1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
|
//===- BytecodeReader.cpp - MLIR Bytecode Reader --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Bytecode/BytecodeReader.h"
#include "mlir/AsmParser/AsmParser.h"
#include "mlir/Bytecode/BytecodeImplementation.h"
#include "mlir/Bytecode/BytecodeOpInterface.h"
#include "mlir/Bytecode/Encoding.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/Verifier.h"
#include "mlir/IR/Visitors.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MemoryBufferRef.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/SourceMgr.h"
#include <cstddef>
#include <list>
#include <memory>
#include <numeric>
#include <optional>
#define DEBUG_TYPE "mlir-bytecode-reader"
using namespace mlir;
/// Stringify the given section ID.
static std::string toString(bytecode::Section::ID sectionID) {
switch (sectionID) {
case bytecode::Section::kString:
return "String (0)";
case bytecode::Section::kDialect:
return "Dialect (1)";
case bytecode::Section::kAttrType:
return "AttrType (2)";
case bytecode::Section::kAttrTypeOffset:
return "AttrTypeOffset (3)";
case bytecode::Section::kIR:
return "IR (4)";
case bytecode::Section::kResource:
return "Resource (5)";
case bytecode::Section::kResourceOffset:
return "ResourceOffset (6)";
case bytecode::Section::kDialectVersions:
return "DialectVersions (7)";
case bytecode::Section::kProperties:
return "Properties (8)";
default:
return ("Unknown (" + Twine(static_cast<unsigned>(sectionID)) + ")").str();
}
}
/// Returns true if the given top-level section ID is optional.
static bool isSectionOptional(bytecode::Section::ID sectionID, int version) {
switch (sectionID) {
case bytecode::Section::kString:
case bytecode::Section::kDialect:
case bytecode::Section::kAttrType:
case bytecode::Section::kAttrTypeOffset:
case bytecode::Section::kIR:
return false;
case bytecode::Section::kResource:
case bytecode::Section::kResourceOffset:
case bytecode::Section::kDialectVersions:
return true;
case bytecode::Section::kProperties:
return version < bytecode::kNativePropertiesEncoding;
default:
llvm_unreachable("unknown section ID");
}
}
//===----------------------------------------------------------------------===//
// EncodingReader
//===----------------------------------------------------------------------===//
namespace {
class EncodingReader {
public:
explicit EncodingReader(ArrayRef<uint8_t> contents, Location fileLoc)
: dataIt(contents.data()), dataEnd(contents.end()), fileLoc(fileLoc) {}
explicit EncodingReader(StringRef contents, Location fileLoc)
: EncodingReader({reinterpret_cast<const uint8_t *>(contents.data()),
contents.size()},
fileLoc) {}
/// Returns true if the entire section has been read.
bool empty() const { return dataIt == dataEnd; }
/// Returns the remaining size of the bytecode.
size_t size() const { return dataEnd - dataIt; }
/// Align the current reader position to the specified alignment.
LogicalResult alignTo(unsigned alignment) {
if (!llvm::isPowerOf2_32(alignment))
return emitError("expected alignment to be a power-of-two");
// Shift the reader position to the next alignment boundary.
while (uintptr_t(dataIt) & (uintptr_t(alignment) - 1)) {
uint8_t padding;
if (failed(parseByte(padding)))
return failure();
if (padding != bytecode::kAlignmentByte) {
return emitError("expected alignment byte (0xCB), but got: '0x" +
llvm::utohexstr(padding) + "'");
}
}
// Ensure the data iterator is now aligned. This case is unlikely because we
// *just* went through the effort to align the data iterator.
if (LLVM_UNLIKELY(!llvm::isAddrAligned(llvm::Align(alignment), dataIt))) {
return emitError("expected data iterator aligned to ", alignment,
", but got pointer: '0x" +
llvm::utohexstr((uintptr_t)dataIt) + "'");
}
return success();
}
/// Emit an error using the given arguments.
template <typename... Args>
InFlightDiagnostic emitError(Args &&...args) const {
return ::emitError(fileLoc).append(std::forward<Args>(args)...);
}
InFlightDiagnostic emitError() const { return ::emitError(fileLoc); }
/// Parse a single byte from the stream.
template <typename T>
LogicalResult parseByte(T &value) {
if (empty())
return emitError("attempting to parse a byte at the end of the bytecode");
value = static_cast<T>(*dataIt++);
return success();
}
/// Parse a range of bytes of 'length' into the given result.
LogicalResult parseBytes(size_t length, ArrayRef<uint8_t> &result) {
if (length > size()) {
return emitError("attempting to parse ", length, " bytes when only ",
size(), " remain");
}
result = {dataIt, length};
dataIt += length;
return success();
}
/// Parse a range of bytes of 'length' into the given result, which can be
/// assumed to be large enough to hold `length`.
LogicalResult parseBytes(size_t length, uint8_t *result) {
if (length > size()) {
return emitError("attempting to parse ", length, " bytes when only ",
size(), " remain");
}
memcpy(result, dataIt, length);
dataIt += length;
return success();
}
/// Parse an aligned blob of data, where the alignment was encoded alongside
/// the data.
LogicalResult parseBlobAndAlignment(ArrayRef<uint8_t> &data,
uint64_t &alignment) {
uint64_t dataSize;
if (failed(parseVarInt(alignment)) || failed(parseVarInt(dataSize)) ||
failed(alignTo(alignment)))
return failure();
return parseBytes(dataSize, data);
}
/// Parse a variable length encoded integer from the byte stream. The first
/// encoded byte contains a prefix in the low bits indicating the encoded
/// length of the value. This length prefix is a bit sequence of '0's followed
/// by a '1'. The number of '0' bits indicate the number of _additional_ bytes
/// (not including the prefix byte). All remaining bits in the first byte,
/// along with all of the bits in additional bytes, provide the value of the
/// integer encoded in little-endian order.
LogicalResult parseVarInt(uint64_t &result) {
// Parse the first byte of the encoding, which contains the length prefix.
if (failed(parseByte(result)))
return failure();
// Handle the overwhelmingly common case where the value is stored in a
// single byte. In this case, the first bit is the `1` marker bit.
if (LLVM_LIKELY(result & 1)) {
result >>= 1;
return success();
}
// Handle the overwhelming uncommon case where the value required all 8
// bytes (i.e. a really really big number). In this case, the marker byte is
// all zeros: `00000000`.
if (LLVM_UNLIKELY(result == 0)) {
llvm::support::ulittle64_t resultLE;
if (failed(parseBytes(sizeof(resultLE),
reinterpret_cast<uint8_t *>(&resultLE))))
return failure();
result = resultLE;
return success();
}
return parseMultiByteVarInt(result);
}
/// Parse a signed variable length encoded integer from the byte stream. A
/// signed varint is encoded as a normal varint with zigzag encoding applied,
/// i.e. the low bit of the value is used to indicate the sign.
LogicalResult parseSignedVarInt(uint64_t &result) {
if (failed(parseVarInt(result)))
return failure();
// Essentially (but using unsigned): (x >> 1) ^ -(x & 1)
result = (result >> 1) ^ (~(result & 1) + 1);
return success();
}
/// Parse a variable length encoded integer whose low bit is used to encode an
/// unrelated flag, i.e: `(integerValue << 1) | (flag ? 1 : 0)`.
LogicalResult parseVarIntWithFlag(uint64_t &result, bool &flag) {
if (failed(parseVarInt(result)))
return failure();
flag = result & 1;
result >>= 1;
return success();
}
/// Skip the first `length` bytes within the reader.
LogicalResult skipBytes(size_t length) {
if (length > size()) {
return emitError("attempting to skip ", length, " bytes when only ",
size(), " remain");
}
dataIt += length;
return success();
}
/// Parse a null-terminated string into `result` (without including the NUL
/// terminator).
LogicalResult parseNullTerminatedString(StringRef &result) {
const char *startIt = (const char *)dataIt;
const char *nulIt = (const char *)memchr(startIt, 0, size());
if (!nulIt)
return emitError(
"malformed null-terminated string, no null character found");
result = StringRef(startIt, nulIt - startIt);
dataIt = (const uint8_t *)nulIt + 1;
return success();
}
/// Parse a section header, placing the kind of section in `sectionID` and the
/// contents of the section in `sectionData`.
LogicalResult parseSection(bytecode::Section::ID §ionID,
ArrayRef<uint8_t> §ionData) {
uint8_t sectionIDAndHasAlignment;
uint64_t length;
if (failed(parseByte(sectionIDAndHasAlignment)) ||
failed(parseVarInt(length)))
return failure();
// Extract the section ID and whether the section is aligned. The high bit
// of the ID is the alignment flag.
sectionID = static_cast<bytecode::Section::ID>(sectionIDAndHasAlignment &
0b01111111);
bool hasAlignment = sectionIDAndHasAlignment & 0b10000000;
// Check that the section is actually valid before trying to process its
// data.
if (sectionID >= bytecode::Section::kNumSections)
return emitError("invalid section ID: ", unsigned(sectionID));
// Process the section alignment if present.
if (hasAlignment) {
uint64_t alignment;
if (failed(parseVarInt(alignment)) || failed(alignTo(alignment)))
return failure();
}
// Parse the actual section data.
return parseBytes(static_cast<size_t>(length), sectionData);
}
Location getLoc() const { return fileLoc; }
private:
/// Parse a variable length encoded integer from the byte stream. This method
/// is a fallback when the number of bytes used to encode the value is greater
/// than 1, but less than the max (9). The provided `result` value can be
/// assumed to already contain the first byte of the value.
/// NOTE: This method is marked noinline to avoid pessimizing the common case
/// of single byte encoding.
LLVM_ATTRIBUTE_NOINLINE LogicalResult parseMultiByteVarInt(uint64_t &result) {
// Count the number of trailing zeros in the marker byte, this indicates the
// number of trailing bytes that are part of the value. We use `uint32_t`
// here because we only care about the first byte, and so that be actually
// get ctz intrinsic calls when possible (the `uint8_t` overload uses a loop
// implementation).
uint32_t numBytes = llvm::countr_zero<uint32_t>(result);
assert(numBytes > 0 && numBytes <= 7 &&
"unexpected number of trailing zeros in varint encoding");
// Parse in the remaining bytes of the value.
llvm::support::ulittle64_t resultLE(result);
if (failed(parseBytes(numBytes, reinterpret_cast<uint8_t *>(&resultLE) + 1)))
return failure();
// Shift out the low-order bits that were used to mark how the value was
// encoded.
result = resultLE >> (numBytes + 1);
return success();
}
/// The current data iterator, and an iterator to the end of the buffer.
const uint8_t *dataIt, *dataEnd;
/// A location for the bytecode used to report errors.
