1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
|
//===- AMDGPUToROCDL.cpp - AMDGPU to ROCDL dialect conversion -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/AMDGPU/IR/AMDGPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/ROCDLDialect.h"
#include "mlir/Pass/Pass.h"
#include "llvm/ADT/STLExtras.h"
#include <optional>
namespace mlir {
#define GEN_PASS_DEF_CONVERTAMDGPUTOROCDL
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::amdgpu;
static Value createI32Constant(ConversionPatternRewriter &rewriter,
Location loc, int32_t value) {
Type llvmI32 = rewriter.getI32Type();
return rewriter.create<LLVM::ConstantOp>(loc, llvmI32, value);
}
static Value createI1Constant(ConversionPatternRewriter &rewriter, Location loc,
bool value) {
Type llvmI1 = rewriter.getI1Type();
return rewriter.createOrFold<LLVM::ConstantOp>(loc, llvmI1, value);
}
namespace {
/// Define lowering patterns for raw buffer ops
template <typename GpuOp, typename Intrinsic>
struct RawBufferOpLowering : public ConvertOpToLLVMPattern<GpuOp> {
RawBufferOpLowering(LLVMTypeConverter &converter, Chipset chipset)
: ConvertOpToLLVMPattern<GpuOp>(converter), chipset(chipset) {}
Chipset chipset;
static constexpr uint32_t maxVectorOpWidth = 128;
LogicalResult
matchAndRewrite(GpuOp gpuOp, typename GpuOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = gpuOp.getLoc();
Value memref = adaptor.getMemref();
Value unconvertedMemref = gpuOp.getMemref();
MemRefType memrefType = cast<MemRefType>(unconvertedMemref.getType());
if (chipset.majorVersion < 9)
return gpuOp.emitOpError("Raw buffer ops require GCN or higher");
Value storeData = adaptor.getODSOperands(0)[0];
if (storeData == memref) // no write component to this op
storeData = Value();
Type wantedDataType;
if (storeData)
wantedDataType = storeData.getType();
else
wantedDataType = gpuOp.getODSResults(0)[0].getType();
Value atomicCmpData = Value();
// Operand index 1 of a load is the indices, trying to read them can crash.
if (storeData) {
Value maybeCmpData = adaptor.getODSOperands(1)[0];
if (maybeCmpData != memref)
atomicCmpData = maybeCmpData;
}
Type llvmWantedDataType = this->typeConverter->convertType(wantedDataType);
Type i32 = rewriter.getI32Type();
Type llvmI32 = this->typeConverter->convertType(i32);
int64_t elementByteWidth = memrefType.getElementTypeBitWidth() / 8;
Value byteWidthConst = createI32Constant(rewriter, loc, elementByteWidth);
// If we want to load a vector<NxT> with total size <= 32
// bits, use a scalar load and bitcast it. Similarly, if bitsize(T) < 32
// and the total load size is >= 32, use a vector load of N / (bitsize(T) /
// 32) x i32 and bitcast. Also, the CAS intrinsic requires integer operands,
// so bitcast any floats to integers.
