1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
|
//===- IRAttributes.cpp - Exports builtin and standard attributes ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <optional>
#include <string_view>
#include <utility>
#include "IRModule.h"
#include "PybindUtils.h"
#include "llvm/ADT/ScopeExit.h"
#include "mlir-c/BuiltinAttributes.h"
#include "mlir-c/BuiltinTypes.h"
#include "mlir/Bindings/Python/PybindAdaptors.h"
namespace py = pybind11;
using namespace mlir;
using namespace mlir::python;
using llvm::SmallVector;
//------------------------------------------------------------------------------
// Docstrings (trivial, non-duplicated docstrings are included inline).
//------------------------------------------------------------------------------
static const char kDenseElementsAttrGetDocstring[] =
R"(Gets a DenseElementsAttr from a Python buffer or array.
When `type` is not provided, then some limited type inferencing is done based
on the buffer format. Support presently exists for 8/16/32/64 signed and
unsigned integers and float16/float32/float64. DenseElementsAttrs of these
types can also be converted back to a corresponding buffer.
For conversions outside of these types, a `type=` must be explicitly provided
and the buffer contents must be bit-castable to the MLIR internal
representation:
* Integer types (except for i1): the buffer must be byte aligned to the
next byte boundary.
* Floating point types: Must be bit-castable to the given floating point
size.
* i1 (bool): Bit packed into 8bit words where the bit pattern matches a
row major ordering. An arbitrary Numpy `bool_` array can be bit packed to
this specification with: `np.packbits(ary, axis=None, bitorder='little')`.
If a single element buffer is passed (or for i1, a single byte with value 0
or 255), then a splat will be created.
Args:
array: The array or buffer to convert.
signless: If inferring an appropriate MLIR type, use signless types for
integers (defaults True).
type: Skips inference of the MLIR element type and uses this instead. The
storage size must be consistent with the actual contents of the buffer.
shape: Overrides the shape of the buffer when constructing the MLIR
shaped type. This is needed when the physical and logical shape differ (as
for i1).
context: Explicit context, if not from context manager.
Returns:
DenseElementsAttr on success.
Raises:
ValueError: If the type of the buffer or array cannot be matched to an MLIR
type or if the buffer does not meet expectations.
)";
namespace {
static MlirStringRef toMlirStringRef(const std::string &s) {
return mlirStringRefCreate(s.data(), s.size());
}
class PyAffineMapAttribute : public PyConcreteAttribute<PyAffineMapAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAAffineMap;
static constexpr const char *pyClassName = "AffineMapAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static constexpr GetTypeIDFunctionTy getTypeIdFunction =
mlirAffineMapAttrGetTypeID;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](PyAffineMap &affineMap) {
MlirAttribute attr = mlirAffineMapAttrGet(affineMap.get());
return PyAffineMapAttribute(affineMap.getContext(), attr);
},
py::arg("affine_map"), "Gets an attribute wrapping an AffineMap.");
}
};
template <typename T>
static T pyTryCast(py::handle object) {
try {
return object.cast<T>();
} catch (py::cast_error &err) {
std::string msg =
std::string(
"Invalid attribute when attempting to create an ArrayAttribute (") +
err.what() + ")";
throw py::cast_error(msg);
} catch (py::reference_cast_error &err) {
std::string msg = std::string("Invalid attribute (None?) when attempting "
"to create an ArrayAttribute (") +
err.what() + ")";
throw py::cast_error(msg);
}
}
/// A python-wrapped dense array attribute with an element type and a derived
/// implementation class.
template <typename EltTy, typename DerivedT>
class PyDenseArrayAttribute : public PyConcreteAttribute<DerivedT> {
public:
using PyConcreteAttribute<DerivedT>::PyConcreteAttribute;
/// Iterator over the integer elements of a dense array.
class PyDenseArrayIterator {
public:
PyDenseArrayIterator(PyAttribute attr) : attr(std::move(attr)) {}
/// Return a copy of the iterator.
PyDenseArrayIterator dunderIter() { return *this; }
/// Return the next element.
EltTy dunderNext() {
// Throw if the index has reached the end.
if (nextIndex >= mlirDenseArrayGetNumElements(attr.get()))
throw py::stop_iteration();
return DerivedT::getElement(attr.get(), nextIndex++);
}
/// Bind the iterator class.
static void bind(py::module &m) {
py::class_<PyDenseArrayIterator>(m, DerivedT::pyIteratorName,
py::module_local())
.def("__iter__", &PyDenseArrayIterator::dunderIter)
.def("__next__", &PyDenseArrayIterator::dunderNext);
}
private:
/// The referenced dense array attribute.
PyAttribute attr;
/// The next index to read.
int nextIndex = 0;
};
/// Get the element at the given index.
EltTy getItem(intptr_t i) { return DerivedT::getElement(*this, i); }
/// Bind the attribute class.
static void bindDerived(typename PyConcreteAttribute<DerivedT>::ClassTy &c) {
// Bind the constructor.
c.def_static(
"get",
[](const std::vector<EltTy> &values, DefaultingPyMlirContext ctx) {
MlirAttribute attr =
DerivedT::getAttribute(ctx->get(), values.size(), values.data());
return DerivedT(ctx->getRef(), attr);
},
py::arg("values"), py::arg("context") = py::none(),
"Gets a uniqued dense array attribute");
// Bind the array methods.
c.def("__getitem__", [](DerivedT &arr, intptr_t i) {
if (i >= mlirDenseArrayGetNumElements(arr))
throw py::index_error("DenseArray index out of range");
return arr.getItem(i);
});
c.def("__len__", [](const DerivedT &arr) {
return mlirDenseArrayGetNumElements(arr);
});
c.def("__iter__",
[](const DerivedT &arr) { return PyDenseArrayIterator(arr); });
c.def("__add__", [](DerivedT &arr, const py::list &extras) {
std::vector<EltTy> values;
intptr_t numOldElements = mlirDenseArrayGetNumElements(arr);
values.reserve(numOldElements + py::len(extras));
for (intptr_t i = 0; i < numOldElements; ++i)
values.push_back(arr.getItem(i));
for (py::handle attr : extras)
values.push_back(pyTryCast<EltTy>(attr));
MlirAttribute attr = DerivedT::getAttribute(arr.getContext()->get(),
values.size(), values.data());
return DerivedT(arr.getContext(), attr);
});
}
};
/// Instantiate the python dense array classes.
