1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
//===- DialectQuant.cpp - 'quant' dialect submodule -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir-c/Dialect/Quant.h"
#include "mlir-c/IR.h"
#include "mlir/Bindings/Python/PybindAdaptors.h"
namespace py = pybind11;
using namespace llvm;
using namespace mlir;
using namespace mlir::python::adaptors;
static void populateDialectQuantSubmodule(const py::module &m) {
//===-------------------------------------------------------------------===//
// QuantizedType
//===-------------------------------------------------------------------===//
auto quantizedType =
mlir_type_subclass(m, "QuantizedType", mlirTypeIsAQuantizedType);
quantizedType.def_staticmethod(
"default_minimum_for_integer",
[](bool isSigned, unsigned integralWidth) {
return mlirQuantizedTypeGetDefaultMinimumForInteger(isSigned,
integralWidth);
},
"Default minimum value for the integer with the specified signedness and "
"bit width.",
py::arg("is_signed"), py::arg("integral_width"));
quantizedType.def_staticmethod(
"default_maximum_for_integer",
[](bool isSigned, unsigned integralWidth) {
return mlirQuantizedTypeGetDefaultMaximumForInteger(isSigned,
integralWidth);
},
"Default maximum value for the integer with the specified signedness and "
"bit width.",
py::arg("is_signed"), py::arg("integral_width"));
quantizedType.def_property_readonly(
"expressed_type",
[](MlirType type) { return mlirQuantizedTypeGetExpressedType(type); },
"Type expressed by this quantized type.");
quantizedType.def_property_readonly(
"flags", [](MlirType type) { return mlirQuantizedTypeGetFlags(type); },
"Flags of this quantized type (named accessors should be preferred to "
"this)");
quantizedType.def_property_readonly(
"is_signed",
[](MlirType type) { return mlirQuantizedTypeIsSigned(type); },
"Signedness of this quantized type.");
quantizedType.def_property_readonly(
"storage_type",
[](MlirType type) { return mlirQuantizedTypeGetStorageType(type); },
"Storage type backing this quantized type.");
quantizedType.def_property_readonly(
"storage_type_min",
[](MlirType type) { return mlirQuantizedTypeGetStorageTypeMin(type); },
"The minimum value held by the storage type of this quantized type.");
quantizedType.def_property_readonly(
"storage_type_max",
[](MlirType type) { return mlirQuantizedTypeGetStorageTypeMax(type); },
"The maximum value held by the storage type of this quantized type.");
quantizedType.def_property_readonly(
"storage_type_integral_width",
[](MlirType type) {
return mlirQuantizedTypeGetStorageTypeIntegralWidth(type);
},
"The bitwidth of the storage type of this quantized type.");
quantizedType.def(
"is_compatible_expressed_type",
[](MlirType type, MlirType candidate) {
return mlirQuantizedTypeIsCompatibleExpressedType(type, candidate);
},
"Checks whether the candidate type can be expressed by this quantized "
"type.",
py::arg("candidate"));
quantizedType.def_property_readonly(
"quantized_element_type",
[](MlirType type) {
return mlirQuantizedTypeGetQuantizedElementType(type);
},
"Element type of this quantized type expressed as quantized type.");
quantizedType.def(
"cast_from_storage_type",
[](MlirType type, MlirType candidate) {
MlirType castResult =
mlirQuantizedTypeCastFromStorageType(type, candidate);
if (!mlirTypeIsNull(castResult))
return castResult;
throw py::type_error("Invalid cast.");
},
"Casts from a type based on the storage type of this quantized type to a "
"corresponding type based on the quantized type. Raises TypeError if the "
"cast is not valid.",
py::arg("candidate"));
quantizedType.def_staticmethod(
"cast_to_storage_type",
[](MlirType type) {
MlirType castResult = mlirQuantizedTypeCastToStorageType(type);
if (!mlirTypeIsNull(castResult))
return castResult;
throw py::type_error("Invalid cast.");
},
"Casts from a type based on a quantized type to a corresponding type "