Type llvmBufferValType = llvmWantedDataType;
if (atomicCmpData) {
if (isa<VectorType>(wantedDataType))
return gpuOp.emitOpError("vector compare-and-swap does not exist");
if (auto floatType = dyn_cast<FloatType>(wantedDataType))
llvmBufferValType = this->getTypeConverter()->convertType(
rewriter.getIntegerType(floatType.getWidth()));
}
if (auto dataVector = dyn_cast<VectorType>(wantedDataType)) {
uint32_t elemBits = dataVector.getElementTypeBitWidth();
uint32_t totalBits = elemBits * dataVector.getNumElements();
if (totalBits > maxVectorOpWidth)
return gpuOp.emitOpError(
"Total width of loads or stores must be no more than " +
Twine(maxVectorOpWidth) + " bits, but we call for " +
Twine(totalBits) +
" bits. This should've been caught in validation");
if (elemBits < 32) {
if (totalBits > 32) {
if (totalBits % 32 != 0)
return gpuOp.emitOpError("Load or store of more than 32-bits that "
"doesn't fit into words. Can't happen\n");
llvmBufferValType = this->typeConverter->convertType(
VectorType::get(totalBits / 32, i32));
} else {
llvmBufferValType = this->typeConverter->convertType(
rewriter.getIntegerType(totalBits));
}
}
}
SmallVector<Value, 6> args;
if (storeData) {
if (llvmBufferValType != llvmWantedDataType) {
Value castForStore =
rewriter.create<LLVM::BitcastOp>(loc, llvmBufferValType, storeData);
args.push_back(castForStore);
} else {
args.push_back(storeData);
}
}
if (atomicCmpData) {
if (llvmBufferValType != llvmWantedDataType) {
Value castForCmp = rewriter.create<LLVM::BitcastOp>(
loc, llvmBufferValType, atomicCmpData);
args.push_back(castForCmp);
} else {
args.push_back(atomicCmpData);
}
}
// Construct buffer descriptor from memref, attributes
int64_t offset = 0;
SmallVector<int64_t, 5> strides;
if (failed(getStridesAndOffset(memrefType, strides, offset)))
return gpuOp.emitOpError("Can't lower non-stride-offset memrefs");
// Resource descriptor
// bits 0-47: base address
// bits 48-61: stride (0 for raw buffers)
// bit 62: texture cache coherency (always 0)
// bit 63: enable swizzles (always off for raw buffers)
// bits 64-95 (word 2): Number of records, units of stride
// bits 96-127 (word 3): See below
Type llvm4xI32 = this->typeConverter->convertType(VectorType::get(4, i32));
MemRefDescriptor memrefDescriptor(memref);
Type llvmI64 = this->typeConverter->convertType(rewriter.getI64Type());
Value c32I64 = rewriter.create<LLVM::ConstantOp>(
loc, llvmI64, rewriter.getI64IntegerAttr(32));
Value resource = rewriter.create<LLVM::UndefOp>(loc, llvm4xI32);
Value ptr = memrefDescriptor.alignedPtr(rewriter, loc);
Value ptrAsInt = rewriter.create<LLVM::PtrToIntOp>(loc, llvmI64, ptr);
Value lowHalf = rewriter.create<LLVM::TruncOp>(loc, llvmI32, ptrAsInt);
resource = rewriter.create<LLVM::InsertElementOp>(
loc, llvm4xI32, resource, lowHalf,
this->createIndexConstant(rewriter, loc, 0));
// Bits 48-63 are used both for the stride of the buffer and (on gfx10) for
// enabling swizzling. Prevent the high bits of pointers from accidentally
// setting those flags.
Value highHalfShifted = rewriter.create<LLVM::TruncOp>(
loc, llvmI32, rewriter.create<LLVM::LShrOp>(loc, ptrAsInt, c32I64));
Value highHalfTruncated = rewriter.create<LLVM::AndOp>(
loc, llvmI32, highHalfShifted,