struct PyDenseBoolArrayAttribute
: public PyDenseArrayAttribute<int, PyDenseBoolArrayAttribute> {
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseBoolArray;
static constexpr auto getAttribute = mlirDenseBoolArrayGet;
static constexpr auto getElement = mlirDenseBoolArrayGetElement;
static constexpr const char *pyClassName = "DenseBoolArrayAttr";
static constexpr const char *pyIteratorName = "DenseBoolArrayIterator";
using PyDenseArrayAttribute::PyDenseArrayAttribute;
};
struct PyDenseI8ArrayAttribute
: public PyDenseArrayAttribute<int8_t, PyDenseI8ArrayAttribute> {
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseI8Array;
static constexpr auto getAttribute = mlirDenseI8ArrayGet;
static constexpr auto getElement = mlirDenseI8ArrayGetElement;
static constexpr const char *pyClassName = "DenseI8ArrayAttr";
static constexpr const char *pyIteratorName = "DenseI8ArrayIterator";
using PyDenseArrayAttribute::PyDenseArrayAttribute;
};
struct PyDenseI16ArrayAttribute
: public PyDenseArrayAttribute<int16_t, PyDenseI16ArrayAttribute> {
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseI16Array;
static constexpr auto getAttribute = mlirDenseI16ArrayGet;
static constexpr auto getElement = mlirDenseI16ArrayGetElement;
static constexpr const char *pyClassName = "DenseI16ArrayAttr";
static constexpr const char *pyIteratorName = "DenseI16ArrayIterator";
using PyDenseArrayAttribute::PyDenseArrayAttribute;
};
struct PyDenseI32ArrayAttribute
: public PyDenseArrayAttribute<int32_t, PyDenseI32ArrayAttribute> {
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseI32Array;
static constexpr auto getAttribute = mlirDenseI32ArrayGet;
static constexpr auto getElement = mlirDenseI32ArrayGetElement;
static constexpr const char *pyClassName = "DenseI32ArrayAttr";
static constexpr const char *pyIteratorName = "DenseI32ArrayIterator";
using PyDenseArrayAttribute::PyDenseArrayAttribute;
};
struct PyDenseI64ArrayAttribute
: public PyDenseArrayAttribute<int64_t, PyDenseI64ArrayAttribute> {
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseI64Array;
static constexpr auto getAttribute = mlirDenseI64ArrayGet;
static constexpr auto getElement = mlirDenseI64ArrayGetElement;
static constexpr const char *pyClassName = "DenseI64ArrayAttr";
static constexpr const char *pyIteratorName = "DenseI64ArrayIterator";
using PyDenseArrayAttribute::PyDenseArrayAttribute;
};
struct PyDenseF32ArrayAttribute
: public PyDenseArrayAttribute<float, PyDenseF32ArrayAttribute> {
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseF32Array;
static constexpr auto getAttribute = mlirDenseF32ArrayGet;
static constexpr auto getElement = mlirDenseF32ArrayGetElement;
static constexpr const char *pyClassName = "DenseF32ArrayAttr";
static constexpr const char *pyIteratorName = "DenseF32ArrayIterator";
using PyDenseArrayAttribute::PyDenseArrayAttribute;
};
struct PyDenseF64ArrayAttribute
: public PyDenseArrayAttribute<double, PyDenseF64ArrayAttribute> {
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseF64Array;
static constexpr auto getAttribute = mlirDenseF64ArrayGet;
static constexpr auto getElement = mlirDenseF64ArrayGetElement;
static constexpr const char *pyClassName = "DenseF64ArrayAttr";
static constexpr const char *pyIteratorName = "DenseF64ArrayIterator";
using PyDenseArrayAttribute::PyDenseArrayAttribute;
};
class PyArrayAttribute : public PyConcreteAttribute<PyArrayAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAArray;
static constexpr const char *pyClassName = "ArrayAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static constexpr GetTypeIDFunctionTy getTypeIdFunction =
mlirArrayAttrGetTypeID;
class PyArrayAttributeIterator {
public:
PyArrayAttributeIterator(PyAttribute attr) : attr(std::move(attr)) {}
PyArrayAttributeIterator &dunderIter() { return *this; }
MlirAttribute dunderNext() {
// TODO: Throw is an inefficient way to stop iteration.
if (nextIndex >= mlirArrayAttrGetNumElements(attr.get()))
throw py::stop_iteration();
return mlirArrayAttrGetElement(attr.get(), nextIndex++);
}
static void bind(py::module &m) {
py::class_<PyArrayAttributeIterator>(m, "ArrayAttributeIterator",
py::module_local())
.def("__iter__", &PyArrayAttributeIterator::dunderIter)
.def("__next__", &PyArrayAttributeIterator::dunderNext);
}
private:
PyAttribute attr;
int nextIndex = 0;
};
MlirAttribute getItem(intptr_t i) {
return mlirArrayAttrGetElement(*this, i);
}
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](py::list attributes, DefaultingPyMlirContext context) {
SmallVector<MlirAttribute> mlirAttributes;
mlirAttributes.reserve(py::len(attributes));
for (auto attribute : attributes) {
mlirAttributes.push_back(pyTryCast<PyAttribute>(attribute));
}
MlirAttribute attr = mlirArrayAttrGet(
context->get(), mlirAttributes.size(), mlirAttributes.data());
return PyArrayAttribute(context->getRef(), attr);
},
py::arg("attributes"), py::arg("context") = py::none(),
"Gets a uniqued Array attribute");
c.def("__getitem__",
[](PyArrayAttribute &arr, intptr_t i) {
if (i >= mlirArrayAttrGetNumElements(arr))
throw py::index_error("ArrayAttribute index out of range");
return arr.getItem(i);
})
.def("__len__",
[](const PyArrayAttribute &arr) {
return mlirArrayAttrGetNumElements(arr);
})
.def("__iter__", [](const PyArrayAttribute &arr) {
return PyArrayAttributeIterator(arr);
});
c.def("__add__", [](PyArrayAttribute arr, py::list extras) {
std::vector<MlirAttribute> attributes;
intptr_t numOldElements = mlirArrayAttrGetNumElements(arr);
attributes.reserve(numOldElements + py::len(extras));
for (intptr_t i = 0; i < numOldElements; ++i)
attributes.push_back(arr.getItem(i));
for (py::handle attr : extras)
attributes.push_back(pyTryCast<PyAttribute>(attr));
MlirAttribute arrayAttr = mlirArrayAttrGet(
arr.getContext()->get(), attributes.size(), attributes.data());
return PyArrayAttribute(arr.getContext(), arrayAttr);
});
}
};
/// Float Point Attribute subclass - FloatAttr.