Location fileLoc;
};
} // namespace
/// Resolve an index into the given entry list. `entry` may either be a
/// reference, in which case it is assigned to the corresponding value in
/// `entries`, or a pointer, in which case it is assigned to the address of the
/// element in `entries`.
template <typename RangeT, typename T>
static LogicalResult resolveEntry(EncodingReader &reader, RangeT &entries,
uint64_t index, T &entry,
StringRef entryStr) {
if (index >= entries.size())
return reader.emitError("invalid ", entryStr, " index: ", index);
// If the provided entry is a pointer, resolve to the address of the entry.
if constexpr (std::is_convertible_v<llvm::detail::ValueOfRange<RangeT>, T>)
entry = entries[index];
else
entry = &entries[index];
return success();
}
/// Parse and resolve an index into the given entry list.
template <typename RangeT, typename T>
static LogicalResult parseEntry(EncodingReader &reader, RangeT &entries,
T &entry, StringRef entryStr) {
uint64_t entryIdx;
if (failed(reader.parseVarInt(entryIdx)))
return failure();
return resolveEntry(reader, entries, entryIdx, entry, entryStr);
}
//===----------------------------------------------------------------------===//
// StringSectionReader
//===----------------------------------------------------------------------===//
namespace {
/// This class is used to read references to the string section from the
/// bytecode.
class StringSectionReader {
public:
/// Initialize the string section reader with the given section data.
LogicalResult initialize(Location fileLoc, ArrayRef<uint8_t> sectionData);
/// Parse a shared string from the string section. The shared string is
/// encoded using an index to a corresponding string in the string section.
LogicalResult parseString(EncodingReader &reader, StringRef &result) {
return parseEntry(reader, strings, result, "string");
}
/// Parse a shared string from the string section. The shared string is
/// encoded using an index to a corresponding string in the string section.
/// This variant parses a flag compressed with the index.
LogicalResult parseStringWithFlag(EncodingReader &reader, StringRef &result,
bool &flag) {
uint64_t entryIdx;
if (failed(reader.parseVarIntWithFlag(entryIdx, flag)))
return failure();
return parseStringAtIndex(reader, entryIdx, result);
}
/// Parse a shared string from the string section. The shared string is
/// encoded using an index to a corresponding string in the string section.
LogicalResult parseStringAtIndex(EncodingReader &reader, uint64_t index,
StringRef &result) {
return resolveEntry(reader, strings, index, result, "string");
}
private:
/// The table of strings referenced within the bytecode file.
SmallVector<StringRef> strings;
};
} // namespace
LogicalResult StringSectionReader::initialize(Location fileLoc,
ArrayRef<uint8_t> sectionData) {
EncodingReader stringReader(sectionData, fileLoc);
// Parse the number of strings in the section.
uint64_t numStrings;
if (failed(stringReader.parseVarInt(numStrings)))
return failure();
strings.resize(numStrings);
// Parse each of the strings. The sizes of the strings are encoded in reverse
// order, so that's the order we populate the table.
size_t stringDataEndOffset = sectionData.size();
for (StringRef &string : llvm::reverse(strings)) {
uint64_t stringSize;
if (failed(stringReader.parseVarInt(stringSize)))
return failure();
if (stringDataEndOffset < stringSize) {
return stringReader.emitError(
"string size exceeds the available data size");
}
// Extract the string from the data, dropping the null character.
size_t stringOffset = stringDataEndOffset - stringSize;
string = StringRef(
reinterpret_cast<const char *>(sectionData.data() + stringOffset),
stringSize - 1);
stringDataEndOffset = stringOffset;
}
// Check that the only remaining data was for the strings, i.e. the reader
// should be at the same offset as the first string.
if ((sectionData.size() - stringReader.size()) != stringDataEndOffset) {
return stringReader.emitError("unexpected trailing data between the "
"offsets for strings and their data");
}
return success();
}
//===----------------------------------------------------------------------===//
// BytecodeDialect
//===----------------------------------------------------------------------===//
namespace {
class DialectReader;
/// This struct represents a dialect entry within the bytecode.
struct BytecodeDialect {
/// Load the dialect into the provided context if it hasn't been loaded yet.
/// Returns failure if the dialect couldn't be loaded *and* the provided
/// context does not allow unregistered dialects. The provided reader is used
/// for error emission if necessary.
LogicalResult load(DialectReader &reader, MLIRContext *ctx);
/// Return the loaded dialect, or nullptr if the dialect is unknown. This can
/// only be called after `load`.
Dialect *getLoadedDialect() const {
assert(dialect &&
"expected `load` to be invoked before `getLoadedDialect`");
return *dialect;
}
/// The loaded dialect entry. This field is std::nullopt if we haven't
/// attempted to load, nullptr if we failed to load, otherwise the loaded
/// dialect.
std::optional<Dialect *> dialect;
/// The bytecode interface of the dialect, or nullptr if the dialect does not
/// implement the bytecode interface. This field should only be checked if the
/// `dialect` field is not std::nullopt.
const BytecodeDialectInterface *interface = nullptr;
/// The name of the dialect.
StringRef name;
/// A buffer containing the encoding of the dialect version parsed.
ArrayRef<uint8_t> versionBuffer;
/// Lazy loaded dialect version from the handle above.
std::unique_ptr<DialectVersion> loadedVersion;
};
/// This struct represents an operation name entry within the bytecode.
struct BytecodeOperationName {
BytecodeOperationName(BytecodeDialect *dialect, StringRef name,
std::optional<bool> wasRegistered)
: dialect(dialect), name(name), wasRegistered(wasRegistered) {}
/// The loaded operation name, or std::nullopt if it hasn't been processed
/// yet.
std::optional<OperationName> opName;
/// The dialect that owns this operation name.
BytecodeDialect *dialect;
/// The name of the operation, without the dialect prefix.
StringRef name;
/// Whether this operation was registered when the bytecode was produced.
/// This flag is populated when bytecode version >=kNativePropertiesEncoding.
std::optional<bool> wasRegistered;
};
} // namespace
/// Parse a single dialect group encoded in the byte stream.
static LogicalResult parseDialectGrouping(
EncodingReader &reader, MutableArrayRef<BytecodeDialect> dialects,
function_ref<LogicalResult(BytecodeDialect *)> entryCallback) {
// Parse the dialect and the number of entries in the group.
BytecodeDialect *dialect;
if (failed(parseEntry(reader, dialects, dialect, "dialect")))
return failure();
uint64_t numEntries;
if (failed(reader.parseVarInt(numEntries)))
return failure();
for (uint64_t i = 0; i < numEntries; ++i)
if (failed(entryCallback(dialect)))
return failure();
return success();
}
//===----------------------------------------------------------------------===//
// ResourceSectionReader
//===----------------------------------------------------------------------===//
namespace {
/// This class is used to read the resource section from the bytecode.
class ResourceSectionReader {
public:
/// Initialize the resource section reader with the given section data.
LogicalResult
initialize(Location fileLoc, const ParserConfig &config,
MutableArrayRef<BytecodeDialect> dialects,
StringSectionReader &stringReader, ArrayRef<uint8_t> sectionData,
ArrayRef<uint8_t> offsetSectionData, DialectReader &dialectReader,
const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef);
/// Parse a dialect resource handle from the resource section.
LogicalResult parseResourceHandle(EncodingReader &reader,
AsmDialectResourceHandle &result) {
return parseEntry(reader, dialectResources, result, "resource handle");
}
private:
/// The table of dialect resources within the bytecode file.
SmallVector<AsmDialectResourceHandle> dialectResources;
llvm::StringMap<std::string> dialectResourceHandleRenamingMap;
};
class ParsedResourceEntry : public AsmParsedResourceEntry {
public:
ParsedResourceEntry(StringRef key, AsmResourceEntryKind kind,
EncodingReader &reader, StringSectionReader &stringReader,
const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef)
: key(key), kind(kind), reader(reader), stringReader(stringReader),
bufferOwnerRef(bufferOwnerRef) {}
~ParsedResourceEntry() override = default;
StringRef getKey() const final { return key; }
InFlightDiagnostic emitError() const final { return reader.emitError(); }
AsmResourceEntryKind getKind() const final { return kind; }
FailureOr<bool> parseAsBool() const final {
if (kind != AsmResourceEntryKind::Bool)
return emitError() << "expected a bool resource entry, but found a "
<< toString(kind) << " entry instead";
bool value;
if (failed(reader.parseByte(value)))
return failure();
return value;
}
FailureOr<std::string> parseAsString() const final {
if (kind != AsmResourceEntryKind::String)
return emitError() << "expected a string resource entry, but found a "
<< toString(kind) << " entry instead";
StringRef string;
if (failed(stringReader.parseString(reader, string)))
return failure();
return string.str();
}
FailureOr<AsmResourceBlob>
parseAsBlob(BlobAllocatorFn allocator) const final {
if (kind != AsmResourceEntryKind::Blob)
return emitError() << "expected a blob resource entry, but found a "
<< toString(kind) << " entry instead";
ArrayRef<uint8_t> data;
uint64_t alignment;
if (failed(reader.parseBlobAndAlignment(data, alignment)))
return failure();
// If we have an extendable reference to the buffer owner, we don't need to
// allocate a new buffer for the data, and can use the data directly.
if (bufferOwnerRef) {
ArrayRef<char> charData(reinterpret_cast<const char *>(data.data()),
data.size());
// Allocate an unmanager buffer which captures a reference to the owner.
// For now we just mark this as immutable, but in the future we should
// explore marking this as mutable when desired.
return UnmanagedAsmResourceBlob::allocateWithAlign(
charData, alignment,
[bufferOwnerRef = bufferOwnerRef](void *, size_t, size_t) {});
}
// Allocate memory for the blob using the provided allocator and copy the
// data into it.
AsmResourceBlob blob = allocator(data.size(), alignment);
assert(llvm::isAddrAligned(llvm::Align(alignment), blob.getData().data()) &&
blob.isMutable() &&
"blob allocator did not return a properly aligned address");
memcpy(blob.getMutableData().data(), data.data(), data.size());
return blob;
}
private:
StringRef key;
AsmResourceEntryKind kind;
EncodingReader &reader;
StringSectionReader &stringReader;
const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef;
};
} // namespace
template <typename T>
static LogicalResult
parseResourceGroup(Location fileLoc, bool allowEmpty,
EncodingReader &offsetReader, EncodingReader &resourceReader,
StringSectionReader &stringReader, T *handler,
const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef,
function_ref<StringRef(StringRef)> remapKey = {},
function_ref<LogicalResult(StringRef)> processKeyFn = {}) {
uint64_t numResources;
if (failed(offsetReader.parseVarInt(numResources)))
return failure();
for (uint64_t i = 0; i < numResources; ++i) {
StringRef key;
AsmResourceEntryKind kind;
uint64_t resourceOffset;
ArrayRef<uint8_t> data;
if (failed(stringReader.parseString(offsetReader, key)) ||
failed(offsetReader.parseVarInt(resourceOffset)) ||
failed(offsetReader.parseByte(kind)) ||
failed(resourceReader.parseBytes(resourceOffset, data)))
return failure();
// Process the resource key.
if ((processKeyFn && failed(processKeyFn(key))))
return failure();
// If the resource data is empty and we allow it, don't error out when
// parsing below, just skip it.
if (allowEmpty && data.empty())
continue;
// Ignore the entry if we don't have a valid handler.
if (!handler)
continue;
// Otherwise, parse the resource value.