createI32Constant(rewriter, loc, 0x0000ffff));
resource = rewriter.create<LLVM::InsertElementOp>(
loc, llvm4xI32, resource, highHalfTruncated,
this->createIndexConstant(rewriter, loc, 1));
Value numRecords;
if (memrefType.hasStaticShape()) {
numRecords = createI32Constant(
rewriter, loc,
static_cast<int32_t>(memrefType.getNumElements() * elementByteWidth));
} else {
Value maxIndex;
for (uint32_t i = 0, e = memrefType.getRank(); i < e; ++i) {
Value size = memrefDescriptor.size(rewriter, loc, i);
Value stride = memrefDescriptor.stride(rewriter, loc, i);
stride = rewriter.create<LLVM::MulOp>(loc, stride, byteWidthConst);
Value maxThisDim = rewriter.create<LLVM::MulOp>(loc, size, stride);
maxIndex = maxIndex ? rewriter.create<LLVM::MaximumOp>(loc, maxIndex,
maxThisDim)
: maxThisDim;
}
numRecords = rewriter.create<LLVM::TruncOp>(loc, llvmI32, maxIndex);
}
resource = rewriter.create<LLVM::InsertElementOp>(
loc, llvm4xI32, resource, numRecords,
this->createIndexConstant(rewriter, loc, 2));
// Final word:
// bits 0-11: dst sel, ignored by these intrinsics
// bits 12-14: data format (ignored, must be nonzero, 7=float)
// bits 15-18: data format (ignored, must be nonzero, 4=32bit)
// bit 19: In nested heap (0 here)
// bit 20: Behavior on unmap (0 means "return 0 / ignore")
// bits 21-22: Index stride for swizzles (N/A)
// bit 23: Add thread ID (0)
// bit 24: Reserved to 1 (RDNA) or 0 (CDNA)
// bits 25-26: Reserved (0)
// bit 27: Buffer is non-volatile (CDNA only)
// bits 28-29: Out of bounds select (0 = structured, 1 = check index, 2 =
// none, 3 = either swizzles or testing against offset field) RDNA only
// bits 30-31: Type (must be 0)
uint32_t word3 = (7 << 12) | (4 << 15);
if (chipset.majorVersion >= 10) {
word3 |= (1 << 24);
uint32_t oob = adaptor.getBoundsCheck() ? 3 : 2;
word3 |= (oob << 28);
}
Value word3Const = createI32Constant(rewriter, loc, word3);
resource = rewriter.create<LLVM::InsertElementOp>(
loc, llvm4xI32, resource, word3Const,
this->createIndexConstant(rewriter, loc, 3));
args.push_back(resource);
// Indexing (voffset)
Value voffset = createI32Constant(rewriter, loc, 0);
for (auto pair : llvm::enumerate(adaptor.getIndices())) {
size_t i = pair.index();
Value index = pair.value();
Value strideOp;
if (ShapedType::isDynamic(strides[i])) {
strideOp = rewriter.create<LLVM::MulOp>(
loc, memrefDescriptor.stride(rewriter, loc, i), byteWidthConst);
} else {
strideOp =
createI32Constant(rewriter, loc, strides[i] * elementByteWidth);
}
index = rewriter.create<LLVM::MulOp>(loc, index, strideOp);
voffset = rewriter.create<LLVM::AddOp>(loc, voffset, index);
}
if (adaptor.getIndexOffset()) {
int32_t indexOffset = *gpuOp.getIndexOffset() * elementByteWidth;
Value extraOffsetConst = createI32Constant(rewriter, loc, indexOffset);
voffset =
voffset ? rewriter.create<LLVM::AddOp>(loc, voffset, extraOffsetConst)
: extraOffsetConst;
}
args.push_back(voffset);
Value sgprOffset = adaptor.getSgprOffset();
if (!sgprOffset)
sgprOffset = createI32Constant(rewriter, loc, 0);
if (ShapedType::isDynamic(offset))
sgprOffset = rewriter.create<LLVM::AddOp>(
loc, memrefDescriptor.offset(rewriter, loc), sgprOffset);
else if (offset > 0)
sgprOffset = rewriter.create<LLVM::AddOp>(