"based on the storage type of this quantized type. Raises TypeError if "
"the cast is not valid.",
py::arg("type"));
quantizedType.def(
"cast_from_expressed_type",
[](MlirType type, MlirType candidate) {
MlirType castResult =
mlirQuantizedTypeCastFromExpressedType(type, candidate);
if (!mlirTypeIsNull(castResult))
return castResult;
throw py::type_error("Invalid cast.");
},
"Casts from a type based on the expressed type of this quantized type to "
"a corresponding type based on the quantized type. Raises TypeError if "
"the cast is not valid.",
py::arg("candidate"));
quantizedType.def_staticmethod(
"cast_to_expressed_type",
[](MlirType type) {
MlirType castResult = mlirQuantizedTypeCastToExpressedType(type);
if (!mlirTypeIsNull(castResult))
return castResult;
throw py::type_error("Invalid cast.");
},
"Casts from a type based on a quantized type to a corresponding type "
"based on the expressed type of this quantized type. Raises TypeError if "
"the cast is not valid.",
py::arg("type"));
quantizedType.def(
"cast_expressed_to_storage_type",
[](MlirType type, MlirType candidate) {
MlirType castResult =
mlirQuantizedTypeCastExpressedToStorageType(type, candidate);
if (!mlirTypeIsNull(castResult))
return castResult;
throw py::type_error("Invalid cast.");
},
"Casts from a type based on the expressed type of this quantized type to "
"a corresponding type based on the storage type. Raises TypeError if the "
"cast is not valid.",
py::arg("candidate"));
quantizedType.get_class().attr("FLAG_SIGNED") =
mlirQuantizedTypeGetSignedFlag();
//===-------------------------------------------------------------------===//
// AnyQuantizedType
//===-------------------------------------------------------------------===//
auto anyQuantizedType =
mlir_type_subclass(m, "AnyQuantizedType", mlirTypeIsAAnyQuantizedType,
quantizedType.get_class());
anyQuantizedType.def_classmethod(
"get",
[](py::object cls, unsigned flags, MlirType storageType,
MlirType expressedType, int64_t storageTypeMin,
int64_t storageTypeMax) {
return cls(mlirAnyQuantizedTypeGet(flags, storageType, expressedType,
storageTypeMin, storageTypeMax));
},
"Gets an instance of AnyQuantizedType in the same context as the "
"provided storage type.",
py::arg("cls"), py::arg("flags"), py::arg("storage_type"),
py::arg("expressed_type"), py::arg("storage_type_min"),
py::arg("storage_type_max"));
//===-------------------------------------------------------------------===//
// UniformQuantizedType
//===-------------------------------------------------------------------===//
auto uniformQuantizedType = mlir_type_subclass(
m, "UniformQuantizedType", mlirTypeIsAUniformQuantizedType,
quantizedType.get_class());
uniformQuantizedType.def_classmethod(
"get",
[](py::object cls, unsigned flags, MlirType storageType,
MlirType expressedType, double scale, int64_t zeroPoint,
int64_t storageTypeMin, int64_t storageTypeMax) {
return cls(mlirUniformQuantizedTypeGet(flags, storageType,
expressedType, scale, zeroPoint,
storageTypeMin, storageTypeMax));
},
"Gets an instance of UniformQuantizedType in the same context as the "
"provided storage type.",
py::arg("cls"), py::arg("flags"), py::arg("storage_type"),
py::arg("expressed_type"), py::arg("scale"), py::arg("zero_point"),
py::arg("storage_type_min"), py::arg("storage_type_max"));
uniformQuantizedType.def_property_readonly(
"scale",
[](MlirType type) { return mlirUniformQuantizedTypeGetScale(type); },
"The scale designates the difference between the real values "
"corresponding to consecutive quantized values differing by 1.");
uniformQuantizedType.def_property_readonly(
"zero_point",
[](MlirType type) { return mlirUniformQuantizedTypeGetZeroPoint(type); },
"The storage value corresponding to the real value 0 in the affine "
"equation.");
uniformQuantizedType.def_property_readonly(
"is_fixed_point",
[](MlirType type) { return mlirUniformQuantizedTypeIsFixedPoint(type); },