EncodingReader entryReader(data, fileLoc);
key = remapKey(key);
ParsedResourceEntry entry(key, kind, entryReader, stringReader,
bufferOwnerRef);
if (failed(handler->parseResource(entry)))
return failure();
if (!entryReader.empty()) {
return entryReader.emitError(
"unexpected trailing bytes in resource entry '", key, "'");
}
}
return success();
}
LogicalResult ResourceSectionReader::initialize(
Location fileLoc, const ParserConfig &config,
MutableArrayRef<BytecodeDialect> dialects,
StringSectionReader &stringReader, ArrayRef<uint8_t> sectionData,
ArrayRef<uint8_t> offsetSectionData, DialectReader &dialectReader,
const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef) {
EncodingReader resourceReader(sectionData, fileLoc);
EncodingReader offsetReader(offsetSectionData, fileLoc);
// Read the number of external resource providers.
uint64_t numExternalResourceGroups;
if (failed(offsetReader.parseVarInt(numExternalResourceGroups)))
return failure();
// Utility functor that dispatches to `parseResourceGroup`, but implicitly
// provides most of the arguments.
auto parseGroup = [&](auto *handler, bool allowEmpty = false,
function_ref<LogicalResult(StringRef)> keyFn = {}) {
auto resolveKey = [&](StringRef key) -> StringRef {
auto it = dialectResourceHandleRenamingMap.find(key);
if (it == dialectResourceHandleRenamingMap.end())
return "";
return it->second;
};
return parseResourceGroup(fileLoc, allowEmpty, offsetReader, resourceReader,
stringReader, handler, bufferOwnerRef, resolveKey,
keyFn);
};
// Read the external resources from the bytecode.
for (uint64_t i = 0; i < numExternalResourceGroups; ++i) {
StringRef key;
if (failed(stringReader.parseString(offsetReader, key)))
return failure();
// Get the handler for these resources.
// TODO: Should we require handling external resources in some scenarios?
AsmResourceParser *handler = config.getResourceParser(key);
if (!handler) {
emitWarning(fileLoc) << "ignoring unknown external resources for '" << key
<< "'";
}
if (failed(parseGroup(handler)))
return failure();
}
// Read the dialect resources from the bytecode.
MLIRContext *ctx = fileLoc->getContext();
while (!offsetReader.empty()) {
BytecodeDialect *dialect;
if (failed(parseEntry(offsetReader, dialects, dialect, "dialect")) ||
failed(dialect->load(dialectReader, ctx)))
return failure();
Dialect *loadedDialect = dialect->getLoadedDialect();
if (!loadedDialect) {
return resourceReader.emitError()
<< "dialect '" << dialect->name << "' is unknown";
}
const auto *handler = dyn_cast<OpAsmDialectInterface>(loadedDialect);
if (!handler) {
return resourceReader.emitError()
<< "unexpected resources for dialect '" << dialect->name << "'";
}
// Ensure that each resource is declared before being processed.
auto processResourceKeyFn = [&](StringRef key) -> LogicalResult {
FailureOr<AsmDialectResourceHandle> handle =
handler->declareResource(key);
if (failed(handle)) {
return resourceReader.emitError()
<< "unknown 'resource' key '" << key << "' for dialect '"
<< dialect->name << "'";
}
dialectResourceHandleRenamingMap[key] = handler->getResourceKey(*handle);
dialectResources.push_back(*handle);
return success();
};
// Parse the resources for this dialect. We allow empty resources because we
// just treat these as declarations.
if (failed(parseGroup(handler, /*allowEmpty=*/true, processResourceKeyFn)))
return failure();
}
return success();
}
//===----------------------------------------------------------------------===//
// Attribute/Type Reader
//===----------------------------------------------------------------------===//
namespace {
/// This class provides support for reading attribute and type entries from the
/// bytecode. Attribute and Type entries are read lazily on demand, so we use
/// this reader to manage when to actually parse them from the bytecode.
class AttrTypeReader {
/// This class represents a single attribute or type entry.
template <typename T>
struct Entry {
/// The entry, or null if it hasn't been resolved yet.
T entry = {};
/// The parent dialect of this entry.
BytecodeDialect *dialect = nullptr;
/// A flag indicating if the entry was encoded using a custom encoding,
/// instead of using the textual assembly format.
bool hasCustomEncoding = false;
/// The raw data of this entry in the bytecode.
ArrayRef<uint8_t> data;
};
using AttrEntry = Entry<Attribute>;
using TypeEntry = Entry<Type>;
public:
AttrTypeReader(StringSectionReader &stringReader,
ResourceSectionReader &resourceReader, Location fileLoc,
uint64_t &bytecodeVersion)
: stringReader(stringReader), resourceReader(resourceReader),
fileLoc(fileLoc), bytecodeVersion(bytecodeVersion) {}
/// Initialize the attribute and type information within the reader.
LogicalResult initialize(MutableArrayRef<BytecodeDialect> dialects,
ArrayRef<uint8_t> sectionData,
ArrayRef<uint8_t> offsetSectionData);
/// Resolve the attribute or type at the given index. Returns nullptr on
/// failure.
Attribute resolveAttribute(size_t index) {
return resolveEntry(attributes, index, "Attribute");
}
Type resolveType(size_t index) { return resolveEntry(types, index, "Type"); }
/// Parse a reference to an attribute or type using the given reader.
LogicalResult parseAttribute(EncodingReader &reader, Attribute &result) {
uint64_t attrIdx;
if (failed(reader.parseVarInt(attrIdx)))
return failure();
result = resolveAttribute(attrIdx);
return success(!!result);
}
LogicalResult parseOptionalAttribute(EncodingReader &reader,
Attribute &result) {
uint64_t attrIdx;
bool flag;
if (failed(reader.parseVarIntWithFlag(attrIdx, flag)))
return failure();
if (!flag)
return success();
result = resolveAttribute(attrIdx);
return success(!!result);
}
LogicalResult parseType(EncodingReader &reader, Type &result) {
uint64_t typeIdx;
if (failed(reader.parseVarInt(typeIdx)))
return failure();
result = resolveType(typeIdx);
return success(!!result);
}
template <typename T>
LogicalResult parseAttribute(EncodingReader &reader, T &result) {
Attribute baseResult;
if (failed(parseAttribute(reader, baseResult)))
return failure();
if ((result = dyn_cast<T>(baseResult)))
return success();
return reader.emitError("expected attribute of type: ",
llvm::getTypeName<T>(), ", but got: ", baseResult);
}
private:
/// Resolve the given entry at `index`.
template <typename T>
T resolveEntry(SmallVectorImpl<Entry<T>> &entries, size_t index,
StringRef entryType);
/// Parse an entry using the given reader that was encoded using the textual
/// assembly format.
template <typename T>
LogicalResult parseAsmEntry(T &result, EncodingReader &reader,
StringRef entryType);
/// Parse an entry using the given reader that was encoded using a custom
/// bytecode format.
template <typename T>
LogicalResult parseCustomEntry(Entry<T> &entry, EncodingReader &reader,
StringRef entryType);
/// The string section reader used to resolve string references when parsing
/// custom encoded attribute/type entries.
StringSectionReader &stringReader;
/// The resource section reader used to resolve resource references when
/// parsing custom encoded attribute/type entries.
ResourceSectionReader &resourceReader;
/// The set of attribute and type entries.
SmallVector<AttrEntry> attributes;
SmallVector<TypeEntry> types;
/// A location used for error emission.
Location fileLoc;
/// Current bytecode version being used.
uint64_t &bytecodeVersion;
};
class DialectReader : public DialectBytecodeReader {
public:
DialectReader(AttrTypeReader &attrTypeReader,
StringSectionReader &stringReader,
ResourceSectionReader &resourceReader, EncodingReader &reader,
uint64_t &bytecodeVersion)
: attrTypeReader(attrTypeReader), stringReader(stringReader),
resourceReader(resourceReader), reader(reader),
bytecodeVersion(bytecodeVersion) {}
InFlightDiagnostic emitError(const Twine &msg) override {
return reader.emitError(msg);
}
uint64_t getBytecodeVersion() const override { return bytecodeVersion; }
DialectReader withEncodingReader(EncodingReader &encReader) {
return DialectReader(attrTypeReader, stringReader, resourceReader,
encReader, bytecodeVersion);
}
Location getLoc() const { return reader.getLoc(); }
//===--------------------------------------------------------------------===//
// IR
//===--------------------------------------------------------------------===//
LogicalResult readAttribute(Attribute &result) override {
return attrTypeReader.parseAttribute(reader, result);
}
LogicalResult readOptionalAttribute(Attribute &result) override {
return attrTypeReader.parseOptionalAttribute(reader, result);
}
LogicalResult readType(Type &result) override {
return attrTypeReader.parseType(reader, result);
}
FailureOr<AsmDialectResourceHandle> readResourceHandle() override {
AsmDialectResourceHandle handle;
if (failed(resourceReader.parseResourceHandle(reader, handle)))
return failure();
return handle;
}
//===--------------------------------------------------------------------===//
// Primitives
//===--------------------------------------------------------------------===//
LogicalResult readVarInt(uint64_t &result) override {
return reader.parseVarInt(result);
}
LogicalResult readSignedVarInt(int64_t &result) override {
uint64_t unsignedResult;
if (failed(reader.parseSignedVarInt(unsignedResult)))
return failure();
result = static_cast<int64_t>(unsignedResult);
return success();
}
FailureOr<APInt> readAPIntWithKnownWidth(unsigned bitWidth) override {
// Small values are encoded using a single byte.
if (bitWidth <= 8) {
uint8_t value;
if (failed(reader.parseByte(value)))
return failure();
return APInt(bitWidth, value);
}
// Large values up to 64 bits are encoded using a single varint.
if (bitWidth <= 64) {
uint64_t value;
if (failed(reader.parseSignedVarInt(value)))
return failure();
return APInt(bitWidth, value);
}
// Otherwise, for really big values we encode the array of active words in
// the value.
uint64_t numActiveWords;
if (failed(reader.parseVarInt(numActiveWords)))
return failure();
SmallVector<uint64_t, 4> words(numActiveWords);
for (uint64_t i = 0; i < numActiveWords; ++i)
if (failed(reader.parseSignedVarInt(words[i])))
return failure();
return APInt(bitWidth, words);
}
FailureOr<APFloat>
readAPFloatWithKnownSemantics(const llvm::fltSemantics &semantics) override {
FailureOr<APInt> intVal =
readAPIntWithKnownWidth(APFloat::getSizeInBits(semantics));
if (failed(intVal))
return failure();
return APFloat(semantics, *intVal);
}
LogicalResult readString(StringRef &result) override {
return stringReader.parseString(reader, result);
}
LogicalResult readBlob(ArrayRef<char> &result) override {
uint64_t dataSize;
ArrayRef<uint8_t> data;
if (failed(reader.parseVarInt(dataSize)) ||
failed(reader.parseBytes(dataSize, data)))
return failure();
result = llvm::ArrayRef(reinterpret_cast<const char *>(data.data()),
data.size());
return success();
}
LogicalResult readBool(bool &result) override {
return reader.parseByte(result);
}
private:
AttrTypeReader &attrTypeReader;
StringSectionReader &stringReader;
ResourceSectionReader &resourceReader;
EncodingReader &reader;
uint64_t &bytecodeVersion;
};
/// Wraps the properties section and handles reading properties out of it.
class PropertiesSectionReader {
public:
/// Initialize the properties section reader with the given section data.