loc, sgprOffset, createI32Constant(rewriter, loc, offset));
args.push_back(sgprOffset);
// bit 0: GLC = 0 (atomics drop value, less coherency)
// bits 1-2: SLC, DLC = 0 (similarly)
// bit 3: swizzled (0 for raw)
args.push_back(createI32Constant(rewriter, loc, 0));
llvm::SmallVector<Type, 1> resultTypes(gpuOp->getNumResults(),
llvmBufferValType);
Operation *lowered = rewriter.create<Intrinsic>(loc, resultTypes, args,
ArrayRef<NamedAttribute>());
if (lowered->getNumResults() == 1) {
Value replacement = lowered->getResult(0);
if (llvmBufferValType != llvmWantedDataType) {
replacement = rewriter.create<LLVM::BitcastOp>(loc, llvmWantedDataType,
replacement);
}
rewriter.replaceOp(gpuOp, replacement);
} else {
rewriter.eraseOp(gpuOp);
}
return success();
}
};
struct LDSBarrierOpLowering : public ConvertOpToLLVMPattern<LDSBarrierOp> {
using ConvertOpToLLVMPattern<LDSBarrierOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(LDSBarrierOp op, LDSBarrierOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto asmDialectAttr = LLVM::AsmDialectAttr::get(rewriter.getContext(),
LLVM::AsmDialect::AD_ATT);
const char *asmStr = "s_waitcnt lgkmcnt(0)\ns_barrier";
const char *constraints = "";
rewriter.replaceOpWithNewOp<LLVM::InlineAsmOp>(
op,
/*resultTypes=*/TypeRange(), /*operands=*/ValueRange(),
/*asm_string=*/asmStr, constraints, /*has_side_effects=*/true,
/*is_align_stack=*/false, /*asm_dialect=*/asmDialectAttr,
/*operand_attrs=*/ArrayAttr());
return success();
}
};
} // namespace
/// If `input` is a vector of bytes, concatentate those bytes in little-endian
/// order to form a single integer of size 8 * [vector length]. This works
/// around a wart in the AMDGPU intrinsics where operations that logically take
/// vectors of bytes instead integers. Since we do not want to expose this
/// implementation detail to MLIR, we correct for it here.
static Value mfmaConcatIfNeeded(ConversionPatternRewriter &rewriter,
Location loc, Value input) {
Type inputType = input.getType();
if (auto vectorType = dyn_cast<VectorType>(inputType)) {
if (!vectorType.getElementType().isInteger(8))
return input;
int64_t numBytes = vectorType.getNumElements();
Type destType = rewriter.getIntegerType(numBytes * 8);
Value result = rewriter.create<LLVM::ConstantOp>(
loc, destType, rewriter.getIntegerAttr(destType, 0));
for (int64_t i = 0; i < numBytes; ++i) {
Value idxConst = createI32Constant(rewriter, loc, i);
Value element =
rewriter.create<LLVM::ExtractElementOp>(loc, input, idxConst);
Value extended = rewriter.create<LLVM::ZExtOp>(loc, destType, element);
Value shiftConst = rewriter.create<LLVM::ConstantOp>(
loc, destType, rewriter.getIntegerAttr(destType, i * 8));
Value shifted = rewriter.create<LLVM::ShlOp>(loc, extended, shiftConst);
result = rewriter.create<LLVM::OrOp>(loc, result, shifted);
}
return result;
}
return input;
}
/// Push an input operand. If it is a float type, nothing to do. If it is
/// an integer type, then we need to also push its signdness (1 for signed, 0
/// for unsigned) and we need to pack the input 16xi8 vector into a 4xi32
/// vector.
static void wmmaPushInputOperand(ConversionPatternRewriter &rewriter,
Location loc, TypeConverter *typeConverter,
