.
if (*curPtr == '"' || *curPtr == '\\' || *curPtr == 'n' || *curPtr == 't')
++curPtr;
else if (llvm::isHexDigit(*curPtr) && llvm::isHexDigit(curPtr[1]))
curPtr += 2;
else
return curPtr;
}
}
// If we hit this point, we've reached the end of the buffer. Update the end
// pointer to not point past the buffer.
return curPtr - 1;
}
SMRange AsmParserState::convertIdLocToRange(SMLoc loc) {
if (!loc.isValid())
return SMRange();
const char *curPtr = loc.getPointer();
// Check if this is a string token.
if (*curPtr == '"') {
curPtr = lexLocStringTok(curPtr + 1);
// Otherwise, default to handling an identifier.
} else {
// Return if the given character is a valid identifier character.
auto isIdentifierChar = [](char c) {
return isalnum(c) || c == '$' || c == '.' || c == '_' || c == '-';
};
while (*curPtr && isIdentifierChar(*(++curPtr)))
continue;
}
return SMRange(loc, SMLoc::getFromPointer(curPtr));
}
//===----------------------------------------------------------------------===//
// Populate State
void AsmParserState::initialize(Operation *topLevelOp) {
startOperationDefinition(topLevelOp->getName());
// If the top-level operation is a symbol table, push a new symbol scope.
Impl::PartialOpDef &partialOpDef = impl->partialOperations.back();
if (partialOpDef.isSymbolTable())
impl->symbolUseScopes.push_back(partialOpDef.symbolTable.get());
}
void AsmParserState::finalize(Operation *topLevelOp) {
assert(!impl->partialOperations.empty() &&
"expected valid partial operation definition");
Impl::PartialOpDef partialOpDef = impl->partialOperations.pop_back_val();
// If this operation is a symbol table, resolve any symbol uses.
if (partialOpDef.isSymbolTable()) {
impl->symbolTableOperations.emplace_back(
topLevelOp, std::move(partialOpDef.symbolTable));
}
impl->resolveSymbolUses();
}
void AsmParserState::startOperationDefinition(const OperationName &opName) {
impl->partialOperations.emplace_back(opName);
}
void AsmParserState::finalizeOperationDefinition(
Operation *op, SMRange nameLoc, SMLoc endLoc,
ArrayRef<std::pair<unsigned, SMLoc>> resultGroups) {
assert(!impl->partialOperations.empty() &&
"expected valid partial operation definition");
Impl::PartialOpDef partialOpDef = impl->partialOperations.pop_back_val();
// Build the full operation definition.
std::unique_ptr<OperationDefinition> def =
std::make_unique<OperationDefinition>(op, nameLoc, endLoc);
for (auto &resultGroup : resultGroups)
def->resultGroups.emplace_back(resultGroup.first,
convertIdLocToRange(resultGroup.second));
impl->operationToIdx.try_emplace(op, impl->operations.size());
impl->operations.emplace_back(std::move(def));
// If this operation is a symbol table, resolve any symbol uses.
if (partialOpDef.isSymbolTable()) {
impl->symbolTableOperations.emplace_back(
op, std::move(partialOpDef.symbolTable));
}
}
void AsmParserState::startRegionDefinition() {
assert(!impl->partialOperations.empty() &&
"expected valid partial operation definition");
// If the parent operation of this region is a symbol table, we also push a
// new symbol scope.
Impl::PartialOpDef &partialOpDef = impl->partialOperations.back();
if (partialOpDef.isSymbolTable())
impl->symbolUseScopes.push_back(partialOpDef.symbolTable.get());
}
void AsmParserState::finalizeRegionDefinition() {
assert(!impl->partialOperations.empty() &&
"expected valid partial operation definition");
// If the parent operation of this region is a symbol table, pop the symbol
// scope for this region.