LogicalResult initialize(Location fileLoc, ArrayRef<uint8_t> sectionData) {
if (sectionData.empty())
return success();
EncodingReader propReader(sectionData, fileLoc);
uint64_t count;
if (failed(propReader.parseVarInt(count)))
return failure();
// Parse the raw properties buffer.
if (failed(propReader.parseBytes(propReader.size(), propertiesBuffers)))
return failure();
EncodingReader offsetsReader(propertiesBuffers, fileLoc);
offsetTable.reserve(count);
for (auto idx : llvm::seq<int64_t>(0, count)) {
(void)idx;
offsetTable.push_back(propertiesBuffers.size() - offsetsReader.size());
ArrayRef<uint8_t> rawProperties;
uint64_t dataSize;
if (failed(offsetsReader.parseVarInt(dataSize)) ||
failed(offsetsReader.parseBytes(dataSize, rawProperties)))
return failure();
}
if (!offsetsReader.empty())
return offsetsReader.emitError()
<< "Broken properties section: didn't exhaust the offsets table";
return success();
}
LogicalResult read(Location fileLoc, DialectReader &dialectReader,
OperationName *opName, OperationState &opState) {
uint64_t propertiesIdx;
if (failed(dialectReader.readVarInt(propertiesIdx)))
return failure();
if (propertiesIdx >= offsetTable.size())
return dialectReader.emitError("Properties idx out-of-bound for ")
<< opName->getStringRef();
size_t propertiesOffset = offsetTable[propertiesIdx];
if (propertiesIdx >= propertiesBuffers.size())
return dialectReader.emitError("Properties offset out-of-bound for ")
<< opName->getStringRef();
// Acquire the sub-buffer that represent the requested properties.
ArrayRef<char> rawProperties;
{
// "Seek" to the requested offset by getting a new reader with the right
// sub-buffer.
EncodingReader reader(propertiesBuffers.drop_front(propertiesOffset),
fileLoc);
// Properties are stored as a sequence of {size + raw_data}.
if (failed(
dialectReader.withEncodingReader(reader).readBlob(rawProperties)))
return failure();
}
// Setup a new reader to read from the `rawProperties` sub-buffer.
EncodingReader reader(
StringRef(rawProperties.begin(), rawProperties.size()), fileLoc);
DialectReader propReader = dialectReader.withEncodingReader(reader);
auto *iface = opName->getInterface<BytecodeOpInterface>();
if (iface)
return iface->readProperties(propReader, opState);
if (opName->isRegistered())
return propReader.emitError(
"has properties but missing BytecodeOpInterface for ")
<< opName->getStringRef();
// Unregistered op are storing properties as an attribute.
return propReader.readAttribute(opState.propertiesAttr);
}
private:
/// The properties buffer referenced within the bytecode file.
ArrayRef<uint8_t> propertiesBuffers;
/// Table of offset in the buffer above.
SmallVector<int64_t> offsetTable;
};
} // namespace
LogicalResult
AttrTypeReader::initialize(MutableArrayRef<BytecodeDialect> dialects,
ArrayRef<uint8_t> sectionData,
ArrayRef<uint8_t> offsetSectionData) {
EncodingReader offsetReader(offsetSectionData, fileLoc);
// Parse the number of attribute and type entries.
uint64_t numAttributes, numTypes;
if (failed(offsetReader.parseVarInt(numAttributes)) ||
failed(offsetReader.parseVarInt(numTypes)))
return failure();
attributes.resize(numAttributes);
types.resize(numTypes);
// A functor used to accumulate the offsets for the entries in the given
// range.
uint64_t currentOffset = 0;
auto parseEntries = [&](auto &&range) {
size_t currentIndex = 0, endIndex = range.size();
// Parse an individual entry.
auto parseEntryFn = [&](BytecodeDialect *dialect) -> LogicalResult {
auto &entry = range[currentIndex++];
uint64_t entrySize;
if (failed(offsetReader.parseVarIntWithFlag(entrySize,
entry.hasCustomEncoding)))
return failure();
// Verify that the offset is actually valid.
if (currentOffset + entrySize > sectionData.size()) {
return offsetReader.emitError(
"Attribute or Type entry offset points past the end of section");
}
entry.data = sectionData.slice(currentOffset, entrySize);
entry.dialect = dialect;
currentOffset += entrySize;
return success();
};
while (currentIndex != endIndex)
if (failed(parseDialectGrouping(offsetReader, dialects, parseEntryFn)))
return failure();
return success();
};
// Process each of the attributes, and then the types.
if (failed(parseEntries(attributes)) || failed(parseEntries(types)))
return failure();
// Ensure that we read everything from the section.
if (!offsetReader.empty()) {
return offsetReader.emitError(
"unexpected trailing data in the Attribute/Type offset section");
}
return success();
}
template <typename T>
T AttrTypeReader::resolveEntry(SmallVectorImpl<Entry<T>> &entries, size_t index,
StringRef entryType) {
if (index >= entries.size()) {
emitError(fileLoc) << "invalid " << entryType << " index: " << index;
return {};
}
// If the entry has already been resolved, there is nothing left to do.
Entry<T> &entry = entries[index];
if (entry.entry)
return entry.entry;
// Parse the entry.
EncodingReader reader(entry.data, fileLoc);
// Parse based on how the entry was encoded.
if (entry.hasCustomEncoding) {
if (failed(parseCustomEntry(entry, reader, entryType)))
return T();
} else if (failed(parseAsmEntry(entry.entry, reader, entryType))) {
return T();
}
if (!reader.empty()) {
reader.emitError("unexpected trailing bytes after " + entryType + " entry");
return T();
}
return entry.entry;
}
template <typename T>
LogicalResult AttrTypeReader::parseAsmEntry(T &result, EncodingReader &reader,
StringRef entryType) {
StringRef asmStr;
if (failed(reader.parseNullTerminatedString(asmStr)))
return failure();
// Invoke the MLIR assembly parser to parse the entry text.
size_t numRead = 0;
MLIRContext *context = fileLoc->getContext();
if constexpr (std::is_same_v<T, Type>)
result =
::parseType(asmStr, context, &numRead, /*isKnownNullTerminated=*/true);
else
result = ::parseAttribute(asmStr, context, Type(), &numRead,
/*isKnownNullTerminated=*/true);
if (!result)
return failure();
// Ensure there weren't dangling characters after the entry.
if (numRead != asmStr.size()) {
return reader.emitError("trailing characters found after ", entryType,
" assembly format: ", asmStr.drop_front(numRead));
}
return success();
}
template <typename T>
LogicalResult AttrTypeReader::parseCustomEntry(Entry<T> &entry,
EncodingReader &reader,
StringRef entryType) {
DialectReader dialectReader(*this, stringReader, resourceReader, reader,
bytecodeVersion);
if (failed(entry.dialect->load(dialectReader, fileLoc.getContext())))
return failure();
// Ensure that the dialect implements the bytecode interface.
if (!entry.dialect->interface) {
return reader.emitError("dialect '", entry.dialect->name,
"' does not implement the bytecode interface");
}
// Ask the dialect to parse the entry. If the dialect is versioned, parse
// using the versioned encoding readers.
if (entry.dialect->loadedVersion.get()) {
if constexpr (std::is_same_v<T, Type>)
entry.entry = entry.dialect->interface->readType(
dialectReader, *entry.dialect->loadedVersion);
else
entry.entry = entry.dialect->interface->readAttribute(
dialectReader, *entry.dialect->loadedVersion);
} else {
if constexpr (std::is_same_v<T, Type>)
entry.entry = entry.dialect->interface->readType(dialectReader);
else
entry.entry = entry.dialect->interface->readAttribute(dialectReader);
}
return success(!!entry.entry);
}
//===----------------------------------------------------------------------===//
// Bytecode Reader
//===----------------------------------------------------------------------===//
/// This class is used to read a bytecode buffer and translate it into MLIR.
class mlir::BytecodeReader::Impl {
struct RegionReadState;
using LazyLoadableOpsInfo =
std::list<std::pair<Operation *, RegionReadState>>;
using LazyLoadableOpsMap =
DenseMap<Operation *, LazyLoadableOpsInfo::iterator>;
public:
Impl(Location fileLoc, const ParserConfig &config, bool lazyLoading,
llvm::MemoryBufferRef buffer,
const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef)
: config(config), fileLoc(fileLoc), lazyLoading(lazyLoading),
attrTypeReader(stringReader, resourceReader, fileLoc, version),
// Use the builtin unrealized conversion cast operation to represent
// forward references to values that aren't yet defined.
forwardRefOpState(UnknownLoc::get(config.getContext()),
"builtin.unrealized_conversion_cast", ValueRange(),
NoneType::get(config.getContext())),
buffer(buffer), bufferOwnerRef(bufferOwnerRef) {}
/// Read the bytecode defined within `buffer` into the given block.
LogicalResult read(Block *block,
llvm::function_ref<bool(Operation *)> lazyOps);
/// Return the number of ops that haven't been materialized yet.
int64_t getNumOpsToMaterialize() const { return lazyLoadableOpsMap.size(); }
bool isMaterializable(Operation *op) { return lazyLoadableOpsMap.count(op); }
/// Materialize the provided operation, invoke the lazyOpsCallback on every
/// newly found lazy operation.
LogicalResult
materialize(Operation *op,
llvm::function_ref<bool(Operation *)> lazyOpsCallback) {
this->lazyOpsCallback = lazyOpsCallback;
auto resetlazyOpsCallback =
llvm::make_scope_exit([&] { this->lazyOpsCallback = nullptr; });
auto it = lazyLoadableOpsMap.find(op);
assert(it != lazyLoadableOpsMap.end() &&
"materialize called on non-materializable op");
return materialize(it);
}
/// Materialize all operations.