bool isUnsigned, Value llvmInput,
SmallVector<Value, 4> &operands) {
Type inputType = llvmInput.getType();
auto vectorType = inputType.dyn_cast<VectorType>();
Type elemType = vectorType.getElementType();
if (!elemType.isInteger(8)) {
operands.push_back(llvmInput);
return;
}
int64_t numBytes = vectorType.getNumElements();
Type i32 = rewriter.getI32Type();
VectorType vectorType32bits = VectorType::get(numBytes * 8 / 32, i32);
auto llvmVectorType32bits = typeConverter->convertType(vectorType32bits);
Value result = rewriter.createOrFold<LLVM::BitcastOp>(
loc, llvmVectorType32bits, llvmInput);
// if element type is 8-bit signed or unsigned, ignore the isUnsigned flag
bool localIsUnsigned = isUnsigned;
if (elemType.isUnsignedInteger(8)) {
localIsUnsigned = true;
} else if (elemType.isSignedInteger(8)) {
localIsUnsigned = false;
}
Value sign = createI1Constant(rewriter, loc, !localIsUnsigned);
operands.push_back(sign);
operands.push_back(result);
}
/// Push the output operand. For many cases this is only pushing the output in
/// the operand list. But when we have f16 -> f16 or bf16 -> bf16 intrinsics,
/// since the same numbers of VGPRs is used, we need to decide if to store the
/// result in the upper 16 bits of the VGPRs or in the lower part. To store the
/// result in the lower 16 bits, set subwordOffset to 1, otherwise result will
/// be stored it in the upper part
static void wmmaPushOutputOperand(ConversionPatternRewriter &rewriter,
Location loc, TypeConverter *typeConverter,
Value output, int32_t subwordOffset,
bool clamp, SmallVector<Value, 4> &operands) {
Type inputType = output.getType();
auto vectorType = inputType.dyn_cast<VectorType>();
Type elemType = vectorType.getElementType();
operands.push_back(output);
if (elemType.isF16() || elemType.isBF16()) {
operands.push_back(createI1Constant(rewriter, loc, subwordOffset));
} else if (elemType.isInteger(32)) {
operands.push_back(createI1Constant(rewriter, loc, clamp));
}
}
/// Return the `rocdl` intrinsic corresponding to a MFMA operation `mfma`
/// if one exists. This includes checking to ensure the intrinsic is supported
/// on the architecture you are compiling for.
static std::optional<StringRef> mfmaOpToIntrinsic(MFMAOp mfma,
Chipset chipset) {
uint32_t m = mfma.getM(), n = mfma.getN(), k = mfma.getK(),
b = mfma.getBlocks();
Type sourceElem = mfma.getSourceA().getType();
if (auto sourceType = dyn_cast<VectorType>(sourceElem))
sourceElem = sourceType.getElementType();
Type destElem = mfma.getDestC().getType();
if (auto destType = dyn_cast<VectorType>(destElem))
destElem = destType.getElementType();
if (sourceElem.isF32() && destElem.isF32()) {
if (mfma.getReducePrecision() && chipset.minorVersion >= 0x40) {
if (m == 32 && n == 32 && k == 4 && b == 1)
return ROCDL::mfma_f32_32x32x4_xf32::getOperationName();
if (m == 16 && n == 16 && k == 8 && b == 1)
return ROCDL::mfma_f32_16x16x8_xf32::getOperationName();
}
if (m == 32 && n == 32 && k == 1 && b == 2)
return ROCDL::mfma_f32_32x32x1f32::getOperationName();
if (m == 16 && n == 16 && k == 1 && b == 4)
return ROCDL::mfma_f32_16x16x1f32::getOperationName();
if (m == 4 && n == 4 && k == 1 && b == 16)
return ROCDL::mfma_f32_4x4x1f32::getOperationName();