Impl::PartialOpDef &partialOpDef = impl->partialOperations.back();
if (partialOpDef.isSymbolTable())
impl->symbolUseScopes.pop_back();
}
void AsmParserState::addDefinition(Block *block, SMLoc location) {
auto it = impl->blocksToIdx.find(block);
if (it == impl->blocksToIdx.end()) {
impl->blocksToIdx.try_emplace(block, impl->blocks.size());
impl->blocks.emplace_back(std::make_unique<BlockDefinition>(
block, convertIdLocToRange(location)));
return;
}
// If an entry already exists, this was a forward declaration that now has a
// proper definition.
impl->blocks[it->second]->definition.loc = convertIdLocToRange(location);
}
void AsmParserState::addDefinition(BlockArgument blockArg, SMLoc location) {
auto it = impl->blocksToIdx.find(blockArg.getOwner());
assert(it != impl->blocksToIdx.end() &&
"expected owner block to have an entry");
BlockDefinition &def = *impl->blocks[it->second];
unsigned argIdx = blockArg.getArgNumber();
if (def.arguments.size() <= argIdx)
def.arguments.resize(argIdx + 1);
def.arguments[argIdx] = SMDefinition(convertIdLocToRange(location));
}
void AsmParserState::addUses(Value value, ArrayRef<SMLoc> locations) {
// Handle the case where the value is an operation result.
if (OpResult result = dyn_cast<OpResult>(value)) {
// Check to see if a definition for the parent operation has been recorded.
// If one hasn't, we treat the provided value as a placeholder value that
// will be refined further later.
Operation *parentOp = result.getOwner();
auto existingIt = impl->operationToIdx.find(parentOp);
if (existingIt == impl->operationToIdx.end()) {
impl->placeholderValueUses[value].append(locations.begin(),
locations.end());
return;
}
// If a definition does exist, locate the value's result group and add the
// use. The result groups are ordered by increasing start index, so we just
// need to find the last group that has a smaller/equal start index.
unsigned resultNo = result.getResultNumber();
OperationDefinition &def = *impl->operations[existingIt->second];
for (auto &resultGroup : llvm::reverse(def.resultGroups)) {
if (resultNo >= resultGroup.startIndex) {
for (SMLoc loc : locations)
resultGroup.definition.uses.push_back(convertIdLocToRange(loc));
return;
}
}
llvm_unreachable("expected valid result group for value use");
}
// Otherwise, this is a block argument.
BlockArgument arg = cast<BlockArgument>(value);
auto existingIt = impl->blocksToIdx.find(arg.getOwner());
assert(existingIt != impl->blocksToIdx.end() &&
"expected valid block definition for block argument");
BlockDefinition &blockDef = *impl->blocks[existingIt->second];
SMDefinition &argDef = blockDef.arguments[arg.getArgNumber()];
for (SMLoc loc : locations)
argDef.uses.emplace_back(convertIdLocToRange(loc));
}
void AsmParserState::addUses(Block *block, ArrayRef<SMLoc> locations) {
auto it = impl->blocksToIdx.find(block);
if (it == impl->blocksToIdx.end()) {
it = impl->blocksToIdx.try_emplace(block, impl->blocks.size()).first;
impl->blocks.emplace_back(std::make_unique<BlockDefinition>(block));
}
BlockDefinition &def = *impl->blocks[it->second];
for (SMLoc loc : locations)
def.definition.uses.push_back(convertIdLocToRange(loc));
}
void AsmParserState::addUses(SymbolRefAttr refAttr,
ArrayRef<SMRange> locations) {
// Ignore this symbol if no scopes are active.
if (impl->symbolUseScopes.empty())
return;
assert((refAttr.getNestedReferences().size() + 1) == locations.size() &&
"expected the same number of references as provided locations");
(*impl->symbolUseScopes.back())[refAttr].emplace_back(locations.begin(),
locations.end());
}
void AsmParserState::refineDefinition(Value oldValue, Value newValue) {
auto it = impl->placeholderValueUses.find(oldValue);
assert(it != impl->placeholderValueUses.end() &&
"expected `oldValue` to be a placeholder");
addUses(newValue, it->second);
impl->placeholderValueUses.erase(oldValue);
}
|