class PyFloatAttribute : public PyConcreteAttribute<PyFloatAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAFloat;
static constexpr const char *pyClassName = "FloatAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static constexpr GetTypeIDFunctionTy getTypeIdFunction =
mlirFloatAttrGetTypeID;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](PyType &type, double value, DefaultingPyLocation loc) {
PyMlirContext::ErrorCapture errors(loc->getContext());
MlirAttribute attr = mlirFloatAttrDoubleGetChecked(loc, type, value);
if (mlirAttributeIsNull(attr))
throw MLIRError("Invalid attribute", errors.take());
return PyFloatAttribute(type.getContext(), attr);
},
py::arg("type"), py::arg("value"), py::arg("loc") = py::none(),
"Gets an uniqued float point attribute associated to a type");
c.def_static(
"get_f32",
[](double value, DefaultingPyMlirContext context) {
MlirAttribute attr = mlirFloatAttrDoubleGet(
context->get(), mlirF32TypeGet(context->get()), value);
return PyFloatAttribute(context->getRef(), attr);
},
py::arg("value"), py::arg("context") = py::none(),
"Gets an uniqued float point attribute associated to a f32 type");
c.def_static(
"get_f64",
[](double value, DefaultingPyMlirContext context) {
MlirAttribute attr = mlirFloatAttrDoubleGet(
context->get(), mlirF64TypeGet(context->get()), value);
return PyFloatAttribute(context->getRef(), attr);
},
py::arg("value"), py::arg("context") = py::none(),
"Gets an uniqued float point attribute associated to a f64 type");
c.def_property_readonly(
"value",
[](PyFloatAttribute &self) {
return mlirFloatAttrGetValueDouble(self);
},
"Returns the value of the float point attribute");
}
};
/// Integer Attribute subclass - IntegerAttr.
class PyIntegerAttribute : public PyConcreteAttribute<PyIntegerAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAInteger;
static constexpr const char *pyClassName = "IntegerAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](PyType &type, int64_t value) {
MlirAttribute attr = mlirIntegerAttrGet(type, value);
return PyIntegerAttribute(type.getContext(), attr);
},
py::arg("type"), py::arg("value"),
"Gets an uniqued integer attribute associated to a type");
c.def_property_readonly(
"value",
[](PyIntegerAttribute &self) -> py::int_ {
MlirType type = mlirAttributeGetType(self);
if (mlirTypeIsAIndex(type) || mlirIntegerTypeIsSignless(type))
return mlirIntegerAttrGetValueInt(self);
if (mlirIntegerTypeIsSigned(type))
return mlirIntegerAttrGetValueSInt(self);
return mlirIntegerAttrGetValueUInt(self);
},
"Returns the value of the integer attribute");
c.def_property_readonly_static("static_typeid",
[](py::object & /*class*/) -> MlirTypeID {
return mlirIntegerAttrGetTypeID();
});
}
};
/// Bool Attribute subclass - BoolAttr.
class PyBoolAttribute : public PyConcreteAttribute<PyBoolAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsABool;
static constexpr const char *pyClassName = "BoolAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](bool value, DefaultingPyMlirContext context) {
MlirAttribute attr = mlirBoolAttrGet(context->get(), value);
return PyBoolAttribute(context->getRef(), attr);
},
py::arg("value"), py::arg("context") = py::none(),
"Gets an uniqued bool attribute");
c.def_property_readonly(
"value",
[](PyBoolAttribute &self) { return mlirBoolAttrGetValue(self); },
"Returns the value of the bool attribute");
}
};
class PySymbolRefAttribute : public PyConcreteAttribute<PySymbolRefAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsASymbolRef;
static constexpr const char *pyClassName = "SymbolRefAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static MlirAttribute fromList(const std::vector<std::string> &symbols,
PyMlirContext &context) {
if (symbols.empty())
throw std::runtime_error("SymbolRefAttr must be composed of at least "
"one symbol.");
MlirStringRef rootSymbol = toMlirStringRef(symbols[0]);
SmallVector<MlirAttribute, 3> referenceAttrs;
for (size_t i = 1; i < symbols.size(); ++i) {
referenceAttrs.push_back(
mlirFlatSymbolRefAttrGet(context.get(), toMlirStringRef(symbols[i])));
}
return mlirSymbolRefAttrGet(context.get(), rootSymbol,
referenceAttrs.size(), referenceAttrs.data());
}
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](const std::vector<std::string> &symbols,
DefaultingPyMlirContext context) {
return PySymbolRefAttribute::fromList(symbols, context.resolve());
},
py::arg("symbols"), py::arg("context") = py::none(),
"Gets a uniqued SymbolRef attribute from a list of symbol names");
c.def_property_readonly(
"value",
[](PySymbolRefAttribute &self) {
std::vector<std::string> symbols = {
unwrap(mlirSymbolRefAttrGetRootReference(self)).str()};
for (int i = 0; i < mlirSymbolRefAttrGetNumNestedReferences(self);
++i)
symbols.push_back(
unwrap(mlirSymbolRefAttrGetRootReference(
mlirSymbolRefAttrGetNestedReference(self, i)))
.str());
return symbols;
},
"Returns the value of the SymbolRef attribute as a list[str]");
}
};
class PyFlatSymbolRefAttribute