LogicalResult materializeAll() {
while (!lazyLoadableOpsMap.empty()) {
if (failed(materialize(lazyLoadableOpsMap.begin())))
return failure();
}
return success();
}
/// Finalize the lazy-loading by calling back with every op that hasn't been
/// materialized to let the client decide if the op should be deleted or
/// materialized. The op is materialized if the callback returns true, deleted
/// otherwise.
LogicalResult finalize(function_ref<bool(Operation *)> shouldMaterialize) {
while (!lazyLoadableOps.empty()) {
Operation *op = lazyLoadableOps.begin()->first;
if (shouldMaterialize(op)) {
if (failed(materialize(lazyLoadableOpsMap.find(op))))
return failure();
continue;
}
op->dropAllReferences();
op->erase();
lazyLoadableOps.pop_front();
lazyLoadableOpsMap.erase(op);
}
return success();
}
private:
LogicalResult materialize(LazyLoadableOpsMap::iterator it) {
assert(it != lazyLoadableOpsMap.end() &&
"materialize called on non-materializable op");
valueScopes.emplace_back();
std::vector<RegionReadState> regionStack;
regionStack.push_back(std::move(it->getSecond()->second));
lazyLoadableOps.erase(it->getSecond());
lazyLoadableOpsMap.erase(it);
while (!regionStack.empty())
if (failed(parseRegions(regionStack, regionStack.back())))
return failure();
return success();
}
/// Return the context for this config.
MLIRContext *getContext() const { return config.getContext(); }
/// Parse the bytecode version.
LogicalResult parseVersion(EncodingReader &reader);
//===--------------------------------------------------------------------===//
// Dialect Section
LogicalResult parseDialectSection(ArrayRef<uint8_t> sectionData);
/// Parse an operation name reference using the given reader, and set the
/// `wasRegistered` flag that indicates if the bytecode was produced by a
/// context where opName was registered.
FailureOr<OperationName> parseOpName(EncodingReader &reader,
std::optional<bool> &wasRegistered);
//===--------------------------------------------------------------------===//
// Attribute/Type Section
/// Parse an attribute or type using the given reader.
template <typename T>
LogicalResult parseAttribute(EncodingReader &reader, T &result) {
return attrTypeReader.parseAttribute(reader, result);
}
LogicalResult parseType(EncodingReader &reader, Type &result) {
return attrTypeReader.parseType(reader, result);
}
//===--------------------------------------------------------------------===//
// Resource Section
LogicalResult
parseResourceSection(EncodingReader &reader,
std::optional<ArrayRef<uint8_t>> resourceData,
std::optional<ArrayRef<uint8_t>> resourceOffsetData);
//===--------------------------------------------------------------------===//
// IR Section
/// This struct represents the current read state of a range of regions. This
/// struct is used to enable iterative parsing of regions.
struct RegionReadState {
RegionReadState(Operation *op, EncodingReader *reader,
bool isIsolatedFromAbove)
: RegionReadState(op->getRegions(), reader, isIsolatedFromAbove) {}
RegionReadState(MutableArrayRef<Region> regions, EncodingReader *reader,
bool isIsolatedFromAbove)
: curRegion(regions.begin()), endRegion(regions.end()), reader(reader),
isIsolatedFromAbove(isIsolatedFromAbove) {}
/// The current regions being read.
MutableArrayRef<Region>::iterator curRegion, endRegion;
/// This is the reader to use for this region, this pointer is pointing to
/// the parent region reader unless the current region is IsolatedFromAbove,
/// in which case the pointer is pointing to the `owningReader` which is a
/// section dedicated to the current region.
EncodingReader *reader;
std::unique_ptr<EncodingReader> owningReader;
/// The number of values defined immediately within this region.
unsigned numValues = 0;
/// The current blocks of the region being read.
SmallVector<Block *> curBlocks;
Region::iterator curBlock = {};
/// The number of operations remaining to be read from the current block
/// being read.
uint64_t numOpsRemaining = 0;
/// A flag indicating if the regions being read are isolated from above.
bool isIsolatedFromAbove = false;
};
LogicalResult parseIRSection(ArrayRef<uint8_t> sectionData, Block *block);
LogicalResult parseRegions(std::vector<RegionReadState> ®ionStack,
RegionReadState &readState);
FailureOr<Operation *> parseOpWithoutRegions(EncodingReader &reader,
RegionReadState &readState,
bool &isIsolatedFromAbove);
LogicalResult parseRegion(RegionReadState &readState);
LogicalResult parseBlockHeader(EncodingReader &reader,
RegionReadState &readState);
LogicalResult parseBlockArguments(EncodingReader &reader, Block *block);
//===--------------------------------------------------------------------===//
// Value Processing
/// Parse an operand reference using the given reader. Returns nullptr in the
/// case of failure.
Value parseOperand(EncodingReader &reader);
/// Sequentially define the given value range.
LogicalResult defineValues(EncodingReader &reader, ValueRange values);
/// Create a value to use for a forward reference.
Value createForwardRef();
//===--------------------------------------------------------------------===//
// Use-list order helpers
/// This struct is a simple storage that contains information required to
/// reorder the use-list of a value with respect to the pre-order traversal
/// ordering.
struct UseListOrderStorage {
UseListOrderStorage(bool isIndexPairEncoding,
SmallVector<unsigned, 4> &&indices)
: indices(std::move(indices)),
isIndexPairEncoding(isIndexPairEncoding){};
/// The vector containing the information required to reorder the
/// use-list of a value.
SmallVector<unsigned, 4> indices;
/// Whether indices represent a pair of type `(src, dst)` or it is a direct
/// indexing, such as `dst = order[src]`.
bool isIndexPairEncoding;
};
/// Parse use-list order from bytecode for a range of values if available. The
/// range is expected to be either a block argument or an op result range. On
/// success, return a map of the position in the range and the use-list order
/// encoding. The function assumes to know the size of the range it is
/// processing.
using UseListMapT = DenseMap<unsigned, UseListOrderStorage>;
FailureOr<UseListMapT> parseUseListOrderForRange(EncodingReader &reader,
uint64_t rangeSize);
/// Shuffle the use-chain according to the order parsed.
LogicalResult sortUseListOrder(Value value);
/// Recursively visit all the values defined within topLevelOp and sort the
/// use-list orders according to the indices parsed.
LogicalResult processUseLists(Operation *topLevelOp);
//===--------------------------------------------------------------------===//
// Fields
/// This class represents a single value scope, in which a value scope is
/// delimited by isolated from above regions.
struct ValueScope {
/// Push a new region state onto this scope, reserving enough values for
/// those defined within the current region of the provided state.
void push(RegionReadState &readState) {
nextValueIDs.push_back(values.size());
values.resize(values.size() + readState.numValues);
}
/// Pop the values defined for the current region within the provided region
/// state.
void pop(RegionReadState &readState) {
values.resize(values.size() - readState.numValues);
nextValueIDs.pop_back();
}
/// The set of values defined in this scope.
std::vector<Value> values;
/// The ID for the next defined value for each region current being
/// processed in this scope.
SmallVector<unsigned, 4> nextValueIDs;
};
/// The configuration of the parser.
const ParserConfig &config;
/// A location to use when emitting errors.
Location fileLoc;
/// Flag that indicates if lazyloading is enabled.
bool lazyLoading;
/// Keep track of operations that have been lazy loaded (their regions haven't
/// been materialized), along with the `RegionReadState` that allows to
/// lazy-load the regions nested under the operation.
LazyLoadableOpsInfo lazyLoadableOps;
LazyLoadableOpsMap lazyLoadableOpsMap;
llvm::function_ref<bool(Operation *)> lazyOpsCallback;
/// The reader used to process attribute and types within the bytecode.
AttrTypeReader attrTypeReader;
/// The version of the bytecode being read.
uint64_t version = 0;
/// The producer of the bytecode being read.
StringRef producer;
/// The table of IR units referenced within the bytecode file.
SmallVector<BytecodeDialect> dialects;
SmallVector<BytecodeOperationName> opNames;
/// The reader used to process resources within the bytecode.
ResourceSectionReader resourceReader;
/// Worklist of values with custom use-list orders to process before the end
/// of the parsing.
DenseMap<void *, UseListOrderStorage> valueToUseListMap;
/// The table of strings referenced within the bytecode file.
StringSectionReader stringReader;
/// The table of properties referenced by the operation in the bytecode file.
PropertiesSectionReader propertiesReader;
/// The current set of available IR value scopes.
std::vector<ValueScope> valueScopes;
/// The global pre-order operation ordering.
DenseMap<Operation *, unsigned> operationIDs;
/// A block containing the set of operations defined to create forward
/// references.
Block forwardRefOps;
/// A block containing previously created, and no longer used, forward
/// reference operations.
Block openForwardRefOps;
/// An operation state used when instantiating forward references.
OperationState forwardRefOpState;
/// Reference to the input buffer.
llvm::MemoryBufferRef buffer;
/// The optional owning source manager, which when present may be used to
/// extend the lifetime of the input buffer.
const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef;
};
LogicalResult BytecodeReader::Impl::read(
Block *block, llvm::function_ref<bool(Operation *)> lazyOpsCallback) {
EncodingReader reader(buffer.getBuffer(), fileLoc);
this->lazyOpsCallback = lazyOpsCallback;
auto resetlazyOpsCallback =
llvm::make_scope_exit([&] { this->lazyOpsCallback = nullptr; });
// Skip over the bytecode header, this should have already been checked.
if (failed(reader.skipBytes(StringRef("ML\xefR").size())))
return failure();
// Parse the bytecode version and producer.
if (failed(parseVersion(reader)) ||
failed(reader.parseNullTerminatedString(producer)))
return failure();
// Add a diagnostic handler that attaches a note that includes the original
// producer of the bytecode.