if (m == 32 && n == 32 && k == 2 && b == 1)
return ROCDL::mfma_f32_32x32x2f32::getOperationName();
if (m == 16 && n == 16 && k == 4 && b == 1)
return ROCDL::mfma_f32_16x16x4f32::getOperationName();
}
if (sourceElem.isF16() && destElem.isF32()) {
if (m == 32 && n == 32 && k == 4 && b == 2)
return ROCDL::mfma_f32_32x32x4f16::getOperationName();
if (m == 16 && n == 16 && k == 4 && b == 4)
return ROCDL::mfma_f32_16x16x4f16::getOperationName();
if (m == 4 && n == 4 && k == 4 && b == 16)
return ROCDL::mfma_f32_4x4x4f16::getOperationName();
if (m == 32 && n == 32 && k == 8 && b == 1)
return ROCDL::mfma_f32_32x32x8f16::getOperationName();
if (m == 16 && n == 16 && k == 16 && b == 1)
return ROCDL::mfma_f32_16x16x16f16::getOperationName();
}
if (sourceElem.isBF16() && destElem.isF32() && chipset.minorVersion >= 0x0a) {
if (m == 32 && n == 32 && k == 4 && b == 2)
return ROCDL::mfma_f32_32x32x4bf16_1k::getOperationName();
if (m == 16 && n == 16 && k == 4 && b == 4)
return ROCDL::mfma_f32_16x16x4bf16_1k::getOperationName();
if (m == 4 && n == 4 && k == 4 && b == 16)
return ROCDL::mfma_f32_4x4x4bf16_1k::getOperationName();
if (m == 32 && n == 32 && k == 8 && b == 1)
return ROCDL::mfma_f32_32x32x8bf16_1k::getOperationName();
if (m == 16 && n == 16 && k == 16 && b == 1)
return ROCDL::mfma_f32_16x16x16bf16_1k::getOperationName();
}
if (sourceElem.isBF16() && destElem.isF32()) {
if (m == 32 && n == 32 && k == 2 && b == 2)
return ROCDL::mfma_f32_32x32x2bf16::getOperationName();
if (m == 16 && n == 16 && k == 2 && b == 4)
return ROCDL::mfma_f32_16x16x2bf16::getOperationName();
if (m == 4 && n == 4 && k == 2 && b == 16)
return ROCDL::mfma_f32_4x4x2bf16::getOperationName();
if (m == 32 && n == 32 && k == 4 && b == 1)
return ROCDL::mfma_f32_32x32x4bf16::getOperationName();
if (m == 16 && n == 16 && k == 8 && b == 1)
return ROCDL::mfma_f32_16x16x8bf16::getOperationName();
}
if (isa<IntegerType>(sourceElem) && destElem.isInteger(32)) {
if (m == 32 && n == 32 && k == 4 && b == 2)
return ROCDL::mfma_i32_32x32x4i8::getOperationName();
if (m == 16 && n == 16 && k == 4 && b == 4)
return ROCDL::mfma_i32_16x16x4i8::getOperationName();
if (m == 4 && n == 4 && k == 4 && b == 16)
return ROCDL::mfma_i32_4x4x4i8::getOperationName();
if (m == 32 && n == 32 && k == 8 && b == 1)
return ROCDL::mfma_i32_32x32x8i8::getOperationName();
if (m == 16 && n == 16 && k == 16 && b == 1)
return ROCDL::mfma_i32_16x16x16i8::getOperationName();
if (m == 32 && n == 32 && k == 16 && b == 1 && chipset.minorVersion >= 0x40)
return ROCDL::mfma_i32_32x32x16_i8::getOperationName();
if (m == 16 && n == 16 && k == 32 && b == 1 && chipset.minorVersion >= 0x40)
return ROCDL::mfma_i32_16x16x32_i8::getOperationName();
}
if (sourceElem.isF64() && destElem.isF64() && chipset.minorVersion >= 0x0a) {
if (m == 16 && n == 16 && k == 4 && b == 1)
return ROCDL::mfma_f64_16x16x4f64::getOperationName();
if (m == 4 && n == 4 && k == 4 && b == 4)
return ROCDL::mfma_f64_4x4x4f64::getOperationName();
}
if (sourceElem.isFloat8E5M2FNUZ() && destElem.isF32() &&
chipset.minorVersion >= 0x40) {
// Known to be correct because there are no scalar f8 instructions and
// because a length mismatch will have been caught by the verifier.