: public PyConcreteAttribute<PyFlatSymbolRefAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAFlatSymbolRef;
static constexpr const char *pyClassName = "FlatSymbolRefAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](std::string value, DefaultingPyMlirContext context) {
MlirAttribute attr =
mlirFlatSymbolRefAttrGet(context->get(), toMlirStringRef(value));
return PyFlatSymbolRefAttribute(context->getRef(), attr);
},
py::arg("value"), py::arg("context") = py::none(),
"Gets a uniqued FlatSymbolRef attribute");
c.def_property_readonly(
"value",
[](PyFlatSymbolRefAttribute &self) {
MlirStringRef stringRef = mlirFlatSymbolRefAttrGetValue(self);
return py::str(stringRef.data, stringRef.length);
},
"Returns the value of the FlatSymbolRef attribute as a string");
}
};
class PyOpaqueAttribute : public PyConcreteAttribute<PyOpaqueAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAOpaque;
static constexpr const char *pyClassName = "OpaqueAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static constexpr GetTypeIDFunctionTy getTypeIdFunction =
mlirOpaqueAttrGetTypeID;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](std::string dialectNamespace, py::buffer buffer, PyType &type,
DefaultingPyMlirContext context) {
const py::buffer_info bufferInfo = buffer.request();
intptr_t bufferSize = bufferInfo.size;
MlirAttribute attr = mlirOpaqueAttrGet(
context->get(), toMlirStringRef(dialectNamespace), bufferSize,
static_cast<char *>(bufferInfo.ptr), type);
return PyOpaqueAttribute(context->getRef(), attr);
},
py::arg("dialect_namespace"), py::arg("buffer"), py::arg("type"),
py::arg("context") = py::none(), "Gets an Opaque attribute.");
c.def_property_readonly(
"dialect_namespace",
[](PyOpaqueAttribute &self) {
MlirStringRef stringRef = mlirOpaqueAttrGetDialectNamespace(self);
return py::str(stringRef.data, stringRef.length);
},
"Returns the dialect namespace for the Opaque attribute as a string");
c.def_property_readonly(
"data",
[](PyOpaqueAttribute &self) {
MlirStringRef stringRef = mlirOpaqueAttrGetData(self);
return py::bytes(stringRef.data, stringRef.length);
},
"Returns the data for the Opaqued attributes as `bytes`");
}
};
class PyStringAttribute : public PyConcreteAttribute<PyStringAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAString;
static constexpr const char *pyClassName = "StringAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static constexpr GetTypeIDFunctionTy getTypeIdFunction =
mlirStringAttrGetTypeID;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](std::string value, DefaultingPyMlirContext context) {
MlirAttribute attr =
mlirStringAttrGet(context->get(), toMlirStringRef(value));
return PyStringAttribute(context->getRef(), attr);
},
py::arg("value"), py::arg("context") = py::none(),
"Gets a uniqued string attribute");
c.def_static(
"get_typed",
[](PyType &type, std::string value) {
MlirAttribute attr =
mlirStringAttrTypedGet(type, toMlirStringRef(value));
return PyStringAttribute(type.getContext(), attr);
},
py::arg("type"), py::arg("value"),
"Gets a uniqued string attribute associated to a type");
c.def_property_readonly(
"value",
[](PyStringAttribute &self) {
MlirStringRef stringRef = mlirStringAttrGetValue(self);
return py::str(stringRef.data, stringRef.length);
},
"Returns the value of the string attribute");
c.def_property_readonly(
"value_bytes",
[](PyStringAttribute &self) {
MlirStringRef stringRef = mlirStringAttrGetValue(self);
return py::bytes(stringRef.data, stringRef.length);
},
"Returns the value of the string attribute as `bytes`");
}
};
// TODO: Support construction of string elements.
class PyDenseElementsAttribute
: public PyConcreteAttribute<PyDenseElementsAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseElements;
static constexpr const char *pyClassName = "DenseElementsAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static PyDenseElementsAttribute
getFromBuffer(py::buffer array, bool signless,
std::optional<PyType> explicitType,
std::optional<std::vector<int64_t>> explicitShape,
DefaultingPyMlirContext contextWrapper) {
// Request a contiguous view. In exotic cases, this will cause a copy.
int flags = PyBUF_ND;
if (!explicitType) {
flags |= PyBUF_FORMAT;
}
Py_buffer view;
if (PyObject_GetBuffer(array.ptr(), &view, flags) != 0) {
throw py::error_already_set();
}
auto freeBuffer = llvm::make_scope_exit([&]() { PyBuffer_Release(&view); });
SmallVector<int64_t> shape;
if (explicitShape) {
shape.append(explicitShape->begin(), explicitShape->end());
} else {
shape.append(view.shape, view.shape + view.ndim);
}
MlirAttribute encodingAttr = mlirAttributeGetNull();
MlirContext context = contextWrapper->get();
// Detect format codes that are suitable for bulk loading. This includes
// all byte aligned integer and floating point types up to 8 bytes.
// Notably, this excludes, bool (which needs to be bit-packed) and
// other exotics which do not have a direct representation in the buffer
// protocol (i.e. complex, etc).