ScopedDiagnosticHandler diagHandler(getContext(), [&](Diagnostic &diag) {
diag.attachNote() << "in bytecode version " << version
<< " produced by: " << producer;
return failure();
});
// Parse the raw data for each of the top-level sections of the bytecode.
std::optional<ArrayRef<uint8_t>>
sectionDatas[bytecode::Section::kNumSections];
while (!reader.empty()) {
// Read the next section from the bytecode.
bytecode::Section::ID sectionID;
ArrayRef<uint8_t> sectionData;
if (failed(reader.parseSection(sectionID, sectionData)))
return failure();
// Check for duplicate sections, we only expect one instance of each.
if (sectionDatas[sectionID]) {
return reader.emitError("duplicate top-level section: ",
::toString(sectionID));
}
sectionDatas[sectionID] = sectionData;
}
// Check that all of the required sections were found.
for (int i = 0; i < bytecode::Section::kNumSections; ++i) {
bytecode::Section::ID sectionID = static_cast<bytecode::Section::ID>(i);
if (!sectionDatas[i] && !isSectionOptional(sectionID, version)) {
return reader.emitError("missing data for top-level section: ",
::toString(sectionID));
}
}
// Process the string section first.
if (failed(stringReader.initialize(
fileLoc, *sectionDatas[bytecode::Section::kString])))
return failure();
// Process the properties section.
if (sectionDatas[bytecode::Section::kProperties] &&
failed(propertiesReader.initialize(
fileLoc, *sectionDatas[bytecode::Section::kProperties])))
return failure();
// Process the dialect section.
if (failed(parseDialectSection(*sectionDatas[bytecode::Section::kDialect])))
return failure();
// Process the resource section if present.
if (failed(parseResourceSection(
reader, sectionDatas[bytecode::Section::kResource],
sectionDatas[bytecode::Section::kResourceOffset])))
return failure();
// Process the attribute and type section.
if (failed(attrTypeReader.initialize(
dialects, *sectionDatas[bytecode::Section::kAttrType],
*sectionDatas[bytecode::Section::kAttrTypeOffset])))
return failure();
// Finally, process the IR section.
return parseIRSection(*sectionDatas[bytecode::Section::kIR], block);
}
LogicalResult BytecodeReader::Impl::parseVersion(EncodingReader &reader) {
if (failed(reader.parseVarInt(version)))
return failure();
// Validate the bytecode version.
uint64_t currentVersion = bytecode::kVersion;
uint64_t minSupportedVersion = bytecode::kMinSupportedVersion;
if (version < minSupportedVersion) {
return reader.emitError("bytecode version ", version,
" is older than the current version of ",
currentVersion, ", and upgrade is not supported");
}
if (version > currentVersion) {
return reader.emitError("bytecode version ", version,
" is newer than the current version ",
currentVersion);
}
// Override any request to lazy-load if the bytecode version is too old.
if (version < bytecode::kLazyLoading)
lazyLoading = false;
return success();
}
//===----------------------------------------------------------------------===//
// Dialect Section
LogicalResult BytecodeDialect::load(DialectReader &reader, MLIRContext *ctx) {
if (dialect)
return success();
Dialect *loadedDialect = ctx->getOrLoadDialect(name);
if (!loadedDialect && !ctx->allowsUnregisteredDialects()) {
return reader.emitError("dialect '")
<< name
<< "' is unknown. If this is intended, please call "
"allowUnregisteredDialects() on the MLIRContext, or use "
"-allow-unregistered-dialect with the MLIR tool used.";
}
dialect = loadedDialect;
// If the dialect was actually loaded, check to see if it has a bytecode
// interface.
if (loadedDialect)
interface = dyn_cast<BytecodeDialectInterface>(loadedDialect);
if (!versionBuffer.empty()) {
if (!interface)
return reader.emitError("dialect '")
<< name
<< "' does not implement the bytecode interface, "
"but found a version entry";
EncodingReader encReader(versionBuffer, reader.getLoc());
DialectReader versionReader = reader.withEncodingReader(encReader);
loadedVersion = interface->readVersion(versionReader);
if (!loadedVersion)
return failure();
}
return success();
}
LogicalResult
BytecodeReader::Impl::parseDialectSection(ArrayRef<uint8_t> sectionData) {
EncodingReader sectionReader(sectionData, fileLoc);
// Parse the number of dialects in the section.
uint64_t numDialects;
if (failed(sectionReader.parseVarInt(numDialects)))
return failure();
dialects.resize(numDialects);
// Parse each of the dialects.
for (uint64_t i = 0; i < numDialects; ++i) {
/// Before version kDialectVersioning, there wasn't any versioning available
/// for dialects, and the entryIdx represent the string itself.
if (version < bytecode::kDialectVersioning) {
if (failed(stringReader.parseString(sectionReader, dialects[i].name)))
return failure();
continue;
}
// Parse ID representing dialect and version.
uint64_t dialectNameIdx;
bool versionAvailable;
if (failed(sectionReader.parseVarIntWithFlag(dialectNameIdx,
versionAvailable)))
return failure();
if (failed(stringReader.parseStringAtIndex(sectionReader, dialectNameIdx,
dialects[i].name)))
return failure();
if (versionAvailable) {
bytecode::Section::ID sectionID;
if (failed(
sectionReader.parseSection(sectionID, dialects[i].versionBuffer)))
return failure();
if (sectionID != bytecode::Section::kDialectVersions) {
emitError(fileLoc, "expected dialect version section");
return failure();
}
}
}
// Parse the operation names, which are grouped by dialect.
auto parseOpName = [&](BytecodeDialect *dialect) {
StringRef opName;
std::optional<bool> wasRegistered;
// Prior to version kNativePropertiesEncoding, the information about wheter
// an op was registered or not wasn't encoded.
if (version < bytecode::kNativePropertiesEncoding) {
if (failed(stringReader.parseString(sectionReader, opName)))
return failure();
} else {
bool wasRegisteredFlag;
if (failed(stringReader.parseStringWithFlag(sectionReader, opName,
wasRegisteredFlag)))
return failure();
wasRegistered = wasRegisteredFlag;
}
opNames.emplace_back(dialect, opName, wasRegistered);
return success();
};
// Avoid re-allocation in bytecode version >=kElideUnknownBlockArgLocation
// where the number of ops are known.
if (version >= bytecode::kElideUnknownBlockArgLocation) {
uint64_t numOps;
if (failed(sectionReader.parseVarInt(numOps)))
return failure();
opNames.reserve(numOps);
}
while (!sectionReader.empty())
if (failed(parseDialectGrouping(sectionReader, dialects, parseOpName)))
return failure();
return success();
}
FailureOr<OperationName>
BytecodeReader::Impl::parseOpName(EncodingReader &reader,
std::optional<bool> &wasRegistered) {
BytecodeOperationName *opName = nullptr;
if (failed(parseEntry(reader, opNames, opName, "operation name")))
return failure();
wasRegistered = opName->wasRegistered;
// Check to see if this operation name has already been resolved. If we
// haven't, load the dialect and build the operation name.
if (!opName->opName) {
// Load the dialect and its version.
DialectReader dialectReader(attrTypeReader, stringReader, resourceReader,
reader, version);
if (failed(opName->dialect->load(dialectReader, getContext())))
return failure();
// If the opName is empty, this is because we use to accept names such as
// `foo` without any `.` separator. We shouldn't tolerate this in textual
// format anymore but for now we'll be backward compatible. This can only
// happen with unregistered dialects.
if (opName->name.empty()) {
if (opName->dialect->getLoadedDialect())
return emitError(fileLoc) << "has an empty opname for dialect '"
<< opName->dialect->name << "'\n";
opName->opName.emplace(opName->dialect->name, getContext());
} else {
opName->opName.emplace((opName->dialect->name + "." + opName->name).str(),
getContext());
}
}
return *opName->opName;
}
//===----------------------------------------------------------------------===//
// Resource Section
LogicalResult BytecodeReader::Impl::parseResourceSection(
EncodingReader &reader, std::optional<ArrayRef<uint8_t>> resourceData,
std::optional<ArrayRef<uint8_t>> resourceOffsetData) {
// Ensure both sections are either present or not.
if (resourceData.has_value() != resourceOffsetData.has_value()) {
if (resourceOffsetData)
return emitError(fileLoc, "unexpected resource offset section when "
"resource section is not present");
return emitError(
fileLoc,
"expected resource offset section when resource section is present");
}
// If the resource sections are absent, there is nothing to do.
if (!resourceData)
return success();
// Initialize the resource reader with the resource sections.
DialectReader dialectReader(attrTypeReader, stringReader, resourceReader,
reader, version);
return resourceReader.initialize(fileLoc, config, dialects, stringReader,
*resourceData, *resourceOffsetData,
dialectReader, bufferOwnerRef);
}
//===----------------------------------------------------------------------===//
// UseListOrder Helpers
FailureOr<BytecodeReader::Impl::UseListMapT>
BytecodeReader::Impl::parseUseListOrderForRange(EncodingReader &reader,
uint64_t numResults) {
BytecodeReader::Impl::UseListMapT map;
uint64_t numValuesToRead = 1;
if (numResults > 1 && failed(reader.parseVarInt(numValuesToRead)))
return failure();
for (size_t valueIdx = 0; valueIdx < numValuesToRead; valueIdx++) {
uint64_t resultIdx = 0;
if (numResults > 1 && failed(reader.parseVarInt(resultIdx)))
return failure();
uint64_t numValues;
bool indexPairEncoding;
if (failed(reader.parseVarIntWithFlag(numValues, indexPairEncoding)))
return failure();
SmallVector<unsigned, 4> useListOrders;
for (size_t idx = 0; idx < numValues; idx++) {
uint64_t index;
if (failed(reader.parseVarInt(index)))
return failure();
useListOrders.push_back(index);
}
// Store in a map the result index
map.try_emplace(resultIdx, UseListOrderStorage(indexPairEncoding,
std::move(useListOrders)));
}
return map;
}
/// Sorts each use according to the order specified in the use-list parsed. If
/// the custom use-list is not found, this means that the order needs to be
/// consistent with the reverse pre-order walk of the IR. If multiple uses lie
/// on the same operation, the order will follow the reverse operand number
/// ordering.
LogicalResult BytecodeReader::Impl::sortUseListOrder(Value value) {
// Early return for trivial use-lists.
if (value.use_empty() || value.hasOneUse())
return success();
bool hasIncomingOrder =
valueToUseListMap.contains(value.getAsOpaquePointer());
// Compute the current order of the use-list with respect to the global
// ordering. Detect if the order is already sorted while doing so.
bool alreadySorted = true;
auto &firstUse = *value.use_begin();
uint64_t prevID =
bytecode::getUseID(firstUse, operationIDs.at(firstUse.getOwner()));
llvm::SmallVector<std::pair<unsigned, uint64_t>> currentOrder = {{0, prevID}};
for (auto item : llvm::drop_begin(llvm::enumerate(value.getUses()))) {
uint64_t currentID = bytecode::getUseID(
item.value(), operationIDs.at(item.value().getOwner()));
alreadySorted &= prevID > currentID;
currentOrder.push_back({item.index(), currentID});
prevID = currentID;
}
// If the order is already sorted, and there wasn't a custom order to apply
// from the bytecode file, we are done.
if (alreadySorted && !hasIncomingOrder)
return success();
// If not already sorted, sort the indices of the current order by descending
// useIDs.
if (!alreadySorted)
std::sort(
currentOrder.begin(), currentOrder.end(),
[](auto elem1, auto elem2) { return elem1.second > elem2.second; });
if (!hasIncomingOrder) {
// If the bytecode file did not contain any custom use-list order, it means
// that the order was descending useID. Hence, shuffle by the first index
// of the `currentOrder` pair.