"Fixed point values are real numbers divided by a scale.");
//===-------------------------------------------------------------------===//
// UniformQuantizedPerAxisType
//===-------------------------------------------------------------------===//
auto uniformQuantizedPerAxisType = mlir_type_subclass(
m, "UniformQuantizedPerAxisType", mlirTypeIsAUniformQuantizedPerAxisType,
quantizedType.get_class());
uniformQuantizedPerAxisType.def_classmethod(
"get",
[](py::object cls, unsigned flags, MlirType storageType,
MlirType expressedType, std::vector<double> scales,
std::vector<int64_t> zeroPoints, int32_t quantizedDimension,
int64_t storageTypeMin, int64_t storageTypeMax) {
if (scales.size() != zeroPoints.size())
throw py::value_error(
"Mismatching number of scales and zero points.");
auto nDims = static_cast<intptr_t>(scales.size());
return cls(mlirUniformQuantizedPerAxisTypeGet(
flags, storageType, expressedType, nDims, scales.data(),
zeroPoints.data(), quantizedDimension, storageTypeMin,
storageTypeMax));
},
"Gets an instance of UniformQuantizedPerAxisType in the same context as "
"the provided storage type.",
py::arg("cls"), py::arg("flags"), py::arg("storage_type"),
py::arg("expressed_type"), py::arg("scales"), py::arg("zero_points"),
py::arg("quantized_dimension"), py::arg("storage_type_min"),
py::arg("storage_type_max"));
uniformQuantizedPerAxisType.def_property_readonly(
"scales",
[](MlirType type) {
intptr_t nDim = mlirUniformQuantizedPerAxisTypeGetNumDims(type);
std::vector<double> scales;
scales.reserve(nDim);
for (intptr_t i = 0; i < nDim; ++i) {
double scale = mlirUniformQuantizedPerAxisTypeGetScale(type, i);
scales.push_back(scale);
}
},
"The scales designate the difference between the real values "
"corresponding to consecutive quantized values differing by 1. The ith "
"scale corresponds to the ith slice in the quantized_dimension.");
uniformQuantizedPerAxisType.def_property_readonly(
"zero_points",
[](MlirType type) {
intptr_t nDim = mlirUniformQuantizedPerAxisTypeGetNumDims(type);
std::vector<int64_t> zeroPoints;
zeroPoints.reserve(nDim);
for (intptr_t i = 0; i < nDim; ++i) {
int64_t zeroPoint =
mlirUniformQuantizedPerAxisTypeGetZeroPoint(type, i);
zeroPoints.push_back(zeroPoint);
}
},
"the storage values corresponding to the real value 0 in the affine "
"equation. The ith zero point corresponds to the ith slice in the "
"quantized_dimension.");
uniformQuantizedPerAxisType.def_property_readonly(
"quantized_dimension",
[](MlirType type) {
return mlirUniformQuantizedPerAxisTypeGetQuantizedDimension(type);
},
"Specifies the dimension of the shape that the scales and zero points "
"correspond to.");
uniformQuantizedPerAxisType.def_property_readonly(
"is_fixed_point",
[](MlirType type) {
return mlirUniformQuantizedPerAxisTypeIsFixedPoint(type);
},
"Fixed point values are real numbers divided by a scale.");
//===-------------------------------------------------------------------===//
// CalibratedQuantizedType
//===-------------------------------------------------------------------===//
auto calibratedQuantizedType = mlir_type_subclass(
m, "CalibratedQuantizedType", mlirTypeIsACalibratedQuantizedType,
quantizedType.get_class());
calibratedQuantizedType.def_classmethod(
"get",
[](py::object cls, MlirType expressedType, double min, double max) {
return cls(mlirCalibratedQuantizedTypeGet(expressedType, min, max));
},
"Gets an instance of CalibratedQuantizedType in the same context as the "
"provided expressed type.",
py::arg("cls"), py::arg("expressed_type"), py::arg("min"),
py::arg("max"));
calibratedQuantizedType.def_property_readonly("min", [](MlirType type) {
return mlirCalibratedQuantizedTypeGetMin(type);
});
calibratedQuantizedType.def_property_readonly("max", [](MlirType type) {
return mlirCalibratedQuantizedTypeGetMax(type);
});
}
PYBIND11_MODULE(_mlirDialectsQuant, m) {
m.doc() = "MLIR Quantization dialect";
populateDialectQuantSubmodule(m);
}
|