std::optional<MlirType> bulkLoadElementType;
if (explicitType) {
bulkLoadElementType = *explicitType;
} else {
std::string_view format(view.format);
if (format == "f") {
// f32
assert(view.itemsize == 4 && "mismatched array itemsize");
bulkLoadElementType = mlirF32TypeGet(context);
} else if (format == "d") {
// f64
assert(view.itemsize == 8 && "mismatched array itemsize");
bulkLoadElementType = mlirF64TypeGet(context);
} else if (format == "e") {
// f16
assert(view.itemsize == 2 && "mismatched array itemsize");
bulkLoadElementType = mlirF16TypeGet(context);
} else if (isSignedIntegerFormat(format)) {
if (view.itemsize == 4) {
// i32
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 32)
: mlirIntegerTypeSignedGet(context, 32);
} else if (view.itemsize == 8) {
// i64
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 64)
: mlirIntegerTypeSignedGet(context, 64);
} else if (view.itemsize == 1) {
// i8
bulkLoadElementType = signless ? mlirIntegerTypeGet(context, 8)
: mlirIntegerTypeSignedGet(context, 8);
} else if (view.itemsize == 2) {
// i16
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 16)
: mlirIntegerTypeSignedGet(context, 16);
}
} else if (isUnsignedIntegerFormat(format)) {
if (view.itemsize == 4) {
// unsigned i32
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 32)
: mlirIntegerTypeUnsignedGet(context, 32);
} else if (view.itemsize == 8) {
// unsigned i64
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 64)
: mlirIntegerTypeUnsignedGet(context, 64);
} else if (view.itemsize == 1) {
// i8
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 8)
: mlirIntegerTypeUnsignedGet(context, 8);
} else if (view.itemsize == 2) {
// i16
bulkLoadElementType = signless
? mlirIntegerTypeGet(context, 16)
: mlirIntegerTypeUnsignedGet(context, 16);
}
}
if (!bulkLoadElementType) {
throw std::invalid_argument(
std::string("unimplemented array format conversion from format: ") +
std::string(format));
}
}
MlirType shapedType;
if (mlirTypeIsAShaped(*bulkLoadElementType)) {
if (explicitShape) {
throw std::invalid_argument("Shape can only be specified explicitly "
"when the type is not a shaped type.");
}
shapedType = *bulkLoadElementType;
} else {
shapedType = mlirRankedTensorTypeGet(shape.size(), shape.data(),
*bulkLoadElementType, encodingAttr);
}
size_t rawBufferSize = view.len;
MlirAttribute attr =
mlirDenseElementsAttrRawBufferGet(shapedType, rawBufferSize, view.buf);
if (mlirAttributeIsNull(attr)) {
throw std::invalid_argument(
"DenseElementsAttr could not be constructed from the given buffer. "
"This may mean that the Python buffer layout does not match that "
"MLIR expected layout and is a bug.");
}
return PyDenseElementsAttribute(contextWrapper->getRef(), attr);
}
static PyDenseElementsAttribute getSplat(const PyType &shapedType,
PyAttribute &elementAttr) {
auto contextWrapper =
PyMlirContext::forContext(mlirTypeGetContext(shapedType));
if (!mlirAttributeIsAInteger(elementAttr) &&
!mlirAttributeIsAFloat(elementAttr)) {
std::string message = "Illegal element type for DenseElementsAttr: ";
message.append(py::repr(py::cast(elementAttr)));
throw py::value_error(message);
}
if (!mlirTypeIsAShaped(shapedType) ||
!mlirShapedTypeHasStaticShape(shapedType)) {
std::string message =
"Expected a static ShapedType for the shaped_type parameter: ";
message.append(py::repr(py::cast(shapedType)));
throw py::value_error(message);
}
MlirType shapedElementType = mlirShapedTypeGetElementType(shapedType);
MlirType attrType = mlirAttributeGetType(elementAttr);
if (!mlirTypeEqual(shapedElementType, attrType)) {
std::string message =
"Shaped element type and attribute type must be equal: shaped=";
message.append(py::repr(py::cast(shapedType)));
message.append(", element=");
message.append(py::repr(py::cast(elementAttr)));
throw py::value_error(message);
}
MlirAttribute elements =
mlirDenseElementsAttrSplatGet(shapedType, elementAttr);
return PyDenseElementsAttribute(contextWrapper->getRef(), elements);
}
intptr_t dunderLen() { return mlirElementsAttrGetNumElements(*this); }
py::buffer_info accessBuffer() {
MlirType shapedType = mlirAttributeGetType(*this);
MlirType elementType = mlirShapedTypeGetElementType(shapedType);
std::string format;
if (mlirTypeIsAF32(elementType)) {
// f32
return bufferInfo<float>(shapedType);
}
if (mlirTypeIsAF64(elementType)) {
// f64
return bufferInfo<double>(shapedType);
}
if (mlirTypeIsAF16(elementType)) {
// f16
return bufferInfo<uint16_t>(shapedType, "e");
}
if (mlirTypeIsAIndex(elementType)) {
// Same as IndexType::kInternalStorageBitWidth
return bufferInfo<int64_t>(shapedType);
}
if (mlirTypeIsAInteger(elementType) &&
mlirIntegerTypeGetWidth(elementType) == 32) {
if (mlirIntegerTypeIsSignless(elementType) ||
mlirIntegerTypeIsSigned(elementType)) {
// i32
return bufferInfo<int32_t>(shapedType);
}
if (mlirIntegerTypeIsUnsigned(elementType)) {
// unsigned i32
return bufferInfo<uint32_t>(shapedType);
}
} else if (mlirTypeIsAInteger(elementType) &&
mlirIntegerTypeGetWidth(elementType) == 64) {
if (mlirIntegerTypeIsSignless(elementType) ||
mlirIntegerTypeIsSigned(elementType)) {
// i64
return bufferInfo<int64_t>(shapedType);
}
if (mlirIntegerTypeIsUnsigned(elementType)) {
// unsigned i64
return bufferInfo<uint64_t>(shapedType);
}
} else if (mlirTypeIsAInteger(elementType) &&
mlirIntegerTypeGetWidth(elementType) == 8) {
if (mlirIntegerTypeIsSignless(elementType) ||
mlirIntegerTypeIsSigned(elementType)) {
// i8
return bufferInfo<int8_t>(shapedType);
}
if (mlirIntegerTypeIsUnsigned(elementType)) {
// unsigned i8
return bufferInfo<uint8_t>(shapedType);
}
} else if (mlirTypeIsAInteger(elementType) &&
mlirIntegerTypeGetWidth(elementType) == 16) {
if (mlirIntegerTypeIsSignless(elementType) ||
mlirIntegerTypeIsSigned(elementType)) {
// i16
return bufferInfo<int16_t>(shapedType);
}
if (mlirIntegerTypeIsUnsigned(elementType)) {
// unsigned i16
return bufferInfo<uint16_t>(shapedType);
}
}
// TODO: Currently crashes the program.