SmallVector<unsigned> shuffle = SmallVector<unsigned>(
llvm::map_range(currentOrder, [&](auto item) { return item.first; }));
value.shuffleUseList(shuffle);
return success();
}
// Pull the custom order info from the map.
UseListOrderStorage customOrder =
valueToUseListMap.at(value.getAsOpaquePointer());
SmallVector<unsigned, 4> shuffle = std::move(customOrder.indices);
uint64_t numUses =
std::distance(value.getUses().begin(), value.getUses().end());
// If the encoding was a pair of indices `(src, dst)` for every permutation,
// reconstruct the shuffle vector for every use. Initialize the shuffle vector
// as identity, and then apply the mapping encoded in the indices.
if (customOrder.isIndexPairEncoding) {
// Return failure if the number of indices was not representing pairs.
if (shuffle.size() & 1)
return failure();
SmallVector<unsigned, 4> newShuffle(numUses);
size_t idx = 0;
std::iota(newShuffle.begin(), newShuffle.end(), idx);
for (idx = 0; idx < shuffle.size(); idx += 2)
newShuffle[shuffle[idx]] = shuffle[idx + 1];
shuffle = std::move(newShuffle);
}
// Make sure that the indices represent a valid mapping. That is, the sum of
// all the values needs to be equal to (numUses - 1) * numUses / 2, and no
// duplicates are allowed in the list.
DenseSet<unsigned> set;
uint64_t accumulator = 0;
for (const auto &elem : shuffle) {
if (set.contains(elem))
return failure();
accumulator += elem;
set.insert(elem);
}
if (numUses != shuffle.size() ||
accumulator != (((numUses - 1) * numUses) >> 1))
return failure();
// Apply the current ordering map onto the shuffle vector to get the final
// use-list sorting indices before shuffling.
shuffle = SmallVector<unsigned, 4>(llvm::map_range(
currentOrder, [&](auto item) { return shuffle[item.first]; }));
value.shuffleUseList(shuffle);
return success();
}
LogicalResult BytecodeReader::Impl::processUseLists(Operation *topLevelOp) {
// Precompute operation IDs according to the pre-order walk of the IR. We
// can't do this while parsing since parseRegions ordering is not strictly
// equal to the pre-order walk.
unsigned operationID = 0;
topLevelOp->walk<mlir::WalkOrder::PreOrder>(
[&](Operation *op) { operationIDs.try_emplace(op, operationID++); });
auto blockWalk = topLevelOp->walk([this](Block *block) {
for (auto arg : block->getArguments())
if (failed(sortUseListOrder(arg)))
return WalkResult::interrupt();
return WalkResult::advance();
});
auto resultWalk = topLevelOp->walk([this](Operation *op) {
for (auto result : op->getResults())
if (failed(sortUseListOrder(result)))
return WalkResult::interrupt();
return WalkResult::advance();
});
return failure(blockWalk.wasInterrupted() || resultWalk.wasInterrupted());
}
//===----------------------------------------------------------------------===//
// IR Section
LogicalResult
BytecodeReader::Impl::parseIRSection(ArrayRef<uint8_t> sectionData,
Block *block) {
EncodingReader reader(sectionData, fileLoc);
// A stack of operation regions currently being read from the bytecode.
std::vector<RegionReadState> regionStack;
// Parse the top-level block using a temporary module operation.
OwningOpRef<ModuleOp> moduleOp = ModuleOp::create(fileLoc);
regionStack.emplace_back(*moduleOp, &reader, /*isIsolatedFromAbove=*/true);
regionStack.back().curBlocks.push_back(moduleOp->getBody());
regionStack.back().curBlock = regionStack.back().curRegion->begin();
if (failed(parseBlockHeader(reader, regionStack.back())))
return failure();
valueScopes.emplace_back();
valueScopes.back().push(regionStack.back());
// Iteratively parse regions until everything has been resolved.
while (!regionStack.empty())
if (failed(parseRegions(regionStack, regionStack.back())))
return failure();
if (!forwardRefOps.empty()) {
return reader.emitError(
"not all forward unresolved forward operand references");
}
// Sort use-lists according to what specified in bytecode.
if (failed(processUseLists(*moduleOp)))
return reader.emitError(
"parsed use-list orders were invalid and could not be applied");
// Resolve dialect version.
for (const BytecodeDialect &byteCodeDialect : dialects) {
// Parsing is complete, give an opportunity to each dialect to visit the
// IR and perform upgrades.
if (!byteCodeDialect.loadedVersion)
continue;
if (byteCodeDialect.interface &&
failed(byteCodeDialect.interface->upgradeFromVersion(
*moduleOp, *byteCodeDialect.loadedVersion)))
return failure();
}
// Verify that the parsed operations are valid.
if (config.shouldVerifyAfterParse() && failed(verify(*moduleOp)))
return failure();
// Splice the parsed operations over to the provided top-level block.
auto &parsedOps = moduleOp->getBody()->getOperations();
auto &destOps = block->getOperations();
destOps.splice(destOps.end(), parsedOps, parsedOps.begin(), parsedOps.end());
return success();
}
LogicalResult
BytecodeReader::Impl::parseRegions(std::vector<RegionReadState> ®ionStack,
RegionReadState &readState) {
// Process regions, blocks, and operations until the end or if a nested
// region is encountered. In this case we push a new state in regionStack and
// return, the processing of the current region will resume afterward.
for (; readState.curRegion != readState.endRegion; ++readState.curRegion) {
// If the current block hasn't been setup yet, parse the header for this
// region. The current block is already setup when this function was
// interrupted to recurse down in a nested region and we resume the current
// block after processing the nested region.
if (readState.curBlock == Region::iterator()) {
if (failed(parseRegion(readState)))
return failure();
// If the region is empty, there is nothing to more to do.
if (readState.curRegion->empty())
continue;
}
// Parse the blocks within the region.
EncodingReader &reader = *readState.reader;
do {
while (readState.numOpsRemaining--) {
// Read in the next operation. We don't read its regions directly, we
// handle those afterwards as necessary.
bool isIsolatedFromAbove = false;
FailureOr<Operation *> op =
parseOpWithoutRegions(reader, readState, isIsolatedFromAbove);
if (failed(op))
return failure();
// If the op has regions, add it to the stack for processing and return:
// we stop the processing of the current region and resume it after the
// inner one is completed. Unless LazyLoading is activated in which case
// nested region parsing is delayed.
if ((*op)->getNumRegions()) {
RegionReadState childState(*op, &reader, isIsolatedFromAbove);
// Isolated regions are encoded as a section in version 2 and above.
if (version >= bytecode::kLazyLoading && isIsolatedFromAbove) {
bytecode::Section::ID sectionID;
ArrayRef<uint8_t> sectionData;
if (failed(reader.parseSection(sectionID, sectionData)))
return failure();
if (sectionID != bytecode::Section::kIR)
return emitError(fileLoc, "expected IR section for region");
childState.owningReader =
std::make_unique<EncodingReader>(sectionData, fileLoc);
childState.reader = childState.owningReader.get();
// If the user has a callback set, they have the opportunity to
// control lazyloading as we go.
if (lazyLoading && (!lazyOpsCallback || !lazyOpsCallback(*op))) {
lazyLoadableOps.emplace_back(*op, std::move(childState));
lazyLoadableOpsMap.try_emplace(*op,
std::prev(lazyLoadableOps.end()));
continue;
}
}
regionStack.push_back(std::move(childState));
// If the op is isolated from above, push a new value scope.
if (isIsolatedFromAbove)
valueScopes.emplace_back();
return success();
}
}
// Move to the next block of the region.
if (++readState.curBlock == readState.curRegion->end())
break;
if (failed(parseBlockHeader(reader, readState)))
return failure();
} while (true);
// Reset the current block and any values reserved for this region.
readState.curBlock = {};
valueScopes.back().pop(readState);
}
// When the regions have been fully parsed, pop them off of the read stack. If
// the regions were isolated from above, we also pop the last value scope.
if (readState.isIsolatedFromAbove) {
assert(!valueScopes.empty() && "Expect a valueScope after reading region");
valueScopes.pop_back();
}
assert(!regionStack.empty() && "Expect a regionStack after reading region");
regionStack.pop_back();
return success();
}
FailureOr<Operation *>
BytecodeReader::Impl::parseOpWithoutRegions(EncodingReader &reader,
RegionReadState &readState,
bool &isIsolatedFromAbove) {
// Parse the name of the operation.
std::optional<bool> wasRegistered;
FailureOr<OperationName> opName = parseOpName(reader, wasRegistered);
if (failed(opName))
return failure();
// Parse the operation mask, which indicates which components of the operation
// are present.
uint8_t opMask;
if (failed(reader.parseByte(opMask)))
return failure();
/// Parse the location.
LocationAttr opLoc;
if (failed(parseAttribute(reader, opLoc)))
return failure();
// With the location and name resolved, we can start building the operation
// state.
OperationState opState(opLoc, *opName);
// Parse the attributes of the operation.
if (opMask & bytecode::OpEncodingMask::kHasAttrs) {
DictionaryAttr dictAttr;
if (failed(parseAttribute(reader, dictAttr)))
return failure();
opState.attributes = dictAttr;
}
if (opMask & bytecode::OpEncodingMask::kHasProperties) {
// kHasProperties wasn't emitted in older bytecode, we should never get
// there without also having the `wasRegistered` flag available.
if (!wasRegistered)
return emitError(fileLoc,
"Unexpected missing `wasRegistered` opname flag at "
"bytecode version ")
<< version << " with properties.";
// When an operation is emitted without being registered, the properties are
// stored as an attribute. Otherwise the op must implement the bytecode
// interface and control the serialization.
if (wasRegistered) {
DialectReader dialectReader(attrTypeReader, stringReader, resourceReader,
reader, version);
if (failed(
propertiesReader.read(fileLoc, dialectReader, &*opName, opState)))
return failure();
} else {
// If the operation wasn't registered when it was emitted, the properties
// was serialized as an attribute.
if (failed(parseAttribute(reader, opState.propertiesAttr)))
return failure();
}
}
/// Parse the results of the operation.
if (opMask & bytecode::OpEncodingMask::kHasResults) {
uint64_t numResults;
if (failed(reader.parseVarInt(numResults)))
return failure();
opState.types.resize(numResults);
for (int i = 0, e = numResults; i < e; ++i)
if (failed(parseType(reader, opState.types[i])))
return failure();
}
/// Parse the operands of the operation.
if (opMask & bytecode::OpEncodingMask::kHasOperands) {
uint64_t numOperands;
if (failed(reader.parseVarInt(numOperands)))
return failure();
opState.operands.resize(numOperands);
for (int i = 0, e = numOperands; i < e; ++i)
if (!(opState.operands[i] = parseOperand(reader)))
return failure();
}
/// Parse the successors of the operation.
if (opMask & bytecode::OpEncodingMask::kHasSuccessors) {
uint64_t numSuccs;
if (failed(reader.parseVarInt(numSuccs)))
return failure();
opState.successors.resize(numSuccs);
for (int i = 0, e = numSuccs; i < e; ++i) {
if (failed(parseEntry(reader, readState.curBlocks, opState.successors[i],
"successor")))
return failure();
}
}
/// Parse the use-list orders for the results of the operation. Use-list
/// orders are available since version 3 of the bytecode.
std::optional<UseListMapT> resultIdxToUseListMap = std::nullopt;
if (version >= bytecode::kUseListOrdering &&
(opMask & bytecode::OpEncodingMask::kHasUseListOrders)) {
size_t numResults = opState.types.size();
auto parseResult = parseUseListOrderForRange(reader, numResults);
if (failed(parseResult))
return failure();
resultIdxToUseListMap = std::move(*parseResult);
}
/// Parse the regions of the operation.
if (opMask & bytecode::OpEncodingMask::kHasInlineRegions) {
uint64_t numRegions;
if (failed(reader.parseVarIntWithFlag(numRegions, isIsolatedFromAbove)))
return failure();
opState.regions.reserve(numRegions);
for (int i = 0, e = numRegions; i < e; ++i)
opState.regions.push_back(std::make_unique<Region>());
}
// Create the operation at the back of the current block.