Type sourceBElem =
cast<VectorType>(mfma.getSourceB().getType()).getElementType();
if (m == 16 && n == 16 && k == 32 && b == 1) {
if (sourceBElem.isFloat8E5M2FNUZ())
return ROCDL::mfma_f32_16x16x32_bf8_bf8::getOperationName();
if (sourceBElem.isFloat8E4M3FNUZ())
return ROCDL::mfma_f32_16x16x32_bf8_fp8::getOperationName();
}
if (m == 32 && n == 32 && k == 16 && b == 1) {
if (sourceBElem.isFloat8E5M2FNUZ())
return ROCDL::mfma_f32_32x32x16_bf8_bf8::getOperationName();
if (sourceBElem.isFloat8E4M3FNUZ())
return ROCDL::mfma_f32_32x32x16_bf8_fp8::getOperationName();
}
}
if (sourceElem.isFloat8E4M3FNUZ() && destElem.isF32() &&
chipset.minorVersion >= 0x40) {
Type sourceBElem =
cast<VectorType>(mfma.getSourceB().getType()).getElementType();
if (m == 16 && n == 16 && k == 32 && b == 1) {
if (sourceBElem.isFloat8E5M2FNUZ())
return ROCDL::mfma_f32_16x16x32_fp8_bf8::getOperationName();
if (sourceBElem.isFloat8E4M3FNUZ())
return ROCDL::mfma_f32_16x16x32_fp8_fp8::getOperationName();
}
if (m == 32 && n == 32 && k == 16 && b == 1) {
if (sourceBElem.isFloat8E5M2FNUZ())
return ROCDL::mfma_f32_32x32x16_fp8_bf8::getOperationName();
if (sourceBElem.isFloat8E4M3FNUZ())
return ROCDL::mfma_f32_32x32x16_fp8_fp8::getOperationName();
}
}
return std::nullopt;
}
/// Return the `rocdl` intrinsic corresponding to a WMMA operation `wmma`
/// if one exists. This includes checking to ensure the intrinsic is supported
/// on the architecture you are compiling for.
static std::optional<StringRef> wmmaOpToIntrinsic(WMMAOp wmma,
Chipset chipset) {
auto sourceVectorType = wmma.getSourceA().getType().dyn_cast<VectorType>();
auto destVectorType = wmma.getDestC().getType().dyn_cast<VectorType>();
auto elemSourceType = sourceVectorType.getElementType();
auto elemDestType = destVectorType.getElementType();
if (elemSourceType.isF16() && elemDestType.isF32()) {
return ROCDL::wmma_f32_16x16x16_f16::getOperationName();
} else if (elemSourceType.isBF16() && elemDestType.isF32()) {
return ROCDL::wmma_f32_16x16x16_bf16::getOperationName();
} else if (elemSourceType.isF16() && elemDestType.isF16()) {
return ROCDL::wmma_f16_16x16x16_f16::getOperationName();
} else if (elemSourceType.isBF16() && elemDestType.isBF16()) {
return ROCDL::wmma_bf16_16x16x16_bf16::getOperationName();
} else if (elemSourceType.isInteger(8) && elemDestType.isInteger(32)) {
return ROCDL::wmma_i32_16x16x16_iu8::getOperationName();
}
return std::nullopt;
}
namespace {
struct MFMAOpLowering : public ConvertOpToLLVMPattern<MFMAOp> {
MFMAOpLowering(LLVMTypeConverter &converter, Chipset chipset)
: ConvertOpToLLVMPattern<MFMAOp>(converter), chipset(chipset) {}
Chipset chipset;
LogicalResult
matchAndRewrite(MFMAOp op, MFMAOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Type outType = typeConverter->convertType(op.getDestD().getType());
if (chipset.majorVersion != 9 || chipset.minorVersion < 0x08)
return op->emitOpError("MFMA only supported on gfx908+");
uint32_t getBlgpField = static_cast<uint32_t>(op.getBlgp());
if (op.getNegateA() || op.getNegateB() || op.getNegateC()) {
if (chipset.minorVersion < 0x40)
return op.emitOpError("negation unsupported on older than gfx840");
getBlgpField |=
op.getNegateA() | (op.getNegateB() << 1) | (op.getNegateC() << 2);
}
std::optional<StringRef> maybeIntrinsic = mfmaOpToIntrinsic(op, chipset);
if (!maybeIntrinsic.has_value())
return op.emitOpError("no intrinsic matching MFMA size on given chipset");