// Reported as https://github.com/pybind/pybind11/issues/3336
throw std::invalid_argument(
"unsupported data type for conversion to Python buffer");
}
static void bindDerived(ClassTy &c) {
c.def("__len__", &PyDenseElementsAttribute::dunderLen)
.def_static("get", PyDenseElementsAttribute::getFromBuffer,
py::arg("array"), py::arg("signless") = true,
py::arg("type") = py::none(), py::arg("shape") = py::none(),
py::arg("context") = py::none(),
kDenseElementsAttrGetDocstring)
.def_static("get_splat", PyDenseElementsAttribute::getSplat,
py::arg("shaped_type"), py::arg("element_attr"),
"Gets a DenseElementsAttr where all values are the same")
.def_property_readonly("is_splat",
[](PyDenseElementsAttribute &self) -> bool {
return mlirDenseElementsAttrIsSplat(self);
})
.def("get_splat_value",
[](PyDenseElementsAttribute &self) {
if (!mlirDenseElementsAttrIsSplat(self))
throw py::value_error(
"get_splat_value called on a non-splat attribute");
return mlirDenseElementsAttrGetSplatValue(self);
})
.def_buffer(&PyDenseElementsAttribute::accessBuffer);
}
private:
static bool isUnsignedIntegerFormat(std::string_view format) {
if (format.empty())
return false;
char code = format[0];
return code == 'I' || code == 'B' || code == 'H' || code == 'L' ||
code == 'Q';
}
static bool isSignedIntegerFormat(std::string_view format) {
if (format.empty())
return false;
char code = format[0];
return code == 'i' || code == 'b' || code == 'h' || code == 'l' ||
code == 'q';
}
template <typename Type>
py::buffer_info bufferInfo(MlirType shapedType,
const char *explicitFormat = nullptr) {
intptr_t rank = mlirShapedTypeGetRank(shapedType);
// Prepare the data for the buffer_info.
// Buffer is configured for read-only access below.
Type *data = static_cast<Type *>(
const_cast<void *>(mlirDenseElementsAttrGetRawData(*this)));
// Prepare the shape for the buffer_info.
SmallVector<intptr_t, 4> shape;
for (intptr_t i = 0; i < rank; ++i)
shape.push_back(mlirShapedTypeGetDimSize(shapedType, i));
// Prepare the strides for the buffer_info.
SmallVector<intptr_t, 4> strides;
if (mlirDenseElementsAttrIsSplat(*this)) {
// Splats are special, only the single value is stored.
strides.assign(rank, 0);
} else {
for (intptr_t i = 1; i < rank; ++i) {
intptr_t strideFactor = 1;
for (intptr_t j = i; j < rank; ++j)
strideFactor *= mlirShapedTypeGetDimSize(shapedType, j);
strides.push_back(sizeof(Type) * strideFactor);
}
strides.push_back(sizeof(Type));
}
std::string format;
if (explicitFormat) {
format = explicitFormat;
} else {
format = py::format_descriptor<Type>::format();
}
return py::buffer_info(data, sizeof(Type), format, rank, shape, strides,
/*readonly=*/true);
}
}; // namespace
/// Refinement of the PyDenseElementsAttribute for attributes containing integer
/// (and boolean) values. Supports element access.
class PyDenseIntElementsAttribute
: public PyConcreteAttribute<PyDenseIntElementsAttribute,
PyDenseElementsAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseIntElements;
static constexpr const char *pyClassName = "DenseIntElementsAttr";
using PyConcreteAttribute::PyConcreteAttribute;
/// Returns the element at the given linear position. Asserts if the index is
/// out of range.
py::int_ dunderGetItem(intptr_t pos) {
if (pos < 0 || pos >= dunderLen()) {
throw py::index_error("attempt to access out of bounds element");
}
MlirType type = mlirAttributeGetType(*this);
type = mlirShapedTypeGetElementType(type);
assert(mlirTypeIsAInteger(type) &&
"expected integer element type in dense int elements attribute");
// Dispatch element extraction to an appropriate C function based on the
// elemental type of the attribute. py::int_ is implicitly constructible
// from any C++ integral type and handles bitwidth correctly.
// TODO: consider caching the type properties in the constructor to avoid
// querying them on each element access.