Operation *op = Operation::create(opState);
readState.curBlock->push_back(op);
// If the operation had results, update the value references.
if (op->getNumResults() && failed(defineValues(reader, op->getResults())))
return failure();
/// Store a map for every value that received a custom use-list order from the
/// bytecode file.
if (resultIdxToUseListMap.has_value()) {
for (size_t idx = 0; idx < op->getNumResults(); idx++) {
if (resultIdxToUseListMap->contains(idx)) {
valueToUseListMap.try_emplace(op->getResult(idx).getAsOpaquePointer(),
resultIdxToUseListMap->at(idx));
}
}
}
return op;
}
LogicalResult BytecodeReader::Impl::parseRegion(RegionReadState &readState) {
EncodingReader &reader = *readState.reader;
// Parse the number of blocks in the region.
uint64_t numBlocks;
if (failed(reader.parseVarInt(numBlocks)))
return failure();
// If the region is empty, there is nothing else to do.
if (numBlocks == 0)
return success();
// Parse the number of values defined in this region.
uint64_t numValues;
if (failed(reader.parseVarInt(numValues)))
return failure();
readState.numValues = numValues;
// Create the blocks within this region. We do this before processing so that
// we can rely on the blocks existing when creating operations.
readState.curBlocks.clear();
readState.curBlocks.reserve(numBlocks);
for (uint64_t i = 0; i < numBlocks; ++i) {
readState.curBlocks.push_back(new Block());
readState.curRegion->push_back(readState.curBlocks.back());
}
// Prepare the current value scope for this region.
valueScopes.back().push(readState);
// Parse the entry block of the region.
readState.curBlock = readState.curRegion->begin();
return parseBlockHeader(reader, readState);
}
LogicalResult
BytecodeReader::Impl::parseBlockHeader(EncodingReader &reader,
RegionReadState &readState) {
bool hasArgs;
if (failed(reader.parseVarIntWithFlag(readState.numOpsRemaining, hasArgs)))
return failure();
// Parse the arguments of the block.
if (hasArgs && failed(parseBlockArguments(reader, &*readState.curBlock)))
return failure();
// Uselist orders are available since version 3 of the bytecode.
if (version < bytecode::kUseListOrdering)
return success();
uint8_t hasUseListOrders = 0;
if (hasArgs && failed(reader.parseByte(hasUseListOrders)))
return failure();
if (!hasUseListOrders)
return success();
Block &blk = *readState.curBlock;
auto argIdxToUseListMap =
parseUseListOrderForRange(reader, blk.getNumArguments());
if (failed(argIdxToUseListMap) || argIdxToUseListMap->empty())
return failure();
for (size_t idx = 0; idx < blk.getNumArguments(); idx++)
if (argIdxToUseListMap->contains(idx))
valueToUseListMap.try_emplace(blk.getArgument(idx).getAsOpaquePointer(),
argIdxToUseListMap->at(idx));
// We don't parse the operations of the block here, that's done elsewhere.
return success();
}
LogicalResult BytecodeReader::Impl::parseBlockArguments(EncodingReader &reader,
Block *block) {
// Parse the value ID for the first argument, and the number of arguments.
uint64_t numArgs;
if (failed(reader.parseVarInt(numArgs)))
return failure();
SmallVector<Type> argTypes;
SmallVector<Location> argLocs;
argTypes.reserve(numArgs);
argLocs.reserve(numArgs);
Location unknownLoc = UnknownLoc::get(config.getContext());
while (numArgs--) {
Type argType;
LocationAttr argLoc = unknownLoc;
if (version >= bytecode::kElideUnknownBlockArgLocation) {
// Parse the type with hasLoc flag to determine if it has type.
uint64_t typeIdx;
bool hasLoc;
if (failed(reader.parseVarIntWithFlag(typeIdx, hasLoc)) ||
!(argType = attrTypeReader.resolveType(typeIdx)))
return failure();
if (hasLoc && failed(parseAttribute(reader, argLoc)))
return failure();
} else {
// All args has type and location.
if (failed(parseType(reader, argType)) ||
failed(parseAttribute(reader, argLoc)))
return failure();
}
argTypes.push_back(argType);
argLocs.push_back(argLoc);
}
block->addArguments(argTypes, argLocs);
return defineValues(reader, block->getArguments());
}
//===----------------------------------------------------------------------===//
// Value Processing
Value BytecodeReader::Impl::parseOperand(EncodingReader &reader) {
std::vector<Value> &values = valueScopes.back().values;
Value *value = nullptr;
if (failed(parseEntry(reader, values, value, "value")))
return Value();
// Create a new forward reference if necessary.
if (!*value)
*value = createForwardRef();
return *value;
}
LogicalResult BytecodeReader::Impl::defineValues(EncodingReader &reader,
ValueRange newValues) {
ValueScope &valueScope = valueScopes.back();
std::vector<Value> &values = valueScope.values;
unsigned &valueID = valueScope.nextValueIDs.back();
unsigned valueIDEnd = valueID + newValues.size();
if (valueIDEnd > values.size()) {
return reader.emitError(
"value index range was outside of the expected range for "
"the parent region, got [",
valueID, ", ", valueIDEnd, "), but the maximum index was ",
values.size() - 1);
}
// Assign the values and update any forward references.
for (unsigned i = 0, e = newValues.size(); i != e; ++i, ++valueID) {
Value newValue = newValues[i];
// Check to see if a definition for this value already exists.
if (Value oldValue = std::exchange(values[valueID], newValue)) {
Operation *forwardRefOp = oldValue.getDefiningOp();
// Assert that this is a forward reference operation. Given how we compute
// definition ids (incrementally as we parse), it shouldn't be possible
// for the value to be defined any other way.
assert(forwardRefOp && forwardRefOp->getBlock() == &forwardRefOps &&
"value index was already defined?");
oldValue.replaceAllUsesWith(newValue);
forwardRefOp->moveBefore(&openForwardRefOps, openForwardRefOps.end());
}
}
return success();
}
Value BytecodeReader::Impl::createForwardRef() {
// Check for an avaliable existing operation to use. Otherwise, create a new
// fake operation to use for the reference.
if (!openForwardRefOps.empty()) {
Operation *op = &openForwardRefOps.back();
op->moveBefore(&forwardRefOps, forwardRefOps.end());
} else {
forwardRefOps.push_back(Operation::create(forwardRefOpState));
}
return forwardRefOps.back().getResult(0);
}
//===----------------------------------------------------------------------===//
// Entry Points
//===----------------------------------------------------------------------===//
BytecodeReader::~BytecodeReader() { assert(getNumOpsToMaterialize() == 0); }
BytecodeReader::BytecodeReader(
llvm::MemoryBufferRef buffer, const ParserConfig &config, bool lazyLoading,
const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef) {
Location sourceFileLoc =
FileLineColLoc::get(config.getContext(), buffer.getBufferIdentifier(),
/*line=*/0, /*column=*/0);
impl = std::make_unique<Impl>(sourceFileLoc, config, lazyLoading, buffer,
bufferOwnerRef);
}
LogicalResult BytecodeReader::readTopLevel(
Block *block, llvm::function_ref<bool(Operation *)> lazyOpsCallback) {
return impl->read(block, lazyOpsCallback);
}
int64_t BytecodeReader::getNumOpsToMaterialize() const {
return impl->getNumOpsToMaterialize();
}
bool BytecodeReader::isMaterializable(Operation *op) {
return impl->isMaterializable(op);
}
LogicalResult BytecodeReader::materialize(
Operation *op, llvm::function_ref<bool(Operation *)> lazyOpsCallback) {
return impl->materialize(op, lazyOpsCallback);
}
LogicalResult
BytecodeReader::finalize(function_ref<bool(Operation *)> shouldMaterialize) {
return impl->finalize(shouldMaterialize);
}
bool mlir::isBytecode(llvm::MemoryBufferRef buffer) {
return buffer.getBuffer().startswith("ML\xefR");
}
/// Read the bytecode from the provided memory buffer reference.
/// `bufferOwnerRef` if provided is the owning source manager for the buffer,
/// and may be used to extend the lifetime of the buffer.
static LogicalResult
readBytecodeFileImpl(llvm::MemoryBufferRef buffer, Block *block,
const ParserConfig &config,
const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef) {
Location sourceFileLoc =
FileLineColLoc::get(config.getContext(), buffer.getBufferIdentifier(),
/*line=*/0, /*column=*/0);
if (!isBytecode(buffer)) {
return emitError(sourceFileLoc,
"input buffer is not an MLIR bytecode file");
}
BytecodeReader::Impl reader(sourceFileLoc, config, /*lazyLoading=*/false,
buffer, bufferOwnerRef);
return reader.read(block, /*lazyOpsCallback=*/nullptr);
}
LogicalResult mlir::readBytecodeFile(llvm::MemoryBufferRef buffer, Block *block,
const ParserConfig &config) {
return readBytecodeFileImpl(buffer, block, config, /*bufferOwnerRef=*/{});
}
LogicalResult
mlir::readBytecodeFile(const std::shared_ptr<llvm::SourceMgr> &sourceMgr,
Block *block, const ParserConfig &config) {
return readBytecodeFileImpl(
*sourceMgr->getMemoryBuffer(sourceMgr->getMainFileID()), block, config,
sourceMgr);
}
|