OperationState loweredOp(loc, *maybeIntrinsic);
loweredOp.addTypes(outType);
loweredOp.addOperands(
{mfmaConcatIfNeeded(rewriter, loc, adaptor.getSourceA()),
mfmaConcatIfNeeded(rewriter, loc, adaptor.getSourceB()),
adaptor.getDestC(), createI32Constant(rewriter, loc, op.getCbsz()),
createI32Constant(rewriter, loc, op.getAbid()),
createI32Constant(rewriter, loc, getBlgpField)});
Operation *lowered = rewriter.create(loweredOp);
rewriter.replaceOp(op, lowered->getResults());
return success();
}
};
struct WMMAOpLowering : public ConvertOpToLLVMPattern<WMMAOp> {
WMMAOpLowering(LLVMTypeConverter &converter, Chipset chipset)
: ConvertOpToLLVMPattern<WMMAOp>(converter), chipset(chipset) {}
Chipset chipset;
LogicalResult
matchAndRewrite(WMMAOp op, WMMAOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Type outType = typeConverter->convertType(op.getDestD().getType());
if (chipset.majorVersion != 11)
return op->emitOpError("WMMA only supported on gfx11");
std::optional<StringRef> maybeIntrinsic = wmmaOpToIntrinsic(op, chipset);
if (!maybeIntrinsic.has_value())
return op.emitOpError("no intrinsic matching WMMA on the given chipset");
OperationState loweredOp(loc, *maybeIntrinsic);
loweredOp.addTypes(outType);
SmallVector<Value, 4> operands;
wmmaPushInputOperand(rewriter, loc, typeConverter, op.getUnsignedA(),
adaptor.getSourceA(), operands);
wmmaPushInputOperand(rewriter, loc, typeConverter, op.getUnsignedB(),
adaptor.getSourceB(), operands);
wmmaPushOutputOperand(rewriter, loc, typeConverter, adaptor.getDestC(),
op.getSubwordOffset(), op.getClamp(), operands);
loweredOp.addOperands(operands);
Operation *lowered = rewriter.create(loweredOp);
rewriter.replaceOp(op, lowered->getResults());
return success();
}
};
struct ConvertAMDGPUToROCDLPass
: public impl::ConvertAMDGPUToROCDLBase<ConvertAMDGPUToROCDLPass> {
ConvertAMDGPUToROCDLPass() = default;
void runOnOperation() override {
MLIRContext *ctx = &getContext();
FailureOr<Chipset> maybeChipset = Chipset::parse(chipset);
if (failed(maybeChipset)) {
emitError(UnknownLoc::get(ctx), "Invalid chipset name: " + chipset);
return signalPassFailure();
}
RewritePatternSet patterns(ctx);
LLVMTypeConverter converter(ctx);
populateAMDGPUToROCDLConversionPatterns(converter, patterns, *maybeChipset);
LLVMConversionTarget target(getContext());
target.addIllegalDialect<::mlir::amdgpu::AMDGPUDialect>();
target.addLegalDialect<::mlir::LLVM::LLVMDialect>();
target.addLegalDialect<::mlir::ROCDL::ROCDLDialect>();
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
void mlir::populateAMDGPUToROCDLConversionPatterns(LLVMTypeConverter &converter,
RewritePatternSet &patterns,
Chipset chipset) {
patterns.add<LDSBarrierOpLowering>(converter);
patterns.add<
RawBufferOpLowering<RawBufferLoadOp, ROCDL::RawBufferLoadOp>,
RawBufferOpLowering<RawBufferStoreOp, ROCDL::RawBufferStoreOp>,
RawBufferOpLowering<RawBufferAtomicFaddOp, ROCDL::RawBufferAtomicFAddOp>,
RawBufferOpLowering<RawBufferAtomicFmaxOp, ROCDL::RawBufferAtomicFMaxOp>,
RawBufferOpLowering<RawBufferAtomicSmaxOp, ROCDL::RawBufferAtomicSMaxOp>,
RawBufferOpLowering<RawBufferAtomicUminOp, ROCDL::RawBufferAtomicUMinOp>,
RawBufferOpLowering<RawBufferAtomicCmpswapOp,
ROCDL::RawBufferAtomicCmpSwap>,
MFMAOpLowering, WMMAOpLowering>(converter, chipset);
}
std::unique_ptr<Pass> mlir::createConvertAMDGPUToROCDLPass() {
return std::make_unique<ConvertAMDGPUToROCDLPass>();
}
|