unsigned width = mlirIntegerTypeGetWidth(type);
bool isUnsigned = mlirIntegerTypeIsUnsigned(type);
if (isUnsigned) {
if (width == 1) {
return mlirDenseElementsAttrGetBoolValue(*this, pos);
}
if (width == 8) {
return mlirDenseElementsAttrGetUInt8Value(*this, pos);
}
if (width == 16) {
return mlirDenseElementsAttrGetUInt16Value(*this, pos);
}
if (width == 32) {
return mlirDenseElementsAttrGetUInt32Value(*this, pos);
}
if (width == 64) {
return mlirDenseElementsAttrGetUInt64Value(*this, pos);
}
} else {
if (width == 1) {
return mlirDenseElementsAttrGetBoolValue(*this, pos);
}
if (width == 8) {
return mlirDenseElementsAttrGetInt8Value(*this, pos);
}
if (width == 16) {
return mlirDenseElementsAttrGetInt16Value(*this, pos);
}
if (width == 32) {
return mlirDenseElementsAttrGetInt32Value(*this, pos);
}
if (width == 64) {
return mlirDenseElementsAttrGetInt64Value(*this, pos);
}
}
throw py::type_error("Unsupported integer type");
}
static void bindDerived(ClassTy &c) {
c.def("__getitem__", &PyDenseIntElementsAttribute::dunderGetItem);
}
};
class PyDictAttribute : public PyConcreteAttribute<PyDictAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADictionary;
static constexpr const char *pyClassName = "DictAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static constexpr GetTypeIDFunctionTy getTypeIdFunction =
mlirDictionaryAttrGetTypeID;
intptr_t dunderLen() { return mlirDictionaryAttrGetNumElements(*this); }
bool dunderContains(const std::string &name) {
return !mlirAttributeIsNull(
mlirDictionaryAttrGetElementByName(*this, toMlirStringRef(name)));
}
static void bindDerived(ClassTy &c) {
c.def("__contains__", &PyDictAttribute::dunderContains);
c.def("__len__", &PyDictAttribute::dunderLen);
c.def_static(
"get",
[](py::dict attributes, DefaultingPyMlirContext context) {
SmallVector<MlirNamedAttribute> mlirNamedAttributes;
mlirNamedAttributes.reserve(attributes.size());
for (auto &it : attributes) {
auto &mlirAttr = it.second.cast<PyAttribute &>();
auto name = it.first.cast<std::string>();
mlirNamedAttributes.push_back(mlirNamedAttributeGet(
mlirIdentifierGet(mlirAttributeGetContext(mlirAttr),
toMlirStringRef(name)),
mlirAttr));
}
MlirAttribute attr =
mlirDictionaryAttrGet(context->get(), mlirNamedAttributes.size(),
mlirNamedAttributes.data());
return PyDictAttribute(context->getRef(), attr);
},
py::arg("value") = py::dict(), py::arg("context") = py::none(),
"Gets an uniqued dict attribute");
c.def("__getitem__", [](PyDictAttribute &self, const std::string &name) {
MlirAttribute attr =
mlirDictionaryAttrGetElementByName(self, toMlirStringRef(name));
if (mlirAttributeIsNull(attr))
throw py::key_error("attempt to access a non-existent attribute");
return attr;
});
c.def("__getitem__", [](PyDictAttribute &self, intptr_t index) {
if (index < 0 || index >= self.dunderLen()) {
throw py::index_error("attempt to access out of bounds attribute");
}
MlirNamedAttribute namedAttr = mlirDictionaryAttrGetElement(self, index);
return PyNamedAttribute(
namedAttr.attribute,
std::string(mlirIdentifierStr(namedAttr.name).data));
});
}
};
/// Refinement of PyDenseElementsAttribute for attributes containing
/// floating-point values. Supports element access.
class PyDenseFPElementsAttribute
: public PyConcreteAttribute<PyDenseFPElementsAttribute,
PyDenseElementsAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsADenseFPElements;
static constexpr const char *pyClassName = "DenseFPElementsAttr";
using PyConcreteAttribute::PyConcreteAttribute;
py::float_ dunderGetItem(intptr_t pos) {
if (pos < 0 || pos >= dunderLen()) {
throw py::index_error("attempt to access out of bounds element");
}
MlirType type = mlirAttributeGetType(*this);
type = mlirShapedTypeGetElementType(type);
// Dispatch element extraction to an appropriate C function based on the
// elemental type of the attribute. py::float_ is implicitly constructible
// from float and double.
// TODO: consider caching the type properties in the constructor to avoid
// querying them on each element access.
if (mlirTypeIsAF32(type)) {
return mlirDenseElementsAttrGetFloatValue(*this, pos);
}
if (mlirTypeIsAF64(type)) {
return mlirDenseElementsAttrGetDoubleValue(*this, pos);
}
throw py::type_error("Unsupported floating-point type");
}
static void bindDerived(ClassTy &c) {
c.def("__getitem__", &PyDenseFPElementsAttribute::dunderGetItem);
}
};
class PyTypeAttribute : public PyConcreteAttribute<PyTypeAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAType;
static constexpr const char *pyClassName = "TypeAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static constexpr GetTypeIDFunctionTy getTypeIdFunction =
mlirTypeAttrGetTypeID;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](PyType value, DefaultingPyMlirContext context) {
MlirAttribute attr = mlirTypeAttrGet(value.get());
return PyTypeAttribute(context->getRef(), attr);
},
py::arg("value"), py::arg("context") = py::none(),
"Gets a uniqued Type attribute");
c.def_property_readonly("value", [](PyTypeAttribute &self) {
return mlirTypeAttrGetValue(self.get());
});
}
};
/// Unit Attribute subclass. Unit attributes don't have values.
class PyUnitAttribute : public PyConcreteAttribute<PyUnitAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAUnit;
static constexpr const char *pyClassName = "UnitAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static constexpr GetTypeIDFunctionTy getTypeIdFunction =
mlirUnitAttrGetTypeID;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](DefaultingPyMlirContext context) {
return PyUnitAttribute(context->getRef(),
mlirUnitAttrGet(context->get()));
},
py::arg("context") = py::none(), "Create a Unit attribute.");
}
};
/// Strided layout attribute subclass.
class PyStridedLayoutAttribute
: public PyConcreteAttribute<PyStridedLayoutAttribute> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAttributeIsAStridedLayout;
static constexpr const char *pyClassName = "StridedLayoutAttr";
using PyConcreteAttribute::PyConcreteAttribute;
static constexpr GetTypeIDFunctionTy getTypeIdFunction =
mlirStridedLayoutAttrGetTypeID;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](int64_t offset, const std::vector<int64_t> strides,
DefaultingPyMlirContext ctx) {
MlirAttribute attr = mlirStridedLayoutAttrGet(
ctx->get(), offset, strides.size(), strides.data());
return PyStridedLayoutAttribute(ctx->getRef(), attr);
},
py::arg("offset"), py::arg("strides"), py::arg("context") = py::none(),
"Gets a strided layout attribute.");
c.def_static(
"get_fully_dynamic",
[](int64_t rank, DefaultingPyMlirContext ctx) {
auto dynamic = mlirShapedTypeGetDynamicStrideOrOffset();
std::vector<int64_t> strides(rank);
std::fill(strides.begin(), strides.end(), dynamic);
MlirAttribute attr = mlirStridedLayoutAttrGet(
ctx->get(), dynamic, strides.size(), strides.data());
return PyStridedLayoutAttribute(ctx->getRef(), attr);
},
py::arg("rank"), py::arg("context") = py::none(),
"Gets a strided layout attribute with dynamic offset and strides of a "
"given rank.");
c.def_property_readonly(
"offset",
[](PyStridedLayoutAttribute &self) {
return mlirStridedLayoutAttrGetOffset(self);
},
"Returns the value of the float point attribute");
c.def_property_readonly(
"strides",
[](PyStridedLayoutAttribute &self) {
intptr_t size = mlirStridedLayoutAttrGetNumStrides(self);
std::vector<int64_t> strides(size);
for (intptr_t i = 0; i < size; i++) {
strides[i] = mlirStridedLayoutAttrGetStride(self, i);
}
return strides;
},
"Returns the value of the float point attribute");
}
};
py::object denseArrayAttributeCaster(PyAttribute &pyAttribute) {
if (PyDenseBoolArrayAttribute::isaFunction(pyAttribute))
return py::cast(PyDenseBoolArrayAttribute(pyAttribute));
if (PyDenseI8ArrayAttribute::isaFunction(pyAttribute))
return py::cast(PyDenseI8ArrayAttribute(pyAttribute));
if (PyDenseI16ArrayAttribute::isaFunction(pyAttribute))
return py::cast(PyDenseI16ArrayAttribute(pyAttribute));
if (PyDenseI32ArrayAttribute::isaFunction(pyAttribute))
return py::cast(PyDenseI32ArrayAttribute(pyAttribute));
if (PyDenseI64ArrayAttribute::isaFunction(pyAttribute))
return py::cast(PyDenseI64ArrayAttribute(pyAttribute));
if (PyDenseF32ArrayAttribute::isaFunction(pyAttribute))
return py::cast(PyDenseF32ArrayAttribute(pyAttribute));
if (PyDenseF64ArrayAttribute::isaFunction(pyAttribute))
return py::cast(PyDenseF64ArrayAttribute(pyAttribute));
std::string msg =
std::string("Can't cast unknown element type DenseArrayAttr (") +
std::string(py::repr(py::cast(pyAttribute))) + ")";
throw py::cast_error(msg);
}
py::object denseIntOrFPElementsAttributeCaster(PyAttribute &pyAttribute) {
if (PyDenseFPElementsAttribute::isaFunction(pyAttribute))
return py::cast(PyDenseFPElementsAttribute(pyAttribute));
if (PyDenseIntElementsAttribute::isaFunction(pyAttribute))
return py::cast(PyDenseIntElementsAttribute(pyAttribute));
std::string msg =
std::string(
"Can't cast unknown element type DenseIntOrFPElementsAttr (") +
std::string(py::repr(py::cast(pyAttribute))) + ")";
throw py::cast_error(msg);
}
py::object integerOrBoolAttributeCaster(PyAttribute &pyAttribute) {
if (PyBoolAttribute::isaFunction(pyAttribute))
return py::cast(PyBoolAttribute(pyAttribute));
if (PyIntegerAttribute::isaFunction(pyAttribute))
return py::cast(PyIntegerAttribute(pyAttribute));
std::string msg =
std::string("Can't cast unknown element type DenseArrayAttr (") +
std::string(py::repr(py::cast(pyAttribute))) + ")";
throw py::cast_error(msg);
}
py::object symbolRefOrFlatSymbolRefAttributeCaster(PyAttribute &pyAttribute) {
if (PyFlatSymbolRefAttribute::isaFunction(pyAttribute))
return py::cast(PyFlatSymbolRefAttribute(pyAttribute));
if (PySymbolRefAttribute::isaFunction(pyAttribute))
return py::cast(PySymbolRefAttribute(pyAttribute));
std::string msg = std::string("Can't cast unknown SymbolRef attribute (") +
std::string(py::repr(py::cast(pyAttribute))) + ")";
throw py::cast_error(msg);
}
} // namespace
void mlir::python::populateIRAttributes(py::module &m) {
PyAffineMapAttribute::bind(m);
PyDenseBoolArrayAttribute::bind(m);
PyDenseBoolArrayAttribute::PyDenseArrayIterator::bind(m);
PyDenseI8ArrayAttribute::bind(m);
PyDenseI8ArrayAttribute::PyDenseArrayIterator::bind(m);
PyDenseI16ArrayAttribute::bind(m);
PyDenseI16ArrayAttribute::PyDenseArrayIterator::bind(m);
PyDenseI32ArrayAttribute::bind(m);
PyDenseI32ArrayAttribute::PyDenseArrayIterator::bind(m);
PyDenseI64ArrayAttribute::bind(m);
PyDenseI64ArrayAttribute::PyDenseArrayIterator::bind(m);
PyDenseF32ArrayAttribute::bind(m);
PyDenseF32ArrayAttribute::PyDenseArrayIterator::bind(m);
PyDenseF64ArrayAttribute::bind(m);
PyDenseF64ArrayAttribute::PyDenseArrayIterator::bind(m);
PyGlobals::get().registerTypeCaster(
mlirDenseArrayAttrGetTypeID(),
pybind11::cpp_function(denseArrayAttributeCaster));
PyArrayAttribute::bind(m);
PyArrayAttribute::PyArrayAttributeIterator::bind(m);
PyBoolAttribute::bind(m);
PyDenseElementsAttribute::bind(m);
PyDenseFPElementsAttribute::bind(m);
PyDenseIntElementsAttribute::bind(m);
PyGlobals::get().registerTypeCaster(
mlirDenseIntOrFPElementsAttrGetTypeID(),
pybind11::cpp_function(denseIntOrFPElementsAttributeCaster));
PyDictAttribute::bind(m);
PySymbolRefAttribute::bind(m);
PyGlobals::get().registerTypeCaster(
mlirSymbolRefAttrGetTypeID(),
pybind11::cpp_function(symbolRefOrFlatSymbolRefAttributeCaster));
PyFlatSymbolRefAttribute::bind(m);
PyOpaqueAttribute::bind(m);
PyFloatAttribute::bind(m);
PyIntegerAttribute::bind(m);
PyStringAttribute::bind(m);
PyTypeAttribute::bind(m);
PyGlobals::get().registerTypeCaster(
mlirIntegerAttrGetTypeID(),
pybind11::cpp_function(integerOrBoolAttributeCaster));
PyUnitAttribute::bind(m);
PyStridedLayoutAttribute::bind(m);
